Содержание
Несколько вариантов схем как подключить светодиод к 220 вольтам (для световой индикации) « ЭлектроХобби
Порой возникает необходимость в подключении обычного, маломощного светодиода к переменному, сетевому напряжению 220 вольт в роли светового индикатора. Казалось бы нет ничего проще, чем взять и поставить последовательно светодиоду обычный резистор, который бы ограничивал силу тока в данной цепи. Но не все так просто. В этой статье давайте с вами рассмотрим наиболее распространенные варианты такого подключения, после чего можно будет выбрать наиболее лучшую схему с учетом имеющихся достоинств и недостатков.
Вариант №1 » последовательное включение светодиода и резистора.
Итак, первым вариантом все же будет схема, где последовательно к светодиоду подключается обычный резистор с нужным сопротивлением. Величину сопротивления можно вычислить по закону ома. Допустим у нас светодиод, рассчитанный на напряжение 3 вольта и потребляющий 9 миллиампер. Напряжение питания (220 В) разделится между резистором и светодиодом. Если на светодиоде осядет 3 вольта, то на резисторе осядет около 217 вольт. Ток в последовательных цепях во всех точках одинаковый (в нашем случае он будет равен 9 мА). И чтобы узнать сопротивление резистора мы 217 вольт делим на 9 миллиампер и получаем 24 ком (24000 ом).
Теоретически эта схема подключения светодиода к сети 220 вольт рабочая, но практически она скорее всего сгорит сразу при включении. Почему это так. Дело в том, что большинство обычных светодиодов рассчитаны на напряжение питания (при прямом своем включении, то есть плюс светодиода к плюсу источника питания и минус светодиода к минусу источника питания), где-то в пределах от 2,5 до 4,5 вольта. При прямом включении на светодиоде будет его рабочее напряжение (пусть 3 вольта), а излишек (217 вольт) осядет на резисторе. Обратное напряжение у светодиодов не такое уж и высокое (где-то около 30 вольт). И когда обратная полуволна переменного напряжения подается на светодиод, то светодиод просто выйдет из строя из-за слишком большого обратного напряжения, поданного на него. Напомню, что полупроводники при обратном включении имеют очень большое внутреннее сопротивление (гораздо большее чем стоящий в цепи резистор). Следовательно все сетевое напряжение осядет именно на светодиоде.
Вариант №2 » подключение светодиода с защитой от обратного напряжения.
В этом варианте схемы подключения индикаторного светодиода к сетевому напряжению 220 вольт имеется защита от чрезмерного высокого напряжения обратной полуволны, что подается на светодиод. То есть, в цепь добавлен обычный диод, который включен той же полярностью, что и светодиод. В итоге все излишнее высокое напряжение оседает на полупроводниках (при обратном включении питания, обратной полуволне переменного тока). Тот ток, что возникает в цепи при обратной полуволне настолько настолько мал, что его не хватает для пробиться светодиода при обратном его включении. Таким образом данная схема уже будет нормально работать. Хотя в этом варианте все же имеются свои недостатки, а именно будет достаточно сильно греться резистор. Его мощность должна быть не менее 2 Вт. Этот нагрев приводит к тому, что схема весьма не экономна, у нее низкий КПД. Помимо этого поскольку светодиод будет светить только при одной полуволне, то рабочая частота светодиода будет равна 25 Гц. Свечение светодиода при такой частоте будет восприниматься глазом с эффектом мерцания.
Вариант №3 » альтернативная схема подключения светодиода к 220 с защитой от обратного напряжения.
Эта схема похожа не предыдущую. Она также имеет защиту от чрезмерного напряжения обратной полуволны переменного напряжения. Если в первой схеме защитный диод стоял последовательно со светодиодом, то в данной схеме диод подключен параллельно, и имеет уже обратное включение относительно светодиоду. При одной полуволне переменного напряжения будет гореть индикаторный светодиод (на котором будет падение напряжения до рабочей величины светодиода), а при обратной полуволне диод будет находится в открытом состоянии и на нем также будет падение напряжения до величины (порядка 1 вольта) недостаточной для пробоя светодиода. Как и в предыдущей схеме недостатками будет значительный нагрев резистора и видимое мерцание светодиода, вдобавок эта схема будет больше потреблять электроэнергии из-за прямого включения диода.
Хотя вместо обычного диода можно поставить еще один светодиод.
