Как разобрать светодиодную лампу ecola: Выполняем ремонт светодиодной лампы, схемы, видео

Содержание

Как разобрать светодиодную лампу на 220, e27, e14 и g13 в домашних условиях

Содержание:

  • Устройство любой светодиодной лампы
    • Почему не горит лампа
    • Как починить
  • Как разобрать лампу
    • Лампы с цоколем e27 и e14
    • Лампы с цоколем g13
  • Замена галогеновых точечных ламп на светодиодные

Светодиодные лампы выпускаются разной формы и на различных цоколях. В настольные лампы и потолочные люстры обычно вставляются приборы с винтообразным цоколем e27 или е14. Последний тоньше первого. В ряд настольных ламп, в аквариумы и в офисные люстры последнее время вставляются светодиодные лампы Т8 с цоколем g13 — они внешне напоминают трубку с штырями контактов с обоих торцов.

Эти модели заменяют газоразрядные аналоги, которые тратят больше энергии, быстрее выходят из строя, стоят дороже и, к тому же, содержат вредные компоненты, которые усложняют их утилизацию.

Если аккуратно разобрать светодиодную лампочку, её удастся починить, так что она прослужит ещё не один год.

Устройство любой светодиодной лампы

Любая лампочка такого типа состоит из цоколя с контактами, корпуса и матового светорассеивателя (в современных модификациях — пластикового купола или трубки).

Внутреннее устройство светодиодной лампы:

  • платформа с диодами, соединёнными последовательно;
  • радиатор теплоотвода, защищающий платформу от перегрева;
  • провода, передающие питание («плюс» и «минус»), один из них выведен вниз, на контакт, другой заведён под цоколь;
  • драйвер, распрямляющий переменный ток и понижающий напряжение 220 вольт до приемлемого для светодиодов;
  • конденсаторы, поглощающие скачки напряжения и защищающие прибор от взрыва и перегорания (обычная ёмкость — 250, идеальная — 800 микрофарад).

Почему не горит лампа

Чаще всего, лампа перестаёт гореть вовсе не из-за тотальной поломки на плате или взрыва конденсатора (что тоже случается), а из-за банального разрыва цепи. Один из диодов на платформе перегорает по той или иной причине. Подсоединены эти элементы последовательно. Соответственно, цепь разрывается, и перестают гореть все диоды. Такой же принцип работы у ёлочных гирлянд. Попробуйте выкрутить один диод, и погаснет вся цепочка.

Взрыв конденсатора — относительно редкая причина. Она характерна для дешёвых марок, где стоят элементы с недостаточной ёмкостью, порядка 200—250 микрофарад.

Как починить

Перегоревший диод обычно заметен сразу: на нём появляется чёрное пятно. Если уверенности нет, лучше проверить каждый элемент. Это делается либо амперметром, либо батарейкой с прикреплёнными к её концам проводками. По очереди замыкается каждый из диодов, пока не определятся неисправные.

Чтобы восстановить цепь, перегоревший диод нужно убрать и замкнуть контур иным способом либо заменить элемент. Запасные диоды нужного образца продаются в радиодеталях, а также на китайских торговых площадках, например «АлиЭкспресс». Ресурс mschistota.ru напоминает, что диоды выпускаются разного качества, и брать их стоит у проверенного продавца.

Самый вероятный выход — поставить перемычку одним из двух способов:

  • припаять короткую и тонкую проволочку, соединив «+» и «–» контактной площадки под удалённым диодом;
  • капнуть сначала флюсом, а затем припоем так, чтобы занять края контактной площадки.

Совет
Используя паяльник, будьте осторожны, чтобы не расплавить корпус лампочки и не задеть работающие диоды.

Как разобрать лампу

Конкретный способ зависит от модели и марки светодиодной лампы, журнал «Мисс Чистота» предлагает ознакомиться с типовыми подходами.

Лампы с цоколем e27 и e14

Если светорассеиватель выполнен из пластика, то процедура не занимает много времени:

  1. Снять светорассеиватель. В случае фиксации шипом — слегка сжать и отделить от корпуса. Если деталь держится силиконовым герметиком (в более дешёвых моделях, в том числе Ecola) — провести скальпелем или канцелярским ножом, подрезая пасту, затем убрать купол.
  2. Отпаять, нагрев паяльником, два провода в центре платформы с диодами.
  3. Открепить винты либо подрезать силиконовый слой по окружности платформы.
  4. Перевернуть лампочку на бок, поддеть ножом заглушку на конце цоколя, вынуть и отложить её.
  5. Отогнуть показавшийся провод.
  6. Аккуратно потянуть или поддеть ножом и осторожно поднять платформу с диодами. Во многих моделях она слита с радиатором. В других случаях нужно сначала вынуть платформу, а затем поднять радиатор.
  7. Вытянуть или отрезать (первый вариант предпочтителен) провод, заведённый под корпус.
  8. Извлечь плату с драйвером и конденсаторами.

Чтобы усилить яркость светодиодной лампы, можно попробовать заменить диодную платформу, припаяв провода к пучку диодных лент. При этом важно смазать дно платформы термопастой, а конденсаторы заменить на более ёмкие. Однако ленты, вставленные в пластиковый светорассеиватель, будут его неизбежно перегревать, так что прослужит такая лампа, скорее всего, недолго. Плюс этого метода в том, что отрезки ленты подключаются параллельно, и если одна из них перегорит, остальные продолжат работать.

Лампы с цоколем g13

Главное отличие этих устройств — прямое, а не круговое расположение диодов, в остальном конструкция того же типа. Чтобы разобрать её, нужно:

  1. Освободить винты либо аккуратно прогреть торцевую заглушку (и силиконовый слой под ней).
  2. Снять колпачок с контактами, не разрывая провода.
  3. Если светорассеиватель самостоятельная деталь и крепится на алюминиевой базе, вытянуть его и снять. Если крепление монолитное, то нужно аналогично первому снять второй торцевой контакт.
  4. Отпаять провода от контактов.
  5. Вынуть площадку с диодами. Обычно на ней снизу крепятся драйвер и конденсаторы.

Важно
Если не прогреть силиконовое сцепление или действовать неаккуратно, торцевая заглушка лопнет. Это особенно опасно для аквариумных ламп, поскольку они работают в условиях постоянной влажности.

Все описанные способы подходят для случаев с пластиковыми светорассеивателями. На рынке всё ещё встречаются светодиодные лампочки со стеклянными корпусами. К сожалению, любая попытка разобрать такую конструкцию почти гарантированно приведёт к поломке: стекло расколется. Чинить подобные устройства опасно, легко порезаться. Поэтому имеет смысл либо заменить их новой лампой, либо попытаться найти пластиковый светорассеиватель и поставить на старый корпус.

Замена галогеновых точечных ламп на светодиодные

Галогеновые лампы сильно греются и потребляют много энергии, поэтому имеет смысл заменить их на светодиодные.

Как заменить галогеновый фонарь:

  1. Надавить на галогеновую лампу и выяснить, с какой стороны расположена запирающая скоба.
  2. Протолкнуть лампу в пространство над потолком в обратную сторону от скобы.
  3. Двумя крючками по очереди зацепить распорочные скобы («уши»).
  4. Отжать пружины и вынуть патрон.
  5. Вытянуть лампу.
  6. Нажать фиксатор и освободить цоколь. В потолки старого образца монтировались светильники под цоколь g
  7. Вставить светодиодную лампу с тем же цоколем, например «Онлайт» MR
  8. Ввести её в патрон.
  9. Монтировать всю конструкцию обратно в отверстие в потолке.

Идеальный вариант, конечно, перепаять гнездо на вариант GX53 (в линейке того же «Онлайт»), чтобы впоследствии не вынимать патрон, а просто заменять светильник, провернув на пол-оборота. Однако такую операцию имеет смысл доверить электрику, тем более, что заменять придётся не одно и не два гнезда, а гораздо больше.

Светодиодные лампы считаются сегодня наиболее удачным решением и для жилых, и для офисных помещений. Благодаря рассеивателю LED даёт мягкий, приятный для глаз свет, при этом он достаточно яркий. Большое преимущество — отсутствие пульсации, экономичный расход энергии и возможность отремонтировать лампу, заменив всего один диод или просто поставив «пломбу» на его место. Поэтому не стоит отказываться и от светодиодных настольных светильников — лампочку в них не заменишь, но легко переставить диоды, прикупив заранее светодиодные ленты, которые стоят совсем недорого.

Инструкции по ремонту светодиодных ламп своими руками

Возникли проблемы с источниками света, но вы не спешите покупать новые и не хотите вызывать электрика? Неплохо попытаться провести ремонт светодиодных ламп своими руками, ведь верно? Тем более, что это может оказаться не так уж сложно. Но вы не знаете, с чего начинать?

Мы подскажем вам, как можно обнаружить проблему и выполнить ремонт проблемного участка — в статье рассмотрены наиболее распространенные причины поломок. Главное, правильно выявить область проблемы и с помощью профильных инструментов аккуратно устранить неисправность. Корректно восстановленное изделие продолжит свою службу.

В помощь домашнему мастеру мы подобрали фотоматериалы и снабдили инструкции по ремонту информативными видеороликами. С их помощью с задачей сможет справиться даже мастер, не имеющий колоссального опыта в работах подобного плана.

Содержание статьи:

  • Устройство диодного прибора
    • Назначение и разновидности цоколей
    • Роль драйвера светодиодной лампы
    • Особенности монтажной платы
    • Нюансы устройства LED-элементов
    • Специфика работы радиатора
    • Несколько слов про оптику
  • Частые причины неисправностей
  • Предварительная диагностика устройства
  • Как разобрать светодиодный модуль?
    • Способ #1 — откручивание
    • Способ #2 — нагревание феном
  • Самостоятельная замена светодиодов
  • Решение проблем с драйвером
  • Выводы и полезное видео по теме

Устройство диодного прибора

Прежде чем приступать к ремонту испортившейся светодиодной лампы, нужно узнать, из каких деталей она состоит и где именно искать неисправность.

Общее устройство агрегатов подобного типа примерно одинаково и включает в себя такие элементы, как:

  • цоколь;
  • драйвер;
  • монтажная плата;
  • светодиоды;
  • радиатор;
  • оптические элементы.

Каждая из частей очень важная и отвечает за определенную функцию. Найдя место дислокации проблемы, можно понять уровень ее серьезности и приступить к устранению.

Назначение и разновидности цоколей

В LED-приборах изготовляется из металла, керамики или прогрессивного высокотемпературного пластика, славящегося отличной термостойкостью.

В изделиях от брендовых производителей при монтаже детали в лампу не применяется пайка. Это полностью исключает окисление или подлипание цокольного элемента к патрону светильника.

В таблице представлены наиболее распространенные виды цоколей, имеющиеся у светодиодных модулей. Численно-буквенная аббревиатура описывает тип элемента, размер и номинальное предназначение

Чаще всего в светодиодных приборах, предназначенных для использования в быту и промышленности, применяются резьбовые и штырьковые цоколи.

Прочие виды считаются более редкими и используются в определенных, специфических случаях. Сам цоколь обладает хорошим рабочим ресурсом и практически никогда не выходит из строя.

Роль драйвера светодиодной лампы

Драйвер в устройстве LED-прибора играет одну из ключевых ролей. Эта небольшая деталь выступает как общий блок питания, нейтрализует перепады напряжения, а постоянный ток направляет непосредственно на диоды, которые преобразуют его в видимый человеческим глазом свет.

Драйвер обладает высоким уровнем КПД и легко функционирует в температурном диапазоне от -40 до +70 градусов. Но несмотря на свои хорошие физические характеристики, является одним из наиболее уязвимых элементов LED-изделия

Драйверы в современных лампах бывают электронными или конденсаторными. Каждый вид имеет свои специфические отличительные черты и достоинства. Подробнее о видах и выборе преобразователей тока для светодиодных лампочек мы .

Первый вариант ценится более дорого и чаще используется в брендовой продукции среднего и люксового сегмента, второй обходится производителям достаточно дешево и ставится в изделия бюджетной серии.

Особенности монтажной платы

Монтажная плата служит плацдармом для расположения светодиодов и прочих рабочих элементов. Производители используют для ее создания разные материалы. Самой актуальной сейчас считается плата, выполненная из анодированного алюминиевого сплава.

На некоторых монтажных платах для удобства места для светодиодов пронумерованы. Это помогает при разборке и ремонте не перепутать последовательность размещения

Она проявляет себя максимально эффективно и абсорбирует до 90% теплового излучения, возникающего в процессе эксплуатации.

Нюансы устройства LED-элементов

Диоды, регенерирующие светопоток, бывают нескольких видов. Наиболее часто в лампах стоят SMD и COB-чипы. Чем больше их располагается на плате, тем мощнее получается прибор и тем большее количество тепла выделяется в процессе работы.

Когда на ламповой плате установлены диоды определенного вида, заменять их можно только на точно такие же. Если аналога под рукой нет, придется перепаять все чипы, чтобы они были одинаковыми

Для нормальной эксплуатации и длительной службы необходимо обеспечить корректный теплоотвод, и за это отвечает установленный на корпусе радиатор.

Специфика работы радиатора

Излишний нагрев губительно сказывается на функционировании светодиодов. Отсутствие качественного теплоотвода в разы уменьшает период работы лампы и в итоге приводит к ее сгоранию.

Некоторые изготовители экономят и оснащают прибор нескольким поперечными или продольными отверстиями, располагая их по всей территории корпуса.

Бюджетные производители ставят дешевые пластиковые, стеклянные и композитные детали. Продвинутые бренды идут дальше и комплектуют свои LED-приборы радиаторами, выполненными из металла с анодированным антикоррозийным покрытием.

Поэтому лучше изначально покупать из лучших материалов. Хотя они и обойдутся дороже, но пользователь обезопасит себя от постоянных поломок.

Радиаторы, вмонтированные в корпус лампы, могут быть спиральными, сплошными, пластинчатыми и т.д. Их толщина напрямую зависит от того, какой мощности диоды применяются в осветительном устройстве

Отдельные торговые марки, преимущественно китайского происхождения, снабжают лампочки радиаторными элементами из керамики.

Такие изделия получают качественное охлаждение, но, вместе с ним, частично теряют конструкционную прочность и становятся более хрупкими по сравнению с металлическими аналогами.