Тогда в одну полуволну будет гореть один светодиод, ну а в обратную второй. Хотя в этом случае и будут светодиоды защищены от высокого обратного напряжения, но гореть каждый из них будет все равно с частотой 25 герц (будут оба мерцать).
Вариант №4 » лучшая схема с токоограничительным конденсатором, резистором и выпрямительным мостом.
Данный вариант схемы подключения индикаторного светодиода к сети 220 вольт считаю наиболее лучшим. Единственным недостатком (если можно так сказать) этой схемы является то, что в ней больше всего деталей. К достоинствам же можно отнести то, что в ней нет элементов, которые чрезмерно нагревались, поскольку стоит диодный мост, то светодиод работает с двумя полупериодами переменного напряжения, следовательно нет заметных для глаза мерцаний. Потребляет эта схема меньше всего электроэнергии (экономная).
Работает данная схема следующим образом. Вместо токоограничительного резистора (который был в предыдущих схемах на 24 кОм) стоит конденсатор, что исключает нагрев данного элемента. Этот конденсатор обязательно должен быть пленочного типа (не электролит) и рассчитан на напряжение не менее 250 вольт (лучше ставить на 400 вольт). Именно подбором его емкости можно регулировать величину силы тока в схеме. В таблице на рисунке приведены емкости конденсатора и соответствующие им токи. Параллельно конденсатору стоит резистор, задача которого сводится всего лишь к разряду конденсатора после отключения схемы от сети 220 вольт. Активной роли в самой схеме запитки индикаторного светодиода от 220 В он не принимает.
Далее стоит обычный выпрямительный диодный мост, который из переменного тока делает постоянный. Подойдут любые диоды (готовый диодный мост), у которых максимальная сила тока будет больше тока, потребляемого самим индикаторным светодиодом. Ну и обратное напряжение этих диодов должно быть не менее 400 вольт. Можно поставить наиболее популярные диоды серии 1N4007. Они дешево стоят, малы по размерам, рассчитаны на ток до 1 ампера и обратное напряжение 1000 вольт.
В схеме есть еще один резистор, токоограничительный, но он нужен для ограничения тока, который возникает от случайных всплесков напряжения, идущие от самой сети 220 вольт. Допусти если кто-то по соседству использует мощные устройства, содержащие катушки (индуктивный элемент, способствующий кратковременным всплескам напряжения), то в сети образуется кратковременное увеличение сетевого напряжения. Конденсатор данный всплеск напряжения пропускает беспрепятственно. А поскольку величина тока этого всплеска достаточна для того, чтобы вывести из строя индикаторный светодиод в схеме предусмотрен токоограничительный резистор, защищающий схему от подобный перепадов напряжения в электрической сети. Этот резистор нагревается незначительно, в сравнении с резисторами в предыдущих схемах. Ну и сам индикаторный светодиод. Его вы выбираете уже сами, его яркость, цвет, размеры. После выбора светодиода подбирайте соответствующий конденсатор нужной емкости руководствуясь таблицей на рисунке.
Видео по этой теме:
P.S. Альтернативным вариантом электрической светодиодной подсветки может быть классическая схема подключения неоновой лампочки (параллельно которой ставится резистор где-то на 500кОм-2мОм). Если сравнивать по яркости, то все таки она больше у светодиодной подсветки, ну а если особая яркость не требуется, то вполне можно обойтись данным вариантом схемы на неоновой лампе.
Подключение светодиода к сети 220В: все схемы и расчеты
Светоиндикация – это неотъемлемая часть электроники, с помощью которой человек легко понимает текущее состояние прибора. В бытовых электронных устройствах роль индикации, выполняет светодиод, установленный во вторичной цепи питания, на выходе трансформатора или стабилизатора. Однако в быту используется и множество простых электронных конструкций, неимеющих преобразователя, индикатор в которых был бы нелишним дополнением. Например, вмонтированный в клавишу настенного выключателя светодиод, стал бы отличным ориентиром расположения выключателя ночью. А светодиод в корпусе удлинителя с розетками будет сигнализировать о наличии его включения в электросеть 220 В.
Ниже представлено несколько простых схем, с помощью которых даже человек с минимальным запасом знаний электротехники сможет подключить светодиод к сети переменного тока.