Несколько слов про оптику

Основная масса LED-ламп обязательно снабжается рассеивателем, изготовленным из матового пластика. Он помогает концентрировать светопоток под определенным углом и делает его более равномерным.

Главный плюс рассеивателя в том, что он абсолютно безопасен. Для сравнения, стеклянная колба при перегорании лампы может треснуть, разбиться и травмировать находящихся в комнате людей

В некоторых моделях вместо рассеивателей используют линзы, созданные из различных современных и практичных материалов. В этих элементах поломок не наблюдается, и под ремонт они не подпадают.

Частые причины неисправностей

К выходу из строя светодиодной лампы часто приводят некорректная эксплуатация и резкие перепады напряжения в центральной электросети. Сами диодные элементы в этом случае сохраняют работоспособность, а вот драйвер может испортиться.

Заводской брак – вполне возможный вариант неисправности. В основном ему подвержены изделия-«безымянки», однако, и у брендовой продукции это может случиться, хотя, такие случаи крайне редки и обычно выявляются на этапе покупки

Удары и вибрации не нанесут повреждения диодам, а вот на драйвере скажутся самым негативным образом. Может нарушиться целостность конструкции и точность прилегания к плате рабочих элементов

Если в самом светильнике не обеспечена качественная вентиляция, драйвер будет перегреваться. В итоге это плохо отразится на его функционировании и спровоцирует поломку.

Лампа начнет чувствительно мерцать и моргать, раздражая глаз, когда испортится токоограничивающий резистор, и совсем перестанет гореть, если выйдет из строя конденсатор.

Все эти моменты неприятны, но впадать в панику не стоит. Исправить неполадку без особых усилий получится дома своими руками.

Плохо подействует на Led-элемент и приведет к его выходу из строя неправильно организованная в доме или квартире электрическая система.

Плюс к тому она увеличит нагрузку на проводку и, возможно, создаст дополнительные проблемы в ближайшем будущем. Поэтому ее обустройство лучше доверить профессионалам.

Приобретая лампочку от известного бренда за низкую цену, стоит проявлять осторожность. Продукция может оказаться фальсифицированной и не отработает заявленного производителем срока. Починка потребует финансовых затрат, времени, да и вряд ли оправдает себя в таком случае

В процессе эксплуатации в лампе может произойти нарушение базовой кристаллической структуры полупроводниковых диодов.

Провоцирует эту неполадку реакция на повышение уровня плотности инжектированного тока со стороны материала, из которого изготовлен полупроводник.

Когда пропайка краев осуществлена некачественно, отвод тепла теряет необходимую интенсивность и ослабевает. Проводник перегревается, в системе происходит перегрузка и короткое замыкание выводит лампу из строя.

Все эти мелочи не фатальны и подлежат незатратному по времени и финансам ремонту.

Предварительная диагностика устройства

LED-модуль обычно не горит из-за обрывов в общей проводке, неисправностей в системе выключателя, при отсутствии контакта в патроне или возникновении неполадок в самой лампе.

Чтобы разобраться в вопросе, нужно провести предварительную диагностику и понять, где располагается проблема.

Когда при активации включателя лампа не загорается, нужно выкрутить ее из патрона и вкрутить другую, причем, не обязательно диодную.

Если ситуация изменилась и свет появился, значит неисправна сама лампа. Отсутствие поступления освещения означает, что неполадки заключаются в проводке.

На следующем этапе понадобится с помощью мультиметра выяснить, имеется ли напряжение в электрической цепи.

Для этого достаточно прислонить прибор к патронной части при активированном выключателе и посмотреть на показатели. Они должны быть на уровне 220 В. Если цифры иные, значит зона неисправности обнаружена.

Когда наличие корректного напряжения подтверждено, а лампа все равно не горит, следует проверить, имеется ли контакт между цоколем и усиками патрона. Если в этой области происходят нарушения, возникает дуга и на усиковых элементах образуется нагар.

При интенсивной эксплуатации, постоянном перегреве или недостаточной изначальной толщине центральные и боковые контакты в патроне могут прийти в негодность и стать причиной регулярного перегорания светодиодных ламп

Чтобы его удалить, необходимо отключить напряжение, счистить некорректные образования, а сами усики аккуратно подогнуть. После всех этих мероприятий можно вкрутить в рабочую лампу и проверить результат.

При отсутствии напряжения на контактах патрона, его обязательно нужно снять и проверить, есть ли фаза на самой проводке. Если при активированном выключателе она присутствует, патрон подлежит замене.

Когда же ее нет, стоит обратить пристальное внимание на выключатель и поискать проблему в нем.

Если все выше описанные элементы, узлы и детали в результате проверки подтвердили свою исправность, становится совершенно ясно, что проблема находится именно в LED-лампе.

Как разобрать светодиодный модуль?

Для осуществления ремонта светодиодную лампу обязательно придется разобрать. Процедура эта не представляет большой сложности, но требует аккуратности, внимания и некоторой сноровки.

При желании, можно заснять весь процесс в пошаговом режиме на телефон, чтобы потом не перепутать порядок действий.

Желательно действовать крайне осторожно. Не все внутренние элементы прибора подлежат замене, поэтому чрезвычайно важно не нанести им повреждений и сберечь в целости и сохранности.

Особенно это касается такой уязвимой, но крайне значимой детали, как монтажная печатная плата.

Способ #1 — откручивание

Светодиодная лампа – довольно хрупкий прибор, разбирать который нужно предельно осторожно и аккуратно. Тут не требуются какие-то значительные усилия, да и пользоваться острыми инструментами там, где есть шанс справиться вручную, нет нужды.

Чтобы снять рассеивающий купол, достаточно взять лампочку двумя руками за края и, мягкими вращательными движениями отделить верхнюю часть от корпуса.

Обычно сделать это удается легко, так как слой скрепляющего герметика крайне тонок и сразу реагирует на движение и нарушение целостности.

Пытаясь открутить купольную часть от корпуса ни в коем случае нельзя прикладывать усилий. Пластик отличается хрупкостью и при сильном нажиме может просто лопнуть прямо под руками

Потом придется решить самую сложную задачу – отделить пластину, несущую светодиоды, от остальной части корпуса. Для этого придется выкрутить все крепежные болты.

Так как их головки отличаются крошечным размером, придется воспользоваться специальными отвертками прецизионного типа.

На следующем этапе понадобится отсоединить монтажную пластину от радиаторного устройства. Сделать это поможет предмет с плоским острым краем, например, ювелирный пинцет. Им удастся аккуратно поддеть край платы и осторожно снять ее целиком.

Потом придется аккуратно распаять зоны прилегания провода питания и окончательно отделить пластину с диодами от сопутствующих деталей.

Радиатор и цоколь потребуется разъединить деликатными вращательными движениями и разложить все составные части лампы на столе перед собой. После этого можно приступать непосредственно к ремонту.

Способ #2 — нагревание феном

Второй вариант наиболее подходит для изделий с толстым стеклом, не годящихся для непосредственного контакта с инструментом типа отвертки. Здесь придется воспользоваться строительным феном и с его помощью разогреть корпус лампы.