Содержание
- 1 Схемы подключения
- 2 Расчет резистора для светодиода
- 3 Расчет гасящего конденсатора для светодиода
- 4 Это нужно знать
- 5 Небольшой эксперимент
Схемы подключения
Светодиод – это разновидность полупроводниковых диодов с напряжением и током питания намного меньшим, чем в бытовой электросети. При прямом подключении в сеть 220 вольт, он мгновенно выйдет из строя. Поэтому светоизлучающий диод обязательно подключается только через токоограничивающий элемент. Наиболее дешевыми и простыми в сборке является схемы с понижающим элементом в виде резистора или конденсатора.
Важный момент, на который нужно обратить внимание при подключении светодиода в сеть переменного тока – это ограничение обратного напряжения. С этой задачей легко справляется любой кремниевый диод, рассчитанный на ток не менее того, что течет в цепи. Подключается диод последовательно после резистора или обратной полярностью параллельно светодиоду.
Существует мнение, что можно обойтись без ограничения обратного напряжения, так как электрический пробой не вызывает повреждения светоизлучающего диода. Однако обратный ток может вызвать перегрев p-n перехода, в результате чего произойдет тепловой пробой и разрушение кристалла светодиода.
Вместо кремниевого диода можно использовать второй светоизлучающий диод с аналогичным прямым током, который подключается обратной полярностью параллельно первому светодиоду.
Отрицательной стороной схем с токоограничивающим резистором является необходимость в рассеивании большой мощности. Эта проблема становится особо актуальной, в случае подключения нагрузки с большим потребляемым током. Решается данная проблема путем замены резистора на неполярный конденсатор, который в подобных схемах называют балластным или гасящим.
Включенный в сеть переменного тока неполярный конденсатор, ведет себя как сопротивление, но не рассеивает потребляемую мощность в виде тепла.
В данных схемах, при выключении питания, конденсатор остается не разряженным, что создает угрозу поражения электрическим током. Данная проблема легко решается путем подключения к конденсатору шунтирующего резистора мощностью 0,5 ватт с сопротивлением не менее 240 кОм.
Расчет резистора для светодиода
Во всех выше представленных схемах с токоограничивающим резистором расчет сопротивления производится согласно закону Ома: R = U/I, где U – это напряжение питания, I – рабочий ток светодиода. Рассеиваемая резистором мощность равна P = U * I. Эти данные можно рассчитать при помощи онлайн калькулятора.
Важно. Если планируется использовать схему в корпусе с низкой конвекцией, рекомендуется увеличить максимальное значение рассеиваемой резистором мощности на 30%.
Расчет гасящего конденсатора для светодиода
Расчёт ёмкости гасящего конденсатора (в мкФ) производится по следующей формуле: C = 3200*I/U, где I – это ток нагрузки, U – напряжение питания. Данная формула является упрощенной, но ее точности достаточно для последовательного подключения 1-5 слаботочных светодиодов.
Важно. Для защиты схемы от перепадов напряжения и импульсных помех, гасящий конденсатор нужно выбирать с рабочим напряжением не менее 400 В.
Конденсатор лучше использовать керамический типа К73–17 с рабочим напряжением более 400 В или его импортный аналог. Нельзя использовать электролитические (полярные) конденсаторы.
Это нужно знать
Главное – это помнить о технике безопасности. Представленные схемы питаются от 220 В сети переменного тока, поэтому требуют во время сборки особого внимания.
Подключение светодиода в сеть должно осуществляться в четком соответствии с принципиальной схемой. Отклонение от схемы или небрежность может привести к короткому замыканию или выходу из строя отдельных деталей.
При первом включении, сборки рекомендуется дать поработать некоторое время, чтобы убедиться в ее стабильности и отсутствии сильного нагрева элементов.
Для повышения надёжности устройства рекомендуется использовать заранее проверенные детали с запасом по предельно допустимым значениям напряжения и мощности.
Собирать бестрансформаторные источники питания следует внимательно и помнить, что они не имеют гальванической развязки с сетью. Готовая схема должна быть надёжно изолирована от соседних металлических деталей и защищена от случайного прикосновения. Демонтировать её можно только с отключенным напряжением питания.
Небольшой эксперимент
Закон 90 000 Ом — Рассчитайте значение последовательного резистора для светодиода при питании 220 В переменного тока (среднеквадратичное значение)Чтобы немного разбавить скучные схемы, предлагаем ознакомится с небольшим экспериментом, который будет интересен как начинающим радиолюбителям, так и опытным мастерам.