Только так удастся вынуть из цилиндрической основы приклеенный специальным составом стеклянный фрагмент.

Интенсивное воздействие горячего воздуха заставит обрабатываемые объекты расшириться, а клеевой слой, удерживающий стекло, приобретет эластичность.

После этих манипуляций лампа распадется на составные части, даже если мастер не приложит к этому никаких усилий.

Если фена под рукой нет, можно пойти другим путем. Для этого потребуется взять растворитель, шило и медицинский шприц с иглой. Сначала шилом аккуратно и без нажима провести вдоль кромки купольного рассеивателя.

Затем шприцем ввести растворитель и немного подождать. Пройдет буквально пара минут, герметик приобретет податливость, и купол удастся открутить без всяких физических усилий. Все дальнейшие действия ничем не отличаются от метода, описанного выше.

У вас никак не получается разобрать лампу? У нас на сайте есть другие различных типов лампочек. Рекомендуем вам ознакомиться с ними.

Самостоятельная замена светодиодов

Сгоревшие светодиоды часто становятся причиной, по которой лампочка выходит из строя. Обычно после разборки сразу видно, какие элементы испорчены и требуют замены. Но нередки случаи, когда на первый взгляд все диоды выглядят нормально.

Визуально распознать сгоревшие LED-элементы не составляет никакого труда. Как правило, они отличаются от рабочих «собратьев» тем, что имеют заметные черные точки и подпалины

В этом случае придется воспользоваться мультиметром и прозвонить каждый элемент отдельно, чтобы выявить неисправный. Либо снять с платы элементы, вызывающие сомнения, и протестировать их с помощью проводов, подключенных к 12-вольтовому источнику питания.

Когда испорчен только один диод, можно просто замкнуть его выходы. Если в светильнике применено цепочное соединение, этот момент никак не повлияет на потерю функций всех остальных элементов.

Старые, неисправные диоды придется выпаять, затем перевернуть плату и припаять к видимым контактным дорожкам новые чипы.

На плате всегда указаны такие данные, как тип и размер используемого светодиода. Очень важно заменить неисправные модули на аналогичные, чтобы дальше лампа работала так же корректно, как и до ремонта

В некоторых случаях заменить светодиод можно без использования паяльника. Для этого плату потребуется хорошо прогреть строительным феном. Область пропайки станет мягкой и податливой, а диод удастся спокойно снять с помощью обычного пинцета.

На еще не остывшее место понадобится вмонтировать рабочий источник света. Когда плата хорошо остынет, он прочно зафиксируется и уже никуда не сдвинется.

Главное, четко запомнить расположение элемента относительно меньшего и большего контактов и разместить исправный с соблюдением полюсности.

Решение проблем с драйвером

Неполадки в драйвере – довольно распространенная проблема светодиодных ламп. Чаще всего в драйвере горят резистор или конденсатор.

Имеющимися под рукой домашнего мастера измерительными приборами выявить уровень работоспособности этого элемента довольно проблематично. Поэтому рекомендуется его просто заменить на исправный с аналогичными параметрами.

Причинами, по которым выходит из строя конденсатор, могут стать изначальный заводской дефект или регулярный перегрев модуля в результате некачественного теплоотвода

Найти подходящую деталь в магазинах светотехники получается не всегда. Лучше сразу отправиться на радиорынок или в место продажи радиоэлектроники и там попытаться отыскать нужную вещь.

Когда она будет куплена, потребуется демонтировать неисправный узел, а на его место поставить рабочий элемент.

Для корректного проведения разборки и ремонта лампочек светодиодного типа не понадобится сложное, дорогостоящее оборудование. Устранить возникшие неполадки поможет минимальный набор простых инструментов.

Мультиметр позволит проверить наличие напряжения в цепи, даст возможность обнаружить наличие обрывов и покажет, насколько работоспособны остальные детали схемы.

Мультиметр представляет собой универсальный прибор, предназначенный для измерения основных базовых параметров различных электронных изделий. С его помощью можно узнать, в каком состоянии находятся светодиоды любого LED-изделия

Температура разогрева в момент пайки не должна превышать 260°. Простой паяльник нагревается сильнее, поэтому на его жало нужно плотной спиралью намотать кусок медной жилы с сечением не более 4 мм. Чем сильнее удастся удлинить жало, тем ниже будет его рабочая температура

Паяльный прибор с канифолью и припоем потребуется для восстановления обрывов, найденных в цепи, и последующей замены поврежденных деталей и элементов.

Отверткой небольших размеров удастся аккуратно отделить от корпуса лампы управляющие элементы, а тонким, прочным канцелярским ножиком получится деликатно отсоединить детали от монтажной печатной платы.

Также часто пользователи сталкиваются с такими проблемами, как моргание лампочек и горение ламп при выключенном выключателе. Что служит причиной этих неисправностей и как их устранить мы говорили в других наших статьях:

Выводы и полезное видео по теме

Как устранить характерные поломки светодиодной лампочки с цоколем E27. Подробная инструкция по разборке изделия, интересные практические советы по использованию подручных инструментов.

Подсказки, как корректно снять с прибора колбу, не повредив ее в процессе.

2020-04/1585745834_remont-svetodiodnyh-lamp.mp4

Простой способ отремонтировать лампочку лед-типа без использования паяльника. Вместо припаивания применяется специальная электропроводящая паста.

Полное описание работы на изделиях торговой марки «Космос», которой владеет KOSMOS Group, контролирующая около 25% отечественного рынка прогрессивной и экономной продукции для создания качественного освещения.

Как починить Led-лампочку типа «кукуруза». Особенности процесса разборки, конструкционные нюансы и прочие познавательные моменты. Существенное увеличение срока службы изделия после проведения всех работ.

Светодиодная лампочка – практичный источник освещения. Единственный минус этого изделия – высокая по сравнению с другими модулями цена. Правда, LED-приборы надежны и обычно полностью отрабатывают свой срок.

А если вдруг в процессе эксплуатации возникнут поломки, большую часть из них можно будет устранить своими руками. Нужные инструменты найдутся у любого домашнего мастера, а выкроить время на ремонтные работы тоже не составит никакого труда.

Вы умеете самостоятельно чинить светодиодные лампы и можете дополнить изложенный нами материал ценными рекомендациями? Пишите советы в комментариях к статье, добавляйте уникальные фото — многие новички, не имеющие опыта ремонта светотехнической продукции будут вам благодарны.

Как разобрать светодиодную лампу на 220, е27, е14 и g13 в домашних условиях

Состав:

  • Устройство любой светодиодной лампы
  • Почему лампа не горит
  • Как починить
  • Как разобрать лампу
  • Лампы с цоколем е27 и е14
  • Замена
  • Лампы с цоколем g006 прожекторы со светодиодами

Светодиодные лампы доступны в различных формах и на различных цоколях. Настольные лампы и потолочные люстры обычно представляют собой вставные приборы с винтовым цоколем е27 или е14. Последний тоньше первого. В последнее время в ряд настольных ламп, аквариумов и офисных люстр стали вставлять светодиодные лампы Т8 с цоколем g13 — они имеют вид трубки с штырьковыми штырями с обоих концов.

Данные модели заменяют газоразрядные аналоги, которые тратят больше энергии, быстрее выходят из строя, стоят дороже и, кроме того, содержат вредные компоненты, усложняющие их утилизацию.

Если аккуратно разобрать светодиодную лампу, ее можно отремонтировать, так что она прослужит не один год.

Устройство любого светодиодного светильника

Любая лампочка этого типа состоит из цоколя с контактами, корпуса и матового рассеивателя (в современных вариантах — пластикового купола или трубки).

Внутренняя структура светодиодной лампы:

  • платформа с последовательно соединенными диодами;
  • Радиатор радиатора, предохраняющий платформу от перегрева;
  • провода передающие питание («плюс» и «минус»), один из них выведен на контакт, другой заведен под основание;
  • драйвер, выпрямляющий переменный ток и снижающий напряжение 220 вольт до допустимого для светодиодов;
  • конденсаторы, поглощающие скачки напряжения и защищающие устройство от взрыва и перегорания (нормальная емкость — 250, идеальная — 800 мкФ).

Почему не горит лампа

Чаще всего лампа перестает гореть вовсе не из-за полного пробоя на плате или взрыва конденсатора (что тоже бывает), а из-за банального обрыва цепи. Один из диодов на платформе по тем или иным причинам перегорает. Эти элементы соединены последовательно. Соответственно цепь разрывается, и все диоды перестают гореть. Тот же принцип работы для новогодних гирлянд. Попробуйте выкрутить один диод, и вся цепочка погаснет.

Взрыв конденсатора является относительно редкой причиной. Это характерно для дешевых марок, где есть элементы с недостаточной емкостью, порядка 200-250 мкФ.

Как починить

Перегоревший диод обычно сразу бросается в глаза: на нем появляется черное пятно. Если нет уверенности, лучше проверить каждый элемент. Это делается либо с помощью амперметра, либо с помощью батареи с проводами, прикрепленными к ее концам. По очереди каждый из диодов закрывается до определения неисправных.

Для восстановления цепи необходимо удалить перегоревший диод и замкнуть цепь другим способом или заменить элемент. Запасные диоды нужного образца продаются в радиодеталях, а также на китайских торговых площадках, например, «Алиэкспресс». Ресурс Purity.techexpertolux.com/en/ напоминает, что диоды бывают разного качества, и брать их надо у проверенного продавца.

Наиболее вероятный выход — установить перемычку одним из двух способов:

  • припаять короткий и тонкий провод, соединив «+» и «-» контактной площадки под дистанционным диодом;
  • капаем сначала флюсом, а потом припаиваем так, чтобы занимать края контактной площадки.

Жало
При использовании паяльника будьте осторожны, чтобы не расплавить корпус лампочки и не коснуться работающих диодов.

Как разобрать лампу

Конкретный способ зависит от модели и марки светодиодной лампы, журнал Purity.techexpertolux.com/en/ предлагает ознакомиться с типичными подходами.

Лампы с цоколем е27 и е14

Если рассеиватель пластиковый, то процедура не займет много времени:

  1. Снять рассеиватель. В случае фиксации шипом — слегка отжать и отделить от корпуса. Если деталь держится силиконовым герметиком (в более дешевых моделях, в т.ч. Ecola ) — провести скальпелем или канцелярским ножом, срезав пасту, затем снять купол.
  2. Припой, нагрев паяльником, два провода по центру площадки с диодами.
  3. Ослабьте винты или разрежьте силиконовый слой вокруг платформы.
  4. Переверните лампу на бок, подденьте ножом заглушку на конце цоколя, снимите ее и отложите в сторону.
  5. Согните появившуюся проволоку.
  6. Аккуратно потяните или подденьте ножом и аккуратно поднимите платформу с диодами. Во многих моделях он совмещен с радиатором. В остальных случаях необходимо сначала снять платформу, а затем поднять радиатор.
  7. Вытяните или перережьте (предпочтительнее первый вариант) провод, заведенный под корпус.
  8. Снимите плату с драйвером и конденсаторами.

Для усиления яркости светодиодной лампы можно попробовать заменить диодную площадку, припаяв провода к жгуту диодных лент. Дно платформы важно смазать термопастой, а конденсаторы заменить на более емкие. Однако ленты, вставленные в пластиковый рассеиватель, неизбежно будут его перегревать, поэтому такая лампа, скорее всего, прослужит недолго. Преимущество этого метода в том, что отрезки ленты соединяются параллельно, и если один из них перегорит, остальные продолжат работу.

Лампы с цоколем g13

Основным отличием этих приборов является прямое, а не круговое расположение диодов, в остальном конструкция однотипная. Чтобы его разобрать, нужно:

  1. Ослабить винты или аккуратно прогреть торцевую заглушку (и силиконовый слой под ней).
  2. Снять колпачок с контактами, не обрывая провода.
  3. Если диффузор является самостоятельной деталью и установлен на алюминиевом основании, вытащите его и снимите. Если крепление цельное, то нужно снять второй торцевой контакт аналогично первому.
  4. Отпаять провода от контактов.
  5. Выньте площадку с диодами. Обычно драйвер и конденсаторы крепятся к нему снизу.

Важно
Если не прогреть силиконовую муфту или действовать неосторожно, торцевая крышка лопнет. Особенно это опасно для аквариумных ламп, так как они работают в условиях постоянной влажности.

Все описанные способы подходят для корпусов с пластиковыми рассеивателями. На рынке все еще есть светодиодные лампы со стеклянным корпусом. К сожалению, любая попытка разобрать такую ​​конструкцию почти наверняка приведет к поломке: стекло треснет. Ремонтировать такие устройства опасно, легко порезаться. Поэтому есть смысл либо заменить их на новую лампу, либо попробовать найти пластиковый рассеиватель и поставить на старый корпус.

Замена галогенных прожекторов на светодиодные

Галогенные лампы сильно нагреваются и потребляют много энергии, поэтому есть смысл заменить их на светодиодные.

Как заменить галогенную лампу:

  1. Нажмите на галогенную лампу и узнайте, с какой стороны фиксирующая скоба.
  2. Вставьте лампу в пространство над потолком в направлении, противоположном кронштейну.
  3. С помощью двух крючков по очереди зацепите распорные скобы («ушки»).
  4. Выдавите пружины и снимите патрон.
  5. Вытащите лампу.
  6. Нажмите на замок и отпустите базу. В плафоны старого образца монтировались светильники под г-цоколь
  7. Вставьте светодиодную лампу с таким же цоколем, например MR ONLIGHT
  8. Вставьте в патрон.
  9. Установите всю конструкцию обратно в отверстие в потолке.

Идеальный вариант, конечно, перепаять цоколь на вариант GX53 (в линейке того же «Онлайта»), чтобы потом не вынимать патрон, а просто заменить лампу, повернув наполовину поворот. Однако есть смысл доверить такую ​​операцию электрику, тем более, что заменить придется не одну и не две розетки, а гораздо больше.

Светодиодные светильники на сегодняшний день считаются самым удачным решением как для жилых, так и для офисных помещений. Благодаря рассеивателю светодиод дает мягкий, приятный для глаз свет, при этом достаточно яркий. Большим плюсом является отсутствие пульсаций, экономное энергопотребление и возможность ремонта лампы заменой всего одного диода или просто поставив «печать» на своем месте. Поэтому не стоит отказываться от светодиодных настольных ламп – лампочку в них не заменишь, а вот диоды легко переставить, купив заранее светодиодные ленты, которые стоят совсем недорого.