![]()
Задавать вопрос
спросил
Изменено
1 год, 3 месяца назад
Просмотрено
1к раз
\$\начало группы\$
Традиционный способ найти номинал резистора, который я могу найти в Интернете:
(входное напряжение — прямое напряжение) / ток
В моем случае входное напряжение составляет 200 В переменного тока, прямое напряжение красного светодиода составляет 2 В, а ток составляет 0,02 А.
Это означает: (220 — 2) / 0,02 = 10900,0. Это означает, что я должен иметь возможность поставить резистор на 10900 Ом и подключить светодиод к 220 В переменного тока.
Вот что я сделал, я поместил свой светодиод в эту конфигурацию:
[модифицированная схема, удалены диоды, подключенные напротив]
Вместо того, чтобы использовать 10.9K, я использовал последовательно резисторы 10K и 1K.
Когда я подключаю его к сети 220 В переменного тока, он просто сгорает. Когда я ищу в Google правильное значение резистора, некоторые говорят, что используйте 47K, некоторые говорят, что используйте что-нибудь выше 100K, а некоторые говорят, что используйте 200K. На самом деле я использовал 47K на протяжении всей своей жизни, и он работает безупречно. Поэтому мне стало любопытно: почему он не подчиняется простой формуле использования резистора 10,9 кОм?
- резисторы
- закон Ома
\$\конечная группа\$
10
\$\начало группы\$
На резисторе будет около 220 В, а через него будет течь 20 мА.
Он будет рассеивать 4,4 Вт в виде тепла, что довольно много, и вам понадобится резистор, который сможет его выдержать, иначе он сгорит. Вот почему в этом случае действительно нецелесообразно использовать резисторы.
Другая вещь, которая может вызвать возгорание, заключается в том, что обычно светодиоды рассчитаны на работу с напряжением около 5 В в обратном направлении, а вы подключаете его к 220 В переменного тока, и в этом случае на светодиоде будут пики 310 В в обратном направлении.
Обратите внимание, что сетевое напряжение может быть опасным и смертельным, если у вас нет опыта работы с цепями сетевого напряжения.
\$\конечная группа\$
5
Зарегистрируйтесь или войдите в систему
Зарегистрируйтесь с помощью Google
Зарегистрироваться через Facebook
Зарегистрируйтесь, используя адрес электронной почты и пароль
Опубликовать как гость
Электронная почта
Требуется, но никогда не отображается
Опубликовать как гость
Электронная почта
Требуется, но не отображается
Нажимая «Опубликовать свой ответ», вы соглашаетесь с нашими условиями обслуживания, политикой конфиденциальности и политикой использования файлов cookie
Светодиодная лента 220В, соединительная и разностная лента на 12 вольт
Многие планируя подсветку и либо не догадываются, что есть светодиодная лента 220В. Для него не требуется блок питания 12В, только миниатюрный выпрямитель, через который включается прямо в розетку. Очевидным преимуществом является простота использования и подключения, практически эквивалентная светодиодной лампе. Кроме того, есть очевидные преимущества и недостатки.
Типы диодных лент 220В
Популярные модели SMD 5050 и SMD3528
Вид питания на 220 состоит из нескольких видов, и это светодиоды 3528, 5050, 2835, 3014 и мощные SMD 5630. Самые распространенные светодиодные ленты 5050 и 3528, которые легко купить в России, а вот остальные придется заказывать у китайцев, но покупать у них не советую, обманули. Внешне почти неотличим от обычного, но имеет маркировку, указывающую на то, на какое напряжение он рассчитан. Особенность в том, что обычно режут только кратно 1 метру или кратно 50 см., то есть 30 см или 80 см резать не получится.
Основные настройки:
- кратность резов 50, 100, 200 см;
- Ватт на метр;
- степень защиты от влаги;
- цветовая температура.
мощность
Стандартно выпускается в различных исполнениях по степени защиты от влаги. Защита может быть IP67, IP68 в виде силиконовой трубки, такие неплотности позволят эксплуатировать их во влажных помещениях типа саун и на улицах. По мнению моих коллег, которые достойно работают в суровых условиях высоких и низких температур. Основание может быть гибким и жестким, за счет жесткого основания метраж превращается в линейку светодиода или модуль. Из этих линий можно собрать светильник. По типу монтажа могут быть самоклеящиеся на акриловой липкой ленте и могут не иметь клейкой основы.