Что внутри и светодиодная лампа

by ЛЕЛАНД ТЕШЛЕР, ответственный редактор

Сюрприз: заглянув внутрь пяти светодиодных ламп, предназначенных для замены 60-ваттных ламп накаливания, можно увидеть конструктивные решения, варьирующиеся от предельно простых до поразительно сложных.

Среднестатистический потребитель может подумать, что когда речь идет о лампочках, одна похожа на другую. Это представление могло быть точным в те времена, когда в каждой розетке была лампа накаливания. Это, конечно, не верно для светодиодных ламп, предназначенных для замены ламп накаливания.

Мы пришли к такому выводу после того, как разобрали пять светодиодных ламп, продаваемых как эквиваленты 60-ваттных ламп накаливания. Все пять лампочек, которые мы выбрали, получили высокие оценки журнала Consumer Reports. Но на этом общность кончилась. Оказавшись внутри, мы обнаружили совершенно разные подходы к строительным технологиям, управлению температурным режимом и проектированию электроники.

Начнем с лампы под названием E27 A19 LED от Home EVER Inc. в Лас-Вегасе. Механика лампочки и ее электроника предельно проста. Двусторонняя печатная плата, похоже, припаяна оплавлением. Два провода соединяют плату с металлической пластиной, содержащей 30 светодиодов. Еще два провода идут к проводникам световой розетки. Все четыре провода выглядят так, как будто они были припаяны вручную.

Пластиковый корпус преобразователя переменного/постоянного тока Home EVER выскользнул из нижней части радиатора. Плата преобразователя (справа) находится в пластиковом корпусе.

Лампа построена вокруг радиатора высотой 2 дюйма, который весит 2 унции и выглядит как металлическая отливка. Основание лампы содержит пластиковый корпус, в котором находится преобразователь переменного тока в постоянный. Электрические соединения с патроном лампы находятся на одном конце корпуса. Другой конец крепится к радиатору двумя маленькими винтами.

Радиатор лампы Home EVER и пластиковое основание, удерживающее преобразователь переменного тока в постоянный, с удаленной металлической резьбой. >Здесь соединение базовой ножки все еще подключено к конвертеру.

Дополнительными приспособлениями к радиатору являются колба из матового поликарбоната, закрывающая светодиоды, и металлическая пластина диаметром 2 дюйма, содержащая светодиоды. Пластиковая лампочка, по-видимому, защелкивается в радиаторе, а светодиодная пластина крепится тремя винтами. Между светодиодной пластиной и радиатором нанесено несколько пятен компаунда для теплопроводности.

Конструкция преобразователя переменного/постоянного тока проста. Единственными компонентами, не являющимися SMD, являются два больших конденсатора, импульсный резистор на входе и трансформатор. Соединения платы с винтовым цоколем и платой со светодиодами осуществляются дискретными проводами, а вот соединение с ножным контактом лампы было сделано машинным способом. Однако электрическое соединение с металлической резьбой представляет собой просто кусок оголенного провода, зажатого между пластиковым корпусом и внутренней поверхностью резьбы.

Электроника преобразователя переменного тока в постоянный представляет собой голые кости. Диодный мост на входе — четыре дискретных диода. На плате одна микросхема. Это блок питания с понижающей топологией, предназначенный для обеспечения постоянного тока, и производится компанией Bright Power Semiconductor (BPS) в Китае. Чип, получивший название BP2812, включает в себя полевой МОП-транзистор на 600 В. В спецификации указан рабочий ток чипа при 200 мкА.

На плате Home EVER видны четыре диода, составляющие выпрямительный мост, и микросхема BP2812 (внизу). На другой стороне платы (сверху) находятся компоненты управления энергией и предохранитель на входе.

«Типичная прикладная схема», указанная в спецификации BP2812, очень близка к фактической схеме, которую мы нашли на печатной плате светодиода. Семь резисторов входят в простые цепи, которые управляют напряжением Vcc, измеряют пиковый ток дросселя и регулируют входное напряжение ИС. Пять конденсаторов выполняют рутинную работу по фильтрации линии переменного тока, обходу переменного тока для вывода Vcc и выводов контроля линии, а также по топологии buck. Встроенный предохранитель отключает питание всей цепи в случае слишком высокого потребления тока.

Судя по графике на веб-сайте BPS, похоже, что BPS сама собрала плату. Там есть изображения примеров плат для нескольких других светодиодных приложений, которые очень похожи на это.

Чип, питающий светодиодную лампу Home EVER, представляет собой источник постоянного тока, питающий встроенный полевой МОП-транзистор. Эталонная схема от производителя чипов Bright Power Semiconductor близка к той, что мы нашли на печатной плате.

Следует отметить, что влияние температуры на работу светодиодов не учитывается в преобразователе переменного тока в постоянный. Светодиоды излучают меньше света по мере повышения их температуры. Как правило, это не проблема для небольших изменений температуры. Чувствительность глаза к свету логарифмическая, и глаз не особенно чувствителен к небольшим изменениям яркости. Нет ничего необычного в том, что световой поток светодиода падает на 10 % при повышении температуры перехода от комнатной до 150 °C.

Но ток светодиода также можно уменьшить при более высоких температурах, чтобы уменьшить потребность в теплоотводе. Тем не менее, нет датчика температуры, который мы могли бы видеть в преобразователе переменного / постоянного тока лампы Home EVER. И схемы диммирования нет.

Но в целом светодиодная лампа, вероятно, хорошо работает в тех случаях, когда не требуется диммируемый свет.

Osram
Эквивалентная 60-ваттная светодиодная лампа Osram Sylvania отличается относительно небольшим радиатором, состоящим из двух частей. Одна часть представляет собой башню в форме пятиугольника высотой 1 дюйм, которая служит основой для шести светодиодных плат, пять из которых ориентированы в форме пятиугольника, а шестая находится на вершине пятиугольной башни. Другой представляет собой цилиндрический литой радиатор длиной 0,75 дюйма, который, по-видимому, защелкивается в верхней части пластикового купола, в котором размещены светодиоды. Цилиндрический литой радиатор и башня вместе весят 1,3 унции.

Вид на светодиодную лампу Osram со срезанным пластиковым колпаком, открывающим пятиугольную башню со светодиодами. Видно, что провода от платы преобразователя переменного/постоянного тока припаяны к верхней пластине.

Основание устройства представляет собой цельный пластиковый корпус, в котором находится печатная плата преобразователя переменного тока в постоянный. Два провода соединяют его с пятиугольной башней, содержащей 18 светодиодов, по три на каждой грани. Соединения между платами, похоже, были припаяны оплавлением. Но отдельные провода между печатной платой и светодиодной сборкой, по-видимому, были припаяны вручную. Точно так же соединения с цоколем лампы представляют собой отдельные провода, один из которых зажат между металлической резьбой, а другой — механизм, прикрепленный к основанию лампы.

Заливочный материал, окружающий плату преобразователя переменного/постоянного тока лампы Osram, и пластиковый корпус, из которого она была извлечена.