Конструкция и принцип работы
Конструкция и принцип работы
Двойная подача в 2 раза шире
Рассмотрим, как они питаются от высокого напряжения:
- с использованием обычных светодиодов с напряжением 3,3В — 3,5В;
- требуют полярного питания, которое создает диодный мост, иначе будут мигать с частотой 50 Гц;
- Множители могут резать только 50 и 100 см.
, так что светодиоды соединены последовательно в цепь 60 витков на метр светодиодов.
- Почему 60? делим на 220В 3,3В шт., получаем около 60 подключая такой номер серии, блок питания на 12В нам не нужен.
Для повышения надежности светодиодной ленты 220В используется соединение диодов попарно, в случае выхода из строя одного из диодов, ток будет проходить через остальные, но на него ляжет повышенная нагрузка.
Мощный на SMD 5630 при потреблении свыше 10 Вт на метр потребуется радиатор или алюминиевый профиль для охлаждения. Но повышенную мощность можно получить и на более слабых светодиодах. Склеить две детали рядом, получив двойную, с увеличенной в два раза шириной. Кроме того, широкое основание лучше отводит тепло при нагреве.
Цвет RGB, резистор на один или два светодиода.
Цвета светового потока такие же, как и у обычного:. Белая, красная, зеленая, синяя и трехцветная RGB светодиодные ленты RGB на 220В требуют специальных регуляторов яркости каждого цвета, рассчитанных на те же 220 вольт, найти их сложно, т. к. они почти все выпускаются на 12 вольт. Поэтому советую покупать готовые наборы.
Контроллер RGB на 220 вольт
Как подключить светодиодную ленту к 220В
Подключение ленты 220В
Подключение очень простое, нужно только соединить пару проводов с правильной полярностью. В случае цветной полосы подключите провод контроллера RGB в соответствии с цветовой маркировкой.
Ступени соединения:
- отрезок необходимой длины, кратной длине, указанной производителем, обычно 50 или 100 см.;
- , если используется герметик, в конце герметика надрезать и нанести силиконовый соединитель, в виде кольца;
- Вставляем коннектор и крепим на герметик;
- правильная полярность подключения провода от выпрямителя;
- проверьте всю полосу на герметичность, не допускайте попадания внутрь воды.
Соединение и уплотнение
Выпрямитель, через который он подключен, состоит из диодного моста и тоже имеет собственную мощность. Он может иметь мощность 700 Вт., его хватит на обычные 100 метров светодиодной ленты, или на 40 метров сильного. Этого достаточно, чтобы осветить очень большую комнату. Стоимость этого выпрямителя очень низкая, его очень легко сделать своими руками, купив 4 диода или окончательную сборку в магазине радиодеталей.
Выпрямитель с вилкой для подключения к сети
Преимуществом полосы перед обычной будет отсутствие требований к толщине силовых проводов. В отличие от низковольтных, для которых требуются очень толстые кабели, при таких высоких требованиях нет, их можно соединять любыми тонкими проводами. Провода сечением 0,75 квадратных миллиметра легко тянут мощность 1500Вт.
Заправочный выпрямитель
Так как выпрямитель представляет собой диодный мост и отсутствуют конденсаторы, которые будут сглаживать пульсации напряжения в сети, вся полоса мерцает с частотой 100 Герц. По СанПиН такие пульсации не допускаются в жилых помещениях, особенно там, где читают или работают. По этой причине не рекомендуется использовать в квартирах. Но пульсации можно уменьшить, если установить в выпрямитель высоковольтный конденсатор до 400В, причем чем мощнее, тем больший конденсатор требуется. Вплотную вопросом не занимался, но обычные светодиодные лампы 6 ватт требуют 40 мкФ, чтобы вызвать всплеск скорости, но не избавиться от них полностью. Чтобы использовать его, используйте одинаковую мощность для каждых 6 Вт.
Основные отличия
Разъем для подключения
Подводя итог, выделим основные преимущества и недостатки.
Преимущества.
- Не требуют дорогого блока питания, если нужно подключить 1-3 метра, то воткнул в ближайшую розетку и работает.
- Подключить тонкие провода, так как сила тока мала.
- Длина одного куска может быть до 100 м., или 70 Вт.
Недостатки.
- Высокое напряжение требует особой осторожности при установке и эксплуатации.
Добавить комментарий