По не совсем понятным причинам разработчики лампы Osram решили залить плату преобразователя переменного тока в постоянный. Относительно небольшой радиатор на этой плате по сравнению с другими конструкциями, которые мы видели, может указывать на то, что заливка предназначена для улучшения рассеивания тепла, хотя материал заливки не полностью заполняет пустое пространство между электронными компонентами и внешней оболочкой. Однако заливка усложнила процесс расшифровки схемы.

Эталонная схема SSL21082AT кажется близкой к той, что мы нашли на печатной плате Osram. На микросхеме есть вход для резистора NTC, но мы не обнаружили его ни на плате, ни на металлических пластинах, к которым крепятся светодиоды.

Основная плата для светодиодной лампы Osram двухсторонняя. Он содержит две ИС, одна представляет собой диодный мост для входа переменного тока, а другая — ИС драйвера SSL21082AT от NXP Semiconductors. Функции, реализованные в чипе NXP, включают затемнение, защиту от перегрева и контроль перегрева светодиодов, защиту от короткого замыкания на выходе и режим перезапуска в случае отключения питания. Эта микросхема имеет встроенный внутренний переключатель высокого напряжения и работает как понижающий преобразователь в режиме граничной проводимости (BCM).

Основной радиатор светодиодной лампы Osram представляет собой цилиндрическую отливку, показанную здесь в виде четырех частей после извлечения из корпуса лампы. Металлическая резьба крепится к пластиковому корпусу, удерживающему плату преобразователя переменного/постоянного тока, которая видна здесь.

BCM — это квазирезонансный метод, используемый для повышения энергоэффективности. Основная идея BCM заключается в том, что ток дросселя начинается с нуля в каждом периоде переключения. Когда силовой транзистор повышающего преобразователя включен на фиксированное время, пиковый ток дросселя пропорционален входному напряжению. Текущая форма волны треугольная; поэтому среднее значение в каждом периоде переключения пропорционально входному напряжению.

После того, как герметик был удален с печатной платы лампы Osram, на печатной плате стала видна микросхема драйвера SSL21082AT от NXP Semiconductors. Другая микросхема на плате представляет собой мостовой выпрямитель. Конденсаторы и катушки индуктивности для обработки энергии установлены на другой стороне платы.

Энергия накапливается в катушке индуктивности, пока переключатель включен. Ток дросселя равен нулю, когда МОП-транзистор включен. Амплитуда нарастания тока в катушке индуктивности пропорциональна падению напряжения на катушке индуктивности и времени, в течение которого переключатель MOSFET находится во включенном состоянии. Когда МОП-транзистор выключен, энергия в катушке индуктивности высвобождается на выходе. Ток светодиода зависит от пикового тока через катушку индуктивности и от угла диммера. Новый цикл начинается, когда ток дросселя становится равным нулю.

3M
Светодиод 3M имеет характерный внешний вид благодаря белой цилиндрической колонне высотой 2 дюйма, видимой под полупрозрачным пластиковым куполом. Колонка представляет собой просто металлический радиатор; это, по-видимому, не имеет ничего общего с дисперсией света.

Светодиодная лампа 3M со снятым пластиковым колпаком. Белая колонна является теплоотводом и мало влияет на светоотдачу. Светодиоды расположены по краю пластиковой колбы в металлическом радиаторе.

Светодиоды расположены на гибкой печатной плате, прикрепленной к другому радиатору высотой 2 дюйма, который также служит опорой для основания лампы. Пластиковая втулка идет в нижней части радиатора, чтобы удерживать металлическую резьбу и поддерживать контакт ноги в нижней части основания. Радиатор и колонка вместе весят 2,4 унции.

Цоколь лампы 3M состоит из пластиковой втулки вокруг радиатора, к которой крепятся металлические резьбы и ножной контакт. Электрические соединения находятся на гибкой цепи, удерживающей светодиоды и преобразователь переменного/постоянного тока. Здесь виден контакт, который изгибается сбоку пластиковой втулки, чтобы соприкоснуться с металлической резьбой, и второй контакт, который касается штифта на ножном контакте (справа).

Гибкая печатная плата со светодиодами также содержит схему драйвера переменного/постоянного тока. Это CL8800 от Microchip Technology. Эталонный проект состоит из CL8800, шести резисторов и мостового выпрямителя (устройство Fairchild). От двух до четырех дополнительных компонентов являются необязательными для различных уровней защиты от переходных процессов. Эталонный дизайн Microchip довольно близок к тому, что мы нашли в лампочке 3M.

Эталонная схема для Microchip CL8800 близка к схеме, найденной на светодиодной лампе 3M, хотя лампа 3M включает дополнительную RC-цепь (здесь не показана) для фазового затемнения.

Схема драйвера делит цепочку из 25 светодиодов на два набора по пять, один набор из четырех и один набор из шести. Мы не уверены, почему 3M разделила количество цепочек светодиодов таким образом. Однако интересна их ориентация. Они сидят на выступе, образованном радиатором, и ориентированы строго вверх. Прозрачный карбонатный шар крепится к тому же выступу, поэтому световой поток светодиода фактически направлен вверх, на край самого пластикового шара, а не светит сквозь шар изнутри корпуса.

Крупный план гибкой схемы на светодиодной лампе 3M, которая содержит как схему преобразователя переменного тока в постоянный, так и светодиоды. . Согласно техническому паспорту Microchip, шесть линейных регуляторов тока потребляют ток на каждом отводе и последовательно включаются и выключаются, отслеживая входное синусоидальное напряжение. Микросхема минимизирует напряжение на каждом регуляторе при проводке, обеспечивая высокую эффективность.

Выходной ток на каждом ответвлении индивидуально устанавливается резистором. Резистивно-емкостная цепь, состоящая из резистора и трех параллельно соединенных конденсаторов, на входе мостового выпрямителя обеспечивает фазовое затемнение. Два других компонента обеспечивают защиту от переходных процессов при подключении к линии переменного тока. Всего в гибкой схеме имеется 13 дискретных компонентов, которые обеспечивают защиту от переходных процессов, фазовое затемнение и устанавливают токи в цепочках светодиодов.

Фейт Электрик Ко
Лампа от Feit Electric имела самую странную ориентацию для светодиодов из всех, что мы исследовали. Пластина диаметром 1 7/8 дюйма, на которую крепятся 36 светодиодов, частично скрыта в собранной колбе круглой пластиковой деталью с отверстием диаметром 1 дюйм посередине. Этот элемент крепится поверх светодиодной пластины. Итак, взгляд на собранную лампочку дает вид на пластиковую деталь и сразу пять светодиодов, видимых в центре пластины под отверстием в ее середине.

Герметизирующий материал на печатной плате лампы Feit, видимый здесь у основания радиатора, служит структурным элементом, удерживающим опору на месте. Три винта крепят пластину светодиода к радиатору светодиодной лампы Feit. Обратная сторона светодиодной пластины, видимая здесь, была покрыта термопастой между поверхностями радиатора и светодиодной пластины.

Мы не можем понять, почему Фейт установил пластиковую деталь поверх большинства своих светодиодов. Кусок блокирует большую часть света, который они излучают. (У нас нет способа количественно определить количество света, проходящего через пластик. Но неофициальные тесты здесь показывают, что мало его проникает. ) Таким образом, подавляющее большинство излучаемых люменов исходит от пяти светодиодов в центре пластины.

Светодиодная лампа Feit располагала пластиковым диском над всеми, кроме пяти, из 36 светодиодов. Мы не знаем, почему.

Остальная часть механической конструкции лампочки менее загадочна. Светодиодная пластина крепится к верхней части массивного литого металлического радиатора весом 3,8 унции с помощью трех винтов. Радиатор служит основным корпусом лампы. Схема преобразователя переменного тока в постоянный помещается в пластиковый цилиндр, который вставляется в основание радиатора и крепится к нему двумя винтами.

После вырезания герметика на печатной плате светодиодной лампы Feit обнаружилась микросхема диодного моста и драйвер светодиода SSL2103T от NXP Semiconductors с одной стороны, большие элементы накопления энергии и силовые МОП-транзисторы с другой.

Электроника залита в пластиковый цилиндр, служащий ее корпусом. Заливочный материал обширен, заполняя цилиндр. Он также служит конструктивным элементом, поддерживающим винтовое основание лампы и опорную ножку. Печатная плата, содержащая электронику, двусторонняя и проходит почти до основания цоколя лампы. Минусовой провод к плате крепится к металлической резьбе герметиком. Два провода идут от платы к плате светодиодов и вроде как припаяны вручную. Сама плата припаяна оплавлением.

Заливочный материал скрыл некоторые детали на печатной плате, но на плате находятся два силовых МОП-транзистора, микросхема диодного моста, пять больших конденсаторов, трансформатор и не менее 22 дискретных компонентов, состоящих из резисторов, маленьких конденсаторов и диодов. Входной мостовой выпрямитель вроде бы защищен предохранителем.

Основным чипом является драйвер светодиодов SSL2103T от NXP Semiconductors. SSL2103 представляет собой обратноходовой преобразователь, который работает в сочетании со схемой диммера с отсечкой фазы непосредственно от выпрямленной сети. Он реализует диммирование с помощью интегральной схемы, оптимизирующей кривую диммирования. Выходы привода доступны для коммутации резистивного сброса.

Несмотря на то, что материал заливки скрывает некоторые детали соединений, схема кажется близкой к эталонной схеме микросхемы NXP. Сетевое напряжение выпрямляется, буферизуется и фильтруется во входной части и подключается к первичной обмотке трансформатора. Передаваемая энергия хранится в конденсаторе и фильтруется перед включением цепи светодиодов.

Печатная плата также включает в себя два силовых МОП-транзистора. Один, по-видимому, является частью схемы диммирования, которая разделяет и фильтрует выпрямленное напряжение сети, чтобы обеспечить вход для генерации кривой диммирования. Выход продувки микросхемы NXP управляет полевым МОП-транзистором для переключения продувочных резисторов, которые задействованы в таймере функции диммирования. Другой полевой МОП-транзистор является главным переключателем обратноходового трансформатора.

Схема преобразователя переменного/постоянного тока Feit была близка к эталонной схеме, которую NXP Semiconductors предоставляет для своего преобразователя SSL2103.

Также имеется буферная схема, состоящая из двух конденсаторов и катушки индуктивности. Схема накапливает энергию, чтобы преобразователь мог непрерывно передавать мощность на цепочку светодиодов, несмотря на любые колебания напряжения в сети. Он также фильтрует пульсации тока, генерируемые преобразователем, чтобы снизить любые помехи от сети.

Наконец, другая часть схемы состоит из конденсатора, выпрямительного диода, резистора, ограничивающего пиковый ток, и защитного стабилитрона и используется для создания внешнего источника питания VCC для ИС.

Philips Lighting Co.
Один примечательный момент в отношении ламп Philips относится к теплоотводу. Другие лампы, которые мы исследовали, имели металлические радиаторы весом от 1,3 до 3,8 унций. Лампа Philips справляется с проблемами перегрева без дополнительного отвода тепла. Единственным компонентом, который рассеивает тепло, является диск диаметром 2,5 дюйма, на котором установлены 26 светодиодов, по 13 с каждой стороны. Кроме того, можно было бы ожидать, что дизайнеры будут располагать светодиоды на диске в шахматном порядке, чтобы они не устанавливались прямо друг напротив друга — такое расположение крепления также способствовало бы рассеиванию тепла. Но светодиоды с обеих сторон диска расположены прямо друг напротив друга. Похоже, что тепло светодиодов просто не было проблемой в этой конструкции.

Одной из причин этого является наличие термистора с отрицательным температурным коэффициентом (NTC) на плате светодиодов. Но точно проследить сеть температурной компенсации оказалось невозможно, потому что плата драйвера имеет три слоя, один из которых скрытый. Еще больше усложняет анализ схемы тот факт, что две шестиконтактные микросхемы, похоже, управляют преобразованием переменного тока в постоянный, и ни одна из них не отмечена ни логотипом производителя, ни номером детали.

Поскольку основные микросхемы не могут быть идентифицированы, мы можем только строить предположения о том, как работает драйвер светодиодов. Наличие трансформатора, двух больших конденсаторов и силового npn-транзистора (от STMicroelectronics) на печатной плате, казалось бы, указывает на то, что преобразователь имеет обратноходовую конструкцию. Мы предполагаем, что цепь температурной компенсации находится в смещении переключателя, подающего ток на светодиоды от обратноходового трансформатора. Два транзистора управляют током светодиода. Всего мы насчитали 32 небольших дискретных компонента, состоящих из резисторов, диодов и конденсаторов. Завершают компоненты платы микросхема мостового выпрямителя и три других силовых конденсатора.

Светодиодная лампа Philips не имела радиатора, кроме двухсторонней пластины, удерживающей светодиоды. Одна причина: температурная компенсация. Резистор NTC виден на этом снимке светодиодной пластины.

Оказывается, механическая конструкция светодиодной лампы без радиатора может быть довольно простой (а некоторые могут назвать ее элегантной). Лампа Philips в основном представляет собой пластиковый корпус, который покрывает светодиодную пластину и печатную плату драйвера, а также поддерживает металлическую резьбу и опорную ножку.

Диодный мост и силовой транзистор npn видны на одной стороне печатной платы светодиодной лампы Philips. На другой стороне находятся компоненты накопления энергии и две неопознанные микросхемы, обеспечивающие температурную компенсацию, диммирование и преобразование энергии.

Форм-фактор отличается от других ламп из-за двусторонней светодиодной пластины. Лампа Philips — это не столько лампочка, сколько диск. Вместо того, чтобы заключать светодиоды в прозрачный корпус, похожий на шар, устройство Philips представляет собой плоский профиль с пластиковой оболочкой, закрывающей двухстороннюю пластину светодиодов. Кажется, что корпус просто защелкивается поверх светодиодной пластины и печатной платы драйвера.

В светодиодной лампе нет ничего особенного, если она может быть построена без радиатора. Лампа Philips в основном состоит из печатной платы и светодиодной пластины, а также защелкивающегося пластикового корпуса, который также поддерживает контактную ножку. Контактная ножка присоединяется к печатной плате на лампе Philips с помощью проводки, которая видна здесь.


Опубликовано

в

от

Метки:

Комментарии

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *