Прибор для измерения сопротивления контура заземления. Измерение контура сопротивления заземленияИзмерение сопротивления контура заземления - Всё о электрике в домеИзмерение сопротивления контура защитного заземленияЗащитным заземлением называется преднамеренное электрическое соединение с землей или эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением вследствие замыкания на корпус. Задача защитного заземления – устранение опасности поражения током в случае прикосновения к корпусу и другим нетоковедущим металлическим частям электроустановки, оказавшейся под напряжением. Принцип действия заземления – снижение напряжения между корпусом, оказавшимся под напряжением, и землей до безопасного значения. Заземляющие устройства после монтажных работ и периодически не реже один раз в год испытываются по программе Правил устройства электроустановок. По программе испытания производится измерение сопротивления заземляющего устройства. Сопротивление заземляющего устройства, к которому присоединены нейтрали генераторов или трансформаторов или выводов источников однофазного тока, в любое время года должно быть не более 2, 4, 8 Ом соответственно при линейных напряжениях 660, 380, и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока. Измерения сопротивления контура заземляющего устройства производятся измерителем заземления М416 или Ф4103-М1. Описание измерителя заземления М416 Измерители заземления М416 предназначены для измерения сопротивления заземляющих устройств, активных сопротивлений и могут быть использованы для определения удельного сопротивления грунта (ρ). Диапазон измерения прибора от 0,1 до 1000 Ом и имеет четыре диапазона измерения: 0,1 … 10 Ом, 0,5 … 50 Ом, 2,0 … 200 Ом, 100 … 1000 Ом. Источником питания служат три соединенные последовательно сухие гальванические элемента напряжением по 1,5 В. Измеритель сопротивления заземления Ф4103-М1 Измеритель сопротивления заземления Ф4103-М1 предназначен для измерения сопротивления заземляющих устройств, удельного сопротивления грунтов и активных сопротивлений как при наличии помех, так и без них с диапазоном измерений от 0-0,3 Ом до 0-15 Ком (10 диапазонов). Измеритель Ф4103 является безопасным. При работе с измерителем в сетях с напряжением выше 36 В необходимо выполнять требования безопасности, установленные для таких сетей. Класс точности измерительного прибора Ф4103 – 2,5 и 4 (в зависимости от диапазона измерения). Питание – элемент (R20, RL20) 9 шт. Частота оперативного тока – 265-310 Гц. Время установления рабочего режима — не более 10 секунд. Время установления показаний в положении «ИЗМ I» — не более 6 секунд, в положении «ИЗМII» — не более 30 секунд. Продолжительность непрерывной работы не ограничена. Норма средней наработки на отказ — 7250 часов. Средний срок службы — 10 лет Условия эксплуатации — от минус 25 ° С до плюс 55 ° С. Габаритные размеры, мм – 305х125х155. Масса, кг. не более – 2,2. Перед проведением измерений измерителем Ф4103 необходимо, по возможности, уменьшить количество факторов, вызывающих дополнительную погрешность, например, устанавливать измеритель практически горизонтально, вдали от мощных электрических полей, использовать источники питания 12±0,25В, индуктивную составляющую учитывать только для контуров, сопротивление которых меньше 0,5 Ом, определять наличие помех и так далее. Помехи переменного тока выявляются по качаниям стрелки при вращении ручки ПДСТ в режиме «ИЗМI». Помехи импульсного (скачкообразного) характера и высокочастотные радиопомехи выявляются по постоянным непериодическим колебаниям стрелки. Порядок проведения измерения сопротивления контура защитного заземления 1. Установить элементы питания в измеритель заземления. 2. Установить переключатель в положение «Контроль 5 Ω», нажать кнопку и вращением ручки «реохорд» добиться установки стрелки индикатора в нулевую отметку шкалы. 3. Подключить соединительные провода к прибору, как показано на рисунке 1, если измерения производятся прибором М416 или рисунке 2, если измерения производятся прибором Ф4103-М1. 4. Углубить дополнительные вспомогательные электроды (заземлитель и зонд ) по схеме рис. 1 и 2 на глубину 0,5 м и подключить к ним соединительные провода. 5. Переключатель установить в положение «Х1». 6. Нажать кнопку и вращая ручку «реохорда» приблизить стрелку индикатора к нулю. 7. Результат измерения умножить на множитель. Подключение прибора М416 для измерения сопротивления контура заземления Статьи и схемыПолезное для электрикаБезопасность пользования электрической энергией зависит не только от правильного монтажа электроустановки, но и от соблюдения требований, заложенных нормативной документацией в ее эксплуатацию. Контур заземления здания, как составная часть защитного электрического оборудования, требует периодического контроля своего технического состояния. Как работает заземляющее устройство В нормальном режиме электроснабжения контур заземления РЕ-проводником соединен с корпусами всех электроприборов, системой выравнивания потенциалов здания и бездействует: через него, грубо говоря, не проходят никакие токи, за исключением небольших фоновых. Как заземление защищает человека При возникновении аварийной ситуации, связанной с пробоем слоя изоляции электропроводки, опасное напряжение появляется на корпусе неисправного электроприбора и по РЕ-проводнику через контур заземления стекает на потенциал земли. За счет этого величина прошедшего на нетоковедущие части высокого напряжения должна снизиться до безопасного уровня, неспособного причинить электротравму человеку, контактирующему с корпусом неисправного оборудования через землю. Когда РЕ-проводник или контур заземления нарушены, то отсутствует путь стекания напряжения и ток станет проходить через тело человека. оказавшегося между потенциалами поврежденного бытового прибора и землей. Поэтому при эксплуатации электрооборудования важно поддерживать в исправном состоянии контур заземления и периодическими электрическими замерами контролировать его состояние. Как возникает неисправность у заземляющего устройства В новом исправном контуре электрический ток аварии по РЕ-проводнику поступает на токоотводящие электроды, контактирующие своей поверхностью с грунтом и через них равномерно уходит на потенциал земли. При этом основной поток равномерно разделяется на составляющие части. В результате длительного нахождения в агрессивной среде почвы металл тоководов покрывается поверхностной окисной пленкой. Начинающаяся коррозия постепенно ухудшает условия прохождения тока, повышает электрическое сопротивление контактов всей конструкции. Ржавчина, образующаяся на стальных деталях, обычно носит общий, а на отдельных участках ярко выраженный местный характер. Связано это с неравномерным наличием химически активных растворов солей, щелочей и кислот, постоянно находящихся в почве. Образующиеся частицы коррозии в виде отдельных чешуек отодвигаются от металла и этим прекращают местный электрический контакт. Со временем таких мест становиться столько, что сопротивление контура увеличивается и заземляющее устройство, теряя электрическую проводимость, становится неспособным надежно отводить опасный потенциал в землю. Определить момент наступления критического состояния контура позволяют только своевременные электрические замеры. Принципы, заложенные в измерение сопротивления заземляющего устройства В основу метода оценки технического состояния контура заложен классический закон электротехники, выявленный Георгом Омом для участка цепи. С этой целью достаточно через контролируемый элемент пропустить ток от калиброванного источника напряжения и с большой степенью точности замерить проходящий ток, а потом вычислить величину сопротивления. Метод амперметра и вольтметра Поскольку контур работает в земле всей своей контактной поверхностью, то ее и следует оценивать при замере. Для этого в почву на небольшом удалении (порядка 20 метров) от контролируемого заземляющего устройства заглубляют электроды: основной и дополнительный. На них подают ток от стабилизированного источника переменного напряжения. По цепи, образованной проводами, источником ЭДС и электродами с подземной токопроводящей частью грунта начинает протекать электрический ток, величина которого замеряется амперметром. На очищенную до чистого металла поверхность контура заземления и контакт основного заземлителя подключается вольтметр. Он замеряет падение напряжения на участке между основным заземлителем и контуром заземления. Разделив значение показания вольтметра на измеренный амперметром ток, можно вычислить общее сопротивление участка всей цепи. При грубых замерах им можно ограничиться, а для вычисления более точных результатов потребуется скорректировать полученное значение вычитанием величины сопротивления соединительных проводников и влияния диэлектрических свойств почвы на характер токов растекания в грунте. Уменьшенное на эту величину и замеренное по первому действию общее сопротивление и даст искомый результат. Описанный способ является довольно простым и неточным, имеет определенные недостатки. Поэтому для выполнения более качественных измерений, производимых специалистами электротехнических лабораторий, разработана более усовершенствованная технология. Замер основан на использовании уже готовых конструкций метрологических приборов высокого класса точности, выпускаемых промышленностью. При этом способе тоже используется установка основного и вспомогательного электродов в почву. Их разносят по длине около 10÷20 метров и заглубляют на одной линии, захватывающей испытываемый контур заземления. К шине заземлительного устройства подключают измерительный зонд, стараясь разместить прибор поближе к контакту шины. Соединительными проводниками соединяют клеммы прибора с установленными в землю электродами. Источник переменной ЭДС выдает в подключенную схему ток I1, который проходит по замкнутой цепи, образованной первичной обмоткой трансформатора тока ТТ, соединительным проводам, контактам электродов и землей. Вторичная обмотка трансформатора ТТ воспринимает ток I2, равный первичному и передает его на сопротивление реостата R, позволяющего реохордом «б» выставлять баланс между напряжениями U1 и U2. Изолирующий трансформатор ИТ транслирует проходящий по его первичной обмотке ток I2 в свою вторичную цепь, замкнутую на измерительный прибор V. Ток I1, протекающий по грунту на участке между основным заземлителем и контуром заземления, образует на замеряемом нами участке падение напряжения U1, которое вычисляется по формуле: Ток I2, проходящий по участку реостата R «аб» с сопротивлением rаб, формирует падение напряжения U2, определяемое выражением: Во время выполнения замера перемещают ручку реохорда таким образом, чтобы отклонение стрелки прибора V установилось на ноль. В этом случае будет выполнено равенство: U1=U2. Тогда получим: I1∙rx=I2∙rаб. Поскольку конструкция прибора выполнена так, что I1=I2, то соблюдется соотношение: rx=rаб. Остается только узнать сопротивление участка аб. Но, для этого достаточно ручку потенциометра сделать побольше и на ее подвижную часть вмонтировать стрелку, которая будет перемещаться по неподвижной шкале, проградуированной заранее в единицах сопротивления реостата R. Таким образом, положение стрелки-указателя реостата при компенсации падений напряжений на двух участках позволяет замерить сопротивление заземляющего устройства. Используя изолирующий трансформатор ИТ и специальную конструкцию измерительной головки V, добиваются надежной отстройки прибора от блуждающих токов. Высокая точность измерительного механизма способствует малому влиянию переходных сопротивлений зонда на результат замера. Приборы, работающие по компенсационному методу, позволяют точно замерять сопротивления отдельных элементов. Для этого достаточно на один конец измеряемой цепи подключить проводник, снятый с точки 1, а на второй — измерительный зонд (точка 2) и провод с точки 3 от вспомогательного электрода. Приборы для измерения сопротивления заземляющего устройства За время развития энергетики измерительные приборы постоянно совершенствовались в вопросах облегчения использования и получения высокоточных результатов. Еще несколько десятилетий назад широко применялись только аналоговые измерители производства СССР таких марок, как МС-08, М4116, Ф4103-М1 и их модификации. Они продолжают работать и в наши дни. Сейчас их успешно дополняют многочисленные приборы, использующие цифровые технологии и микропроцессорные устройства. Они несколько упрощают процесс замера, обладают высокой точностью, хранят в памяти результаты последних вычислений. Методика выполнения замера сопротивления заземлительного устройства После доставки прибора на место проведения замера и извлечения его из транспортировочного кейса готовят шинопровод к подключению контактного проводника: отчищают от следов коррозии место для подключения зажима типа крокодил напильником или устанавливают струбцину с винтовым зажимом, продавливающим верхний слой металла. Замер сопротивления трехпроводным методом Требования безопасной работы требуют выполнять измерения при отключенном автоматическом выключателе во вводном щите питания здания либо снятом с заземлителя РЕ-проводнике. Иначе при возникновении аварийного режима ток утечки пойдет через контур и прибор или тело оператора. Соединительный проводник подключают к прибору и струбцине. На установленной дистанции молотком забивают в грунт электроды заземлители. Навешивают на них катушки с соединительными проводниками и подключают их концы. Устанавливают контакты проводов в гнезда прибора, проверяют готовность схемы к работе и величину напряжения помехи между установленными электродами. Она не должна превышать 24 вольта. Если это положение не выполнено, то придется менять места установки электродов и перепроверять этот параметр. Остается только нажать кнопку выполнения автоматического замера и снять вычисленный результат с дисплея. Однако, успокаиваться после получения результата первого замера нельзя. Чтобы проверить свою работу необходимо выполнить небольшую серию контрольных измерений, переставляя потенциальный штырь на небольшие дистанции. Расхождение всех полученных значений сопротивлений не должны расходиться более чем на 5%. Замер сопротивления четырехпроводным методом Для использования способов вертикального электрического зондирования измерители сопротивления контура заземления можно использовать по четырехпроводной схеме, расставляя приемные электроды по методике Веннера или Шлюмберже. Этот способ больше подходит для глубинных исследований и вычисления удельного электрического сопротивления грунта. Вариант подключения прибора марки ИС-20/1 по этой схеме показан на картинке. Замер сопротивления заземлителя с применением токоизмерительных клещей При использовании метода необходимо иметь фоновый ток от электроустановки здания в контур заземления. Его величина у большинства приборов, работающих по этому типу, не должна превышать 2,5 ампера. Замер сопротивления контура без разрыва цепи заземлителей с применением измерительных клещей Используя измеритель ИС-20/1м можно выполнить электрическую оценку состояния заземлительного устройства здания по следующей схеме. Замер сопротивления контура без вспомогательных электродов с применением двух измерительных клещей При этом способе не требуется устанавливать дополнительные электроды в землю, а можно выполнить работу пользуясь двумя токовыми клещами. Их потребуется разнести по шинопроводу заземлительного устройства на расстояние большее чем 30 сантиметров. Выбор методики проведения замера зависит от конкретных условий эксплуатации оборудования и определяется специалистами лаборатории. Оценку состояния заземлительного устройства можно выполнять в разное время года. Однако, следует учитывать, что в период большого нахождения влаги в почве во время осенне-весенней распутицы условия для растекания токов в земле наиболее благоприятные, а в сухую жаркую погоду — наихудшие. Летние замеры при высушенном грунте наиболее качественно отражают реальное состояние контура. Некоторые электрики рекомендуют для снижения значения сопротивления проливать почву около электродов растворами солей. Следует понимать, что это мера временная и неэффективная. С уходом влаги состояние проводимости вновь ухудшится, а ионы растворенной соли будут разрушать металл, расположенный в почве. Всем внимательным читателям и опытным электрикам предлагается посмотреть на прилагаемую ниже картинку, демонстрирующую простой, на первый взгляд, способ реализации измерения сопротивления заземляющего устройства, который не нашел широкого практического применения в лабораториях. Объясните в комментариях какие электротехнические процессы происходят при таком способе и как они влияют на точность измерения. Проверьте свои знания, удачи! Электрик Инфо — электротехника и электроника, домашняя автоматизация, статьи про устройство и ремонт домашней электропроводки, розетки и выключатели, провода и кабели, источники света, интересные факты и многое другое для электриков и домашних мастеров. Информация и обучающие материалы для начинающих электриков. Кейсы, примеры и технические решения, обзоры интересных электротехнических новинок. Вся информация на сайте Электрик Инфо предоставлена в ознакомительных и познавательных целях. За применение этой информации администрация сайта ответственности не несет. Сайт может содержать материалы 12+ Перепечатка материалов сайта запрещена. Как проверить контур заземления
Заземление представляет собой соединение электрических приборов с землей. С его помощью обеспечивается защита от поражающего действия тока при неисправностях или повреждениях электрооборудования. Для заземлителя используются обыкновенные металлические стержни или специальные комплексы, включающие в свой состав сложные элементы. Перед вводом в эксплуатацию всей системы, происходит проверка контура заземления, где в первую очередь замеряется его сопротивление. Таким образом, удается выяснить способность заземляющего контура выполнять свою основную защитную функцию. Для чего измеряется сопротивлениеПроведение замеров позволяет определить величину сопротивления контура, которая не должны быть выше установленных норм. В случае необходимости, сопротивление снижается за счет увеличения площади контакта или общей проводимости среды. С этой целью увеличивается количество стержней, повышается содержание соли в земле. Необходимо помнить, что с помощью простого заземления возможно только снижение напряжения фазы, попадающей на корпус прибора. Чтобы повысить надежность защиты, заземление нередко устанавливается вместе с устройством защитного отключения. Проектирование и подбор заземляющего устройства осуществляется в индивидуальном порядке в каждом конкретном случае. На его конструкцию оказывает влияние влажность, тип и состав почвы, а также другие факторы. Как измерить сопротивление контура заземленияСопротивление контура измеряется сразу же, как только жилой объект введен в эксплуатацию. В дальнейшем, подобные замеры выполняются 1 раз в год. Для измерений применяются специальные приборы, быстро и точно определяющие удельное сопротивление стержней и других металлических элементов, грунтов, в которых они установлены. Замеры проводятся в несколько этапов:
Проведение замеров лучше всего выполнять в зимнее или летнее время. В заземляющих устройствах сопротивление может отличаться в каждом отдельном случае. Например, в частных домах его значение доходит до 30 Ом. Сами замеры выполняются с помощью 2-х, 3-х или четырехполюсной методики. Правила замера сопротивления контура заземления:
Иногда проводятся дополнительные замеры, особенно в многочисленных подземных коммуникациях. В этих случаях выполняется несколько измерительных операций, во время которых изменяются направления и расстояния лучей между зондами. Реальное значение принимается по самому худшему результату. Существуют допустимые нормы сопротивления заземляющих устройств, которые не должны превышаться, независимо от времени года. Все максимально допустимые значения отражены в таблицах или приложениях ПУЭ. Замер сопротивление изоляцииДля измерения изоляции применяется мегомметр. Он включает в себя несколько составных частей: генератор непрерывного тока с ручным приводом, добавочные сопротивления и магнитоэлектрический логометр. Перед началом измерительных работ необходимо убедиться, что объект замеров обесточен и не находится под напряжением. С изоляции удаляется пыль и грязь, после чего выполняется заземление объекта примерно на 2-3 минуты. Таким образом, снимаются остаточные заряды. К оборудованию или электрической цепи подключение мегомметра осуществляется раздельными проводами. Их изоляция обладает большим сопротивлением, как правило, не меньше чем 100 мегаом. Сопротивление изоляции замеряется, когда приборная стрелка принимает устойчивое положение. Окончательные результаты замеров сопротивления определяются по показаниям стрелки измерительного прибора. На этом проверка контура заземления считается завершенной. После этого, объект испытаний необходимо разрядить. Источники: http://electricalschool.info/main/naladka/244-izmerenie-soprotivlenija-kontura.html, http://electrik.info/main/school/1068-kak-vypolnyaetsya-izmerenie-soprotivleniya-zazemleniya.html, http://electric-220.ru/news/proverka_kontura_zazemlenija/2016-04-04-953 electricremont.ru Приборы для измерения сопротивления заземленияЗаземляющий контур является основным и неотъемлемым устройством защиты человека от удара током, во время выхода электроприбора из строя или пробоя изоляции. Для того чтобы контролировать состояние заземлителя, необходимо проводить периодические замеры, поскольку металлические части в земле подвержены коррозии. При разрушении металлических частей сопротивление контура падает и он прекращает выполнять свою защитную функцию. В данной статье мы рассмотрим приборы для измерения сопротивления заземления. Обзор приборовИзмеритель Ф4103-М1 делает проверку контура любых геометрических форм и размеров. Внешний вид устройства показан на фото: Технические характеристики указаны в таблице: Следующий в нашем обзоре — измеритель непосредственного отсчета определения активного сопротивления М416. Прибор проверенный временем, обладает высокой точностью и стабильностью. Вот так он выглядит: Основные технические данные: Проведение измерительных работ с помощью м416 показано на видео: Современный микропроцессорный измерительный прибор ИС-10 следующий в нашем обзоре. ЖК дисплей, автоматический диапазон измерений, встроенная память последних сорока замеров. Ударопрочный корпус с защитой IP42. Ознакомится с внешним видом можно на фото ниже: Аппарат предназначен для замеров и тестирования элементов заземления двух-, трех-, четырехпроводным методом. Также с его помощью может быть выполнена проверка качества соединения проводников шины заземления и т.д. Инструкция по эксплуатации более усовершенствованного измерителя ИС-20/1 демонстрируется на видео: Ну и завершает наш список приборов для измерения сопротивления контура заземления — профессиональный аппарат MRU-101. Устройство может измерять удельное сопротивление грунта, подстраиваться под конкретную задачу, с помощью анализа и сбора данных. MRU-101 имеет память на последние четыреста замеров. Внешний вид измерителя: Основные технические характеристики данного устройства: Видеообзор MRU-101: Принцип работы измерителейИзмерение сопротивления грунта происходит по классическому закону Ома (R=U/I). Источник напряжения в устройстве подает разность потенциалов на электроды и происходит замер тока через прибор. Получив данные измеритель производит вычисление и выводит результат. На схеме ниже представлена схема замера: Большинство измерений происходит по этому методу или близкие к данному принципу. Следуя инструкции к имеющемуся у вас в наличии прибору нужно установить измерительные электроды разнося их от основного заземления. Работы производят в течении пару минут, за это время показания устанавливаются. Данную процедуру производят для каждого заземлителя отдельно. Более подробно узнать о том, как проводят замеры сопротивления заземляющего устройства, вы можете из нашей статьи. Напоследок рекомендуем просмотреть видео, на котором наглядно показывается, как проводятся измерения одним из рассматриваемых нами аппаратом — Ф4103-М1: Вот мы и рассмотрели основные приборы для измерения сопротивления заземления. Надеемся, предоставленная информация была для вас полезной! Рекомендуем также прочитать: samelectrik.ru Прибор для измерения сопротивления контура заземленияИзмерение сопротивления заземленияЧто такое заземление.Заземление – это намеренное соединение частей и узлов электрооборудования, не находящихся в нормальном состоянии под напряжением с электродом, установленном в земле. При этом необходимо обозначить такое понятие как сопротивления растеканию. При замыкании на землю, по мере удаления от электрода потенциал будет падать и, в конце концов, станет нулевым. Таким образом, сопротивление растеканию заземлителя – это параметр характеризующий сопротивление земли в месте установки электрода. Понятие сопротивления растеканию особенно актуально в сетях выше 1000 В. Для чего нужно заземление.Заземление необходимо для предотвращения поражения человека воздействием электрического тока, в случае его появления там, где при нормальных условиях его не должно быть. При касании корпуса прибора, находящимся под напряжением, сила тока, проходящего через тело человека, может оказаться смертельной. Необходимостью снижения разности потенциалов и обусловлено применение защитного заземления. Кроме этого, замыкание на землю приводит к увеличению силы тока и, как следствие, к срабатыванию защитных устройств. Нормы сопротивления защитного заземления регламентируются ПУЭ, а также документом называемым «Правила и нормы испытания электрооборудования». Конструкция заземления.Заземление – это комплекс технических устройств защитного типа, состоящий из:
На каждое заземление составляется паспорт. В паспорт заносится схема заземляющего устройства (длина, и схема расположения электродов контура), тип, удельное сопротивление грунта, а также результаты замера сопротивления заземления. Обязательным приложением к паспорту является акт на скрытые работы. Данный акт необходим в связи с тем, что большая часть заземляющего устройства находится под землей и этот акт представляет собой схему расположения элементов заземляющего устройства. В случае, если паспорт на заземление отсутствует, эксплуатация объекта запрещена . Методика измерения сопротивления защитного заземления.Для проверки сопротивления заземления используется метод амперметра-вольтметра, заключающийся в том, что через измеряемое сопротивление течет ток определенной величины и одновременно измеряется падение напряжения. Разделив значение тока на величину падения напряжения, получаем значение сопротивления. В принципе, под понятием измерения сопротивления заземления, подразумевается измерение сопротивления растеканию. Правила и нормы испытаний электрооборудования задают минимальное сопротивление заземления, рассчитанные с точки зрения безопасности. Нормы различаются в зависимости от типов электроустановок (глухозаземленная или изолированной нейтралью). Класс использованного напряжения также влияет на нормы сопротивления. Приборы для измерения заземления.Бытовой тестер для такой проверки использовать нельзя, так как он не способен генерировать достаточно высокое напряжение. Для измерений используется, как приборы уже давно выпускающиеся (МС-08, М-416 и др.), так и новые средства измерения, выполненные на современной электронной базе и характеризующиеся малым потреблением тока от источника питания. В настоящее время измерение защитного заземления можно выполнить также цифровым мультиметром или специальным тестером. Порядок проведения измерения заземления (сопротивления растеканию заземлителя).Для проведения проверки необходимо помимо прибора иметь два электрода (токовый и потенциальный) с проводами достаточной длины, как образец, можно предложить отрезок гладкой арматуры или трубы круглого сечения.В зависимости от сложности конструкции заземлителя, измерение сопротивления проводят по двум разным схемам:
Порядок проведения измерений.Так как в настоящее время самый распространенный прибор для проведения измерения является измеритель сопротивления заземления М-416, в дальнейшем, как образец, будет рассматриваться именно это средство измерений. Данный прибор относится к системе, в которой принцип измерений основан на компенсационном методе.Запрещается для проверки пользоваться приборами, не имеющих действующего клейма о поверке, результаты которой должны заноситься в паспорт на средство измерения.
Примечание: В зависимости от планируемых показателей сопротивления заземления измерение прибор нужно подключать по двух- или четырехпроводной схеме. Первая применяется, если предполагаемое сопротивление более 5 Ом, а вторая для измерения более низких значений (при этом разделяются пути прохождения тока и измерения разности потенциалов, для исключения влияния сопротивления присоединяемых проводов при измерении). В этом случае присоединение к заземлителю осуществляется двумя проводниками. Паспорт прибора содержит наглядные рисунки, которые позволят произвести подключения без ошибок.
Примечание. Если измерение проводится тестером или мультиметром, необходимость выбора множителя отпадает — эти приборы обладают функцией автоматического выбора предела шкалы.ВАЖНО! После проведения измерений, если сопротивление заземления в пределах нормы необходимо вновь присоединить заземляющий проводник к заземлителю! Оформление результатов измерений (протокол).После окончания измерений нужно оформить протокол результата замера. Протокол представляет собой бланк определенной формы, в котором отражаются наименование объекта, схема установки заземляющих стержней и их соединений (для этого понадобится паспорт объекта и акт на скрытые работы). Также протокол должен отражать схему контура заземления и метод, по которому проводилось измерение. В протокол необходимо включить графу, в которой указан прибор или тестер (его тип, заводской номер и пр.), которым проводилось испытание. Результаты, полученные при измерении, заносятся в паспорт заземляющего устройства.Отдельно представляется протокол испытания переходных сопротивлений. Переходное сопротивление (также, его еще называют металлосвязью) – это возможные потери на пути прохождения тока, связанные со сварочными, болтовыми и др. соединениями всего контура заземления. Это испытание проводится специальным тестером – микроомметром. ВАЖНО! Проводить испытания и выдавать протокол измерения сопротивления заземления может только испытательная лаборатория, аккредитованная в системе органов стандартизации.После окончания измерений составляется соответствующий акт, и заземляющее устройство считается годным к эксплуатации. Рекомендуем прочитать:Обзор приборов для измерения сопротивления контура заземленияЗаземляющий контур является основным и неотъемлемым устройством защиты человека от удара током, во время выхода электроприбора из строя или пробоя изоляции. Для того чтобы контролировать состояние заземлителя, необходимо проводить периодические замеры, поскольку металлические части в земле подвержены коррозии. При разрушении металлических частей сопротивление контура падает и он прекращает выполнять свою защитную функцию. В данной статье мы рассмотрим приборы для измерения сопротивления заземления. Обзор приборовИзмеритель Ф4103-М1 делает проверку контура любых геометрических форм и размеров. Внешний вид устройства показан на фото: Технические характеристики указаны в таблице: Следующий в нашем обзоре — измеритель непосредственного отсчета определения активного сопротивления М416. Прибор проверенный временем, обладает высокой точностью и стабильностью. Вот так он выглядит: Основные технические данные: Проведение измерительных работ с помощью м416 показано на видео: Современный микропроцессорный измерительный прибор ИС-10 следующий в нашем обзоре. ЖК дисплей, автоматический диапазон измерений, встроенная память последних сорока замеров. Ударопрочный корпус с защитой IP42. Ознакомится с внешним видом можно на фото ниже: Аппарат предназначен для замеров и тестирования элементов заземления двух-, трех-, четырехпроводным методом. Также с его помощью может быть выполнена проверка качества соединения проводников шины заземления и т.д. Инструкция по эксплуатации более усовершенствованного измерителя ИС-20/1 демонстрируется на видео: Ну и завершает наш список приборов для измерения сопротивления контура заземления — профессиональный аппарат MRU-101. Устройство может измерять удельное сопротивление грунта, подстраиваться под конкретную задачу, с помощью анализа и сбора данных. MRU-101 имеет память на последние четыреста замеров. Внешний вид измерителя: Основные технические характеристики данного устройства: Принцип работы измерителейИзмерение сопротивления грунта происходит по классическому закону Ома (R=U/I). Источник напряжения в устройстве подает разность потенциалов на электроды и происходит замер тока через прибор. Получив данные измеритель производит вычисление и выводит результат. На схеме ниже представлена схема замера: Большинство измерений происходит по этому методу или близкие к данному принципу. Следуя инструкции к имеющемуся у вас в наличии прибору нужно установить измерительные электроды разнося их от основного заземления. Работы производят в течении пару минут, за это время показания устанавливаются. Данную процедуру производят для каждого заземлителя отдельно. Более подробно узнать о том, как проводят замеры сопротивления заземляющего устройства. вы можете из нашей статьи. Напоследок рекомендуем просмотреть видео, на котором наглядно показывается, как проводятся измерения одним из рассматриваемых нами аппаратом — Ф4103-М1: Вот мы и рассмотрели основные приборы для измерения сопротивления заземления. Надеемся, предоставленная информация была для вас полезной! Рекомендуем также прочитать: Способы измерения сопротивления заземления, используемые приборыВ основе безопасности использования электроэнергии лежит не только и не столько соблюдение всех норм при монтаже электроустановки, но и следование требованиям по ее эксплуатации, заложенным в нормативных документах. Заземляющий контур жилых домов и зданий требует периодического выполнения контрольных измерений и выявления неисправности. Расскажем в статье, как происходит измерение сопротивления заземления, какими способами. Принцип работы заземляющего устройстваВ обычных условиях контур заземления, соединенный посредством РЕ-проводника с системой выравнивания потенциалов и с корпусом каждого находящегося в здании электроприбора, бездействует: кроме незначительных по величине фоновых, токи по нему не идут. При нарушении изоляции электропроводки и аварийной ситуации на поверхности корпуса поврежденного электроприбора образуется опасное напряжение, которое по контуру заземления переходит на потенциал земли. Благодаря этому величина напряжения, попавшего на непроводящие элементы, снижается до абсолютно неопасного значения, не способного нанести травму соприкасающегося с корпусом поврежденного прибора через землю человеку. При нарушении контура заземления либо РЕ-проводника пути для отвода напряжения нет, и ток будет протекать сквозь тело человека, находящегося между землей и потенциалами неисправного бытового электроприбора. Читайте также статью: → «Монтаж контура заземления в доме ». Почему заземляющее устройство становится неисправным?При находящемся в работоспособном состоянии контуре ток по РЕ-проводнику переходит на токопроводящие электроды, находящиеся в контакте с почвой, а по ним постепенно переходит на потенциал земли. Весь поток делится на несколько составных частей. При продолжительном пребывании в агрессивной среде грунта металлические поверхности тоководов окисляются, на них образуется окисная пленка. По мере развития коррозионных процессов прохождение тока ухудшается, электрическое сопротивление конструкции повышается. Возникающая на металлических элементах ржавчина, как правило, носит общий характер, хотя, местами можно увидеть ярко выраженные следы глубокой коррозии. Этот факт объясняется тем, что находящиеся в почве постоянно химически активные растворы щелочей, солей и кислот распределены неравномерно. Частицы разрушенного коррозией металла отходят от тела проводника, ухудшая либо вовсе прекращая местный электрический контакт. Таких точек со временем возникает все больше, на фоне постепенно увеличивающегося сопротивления контура заземляющее устройство постепенно снижает проводимость и неспособно отвести в почву опасный потенциал. Своевременное выполнение замеров сопротивления заземления позволяет определить момент наступления критического состояния контура. Максимально допустимое сопротивление заземленияДля каждого типа заземлителя сопротивление нормируется согласно ПУЭ (р — сопротивление грунта). Характеристика электроустановки, В Средства для измерения сопротивленияДля выполнения замеров сейчас используются преимущественно современные цифровые приборы, пришедшие на смену устаревшим аналоговым устройствам. Сама технология выполнения измерений намного упростилась, улучшилась точность.Так как замеры необходимо выполнять 1 раз в шестилетний период, для выполнения измерений сопротивления заземления частных домов из-за дороговизны приборов экономически выгодно пригласить специалистов, имеющих все необходимое оборудование. Для выполнения замеров чаще всего применяются следующие специальные виды приборов:
Методика определения состояния ЗУ основывается на законе Ома для участка цепи. Для проверки через проверяемый элемент пропускается электроток от прошедшего калибровку источника напряжения, проводятся высокоточные замеры проходящего тока и определяется значение сопротивления. Читайте также статью: → «Расчет заземляющих устройств ». Способ амперметра и вольтметраПо причине того, что контур постоянно всем свои объемом работает в грунте, именно его необходимо оценивать при выполнении измерений. С этой целью в почву на расстоянии не менее 20 м от подлежащего контролю заземляющей системы погружаются основной электрод и дополнительный, на которые подается переменный ток. а) Принципиальная электрическая схема; б, в) Схемы сборки с прибором МС-08 По устроенной источником ЭДС, проводами и заглубленными в почву электродами цепи течет электрический ток, сила которого определяется при помощи амперметра. На поверхность заземляющего контура, очищенного во избежание малейшей погрешности, и контакты основного заземляющего электрода устанавливается вольтметр, замеряющий снижение напряжения на линии промеж контуром заземления и основным стержнем. При делении величин напряжения на силу тока определяется общее сопротивление исследуемой части цепи. Если к точности измерений не предъявляется высоких требований, то можно ограничиться и этой величиной. При необходимости получения точных результатов, вычисленное значение следует откорректировать, вычтя из него сопротивление проводов и учтя воздействие диэлектрических свойств грунта на характер токов растекания в почве.
Трехпроводной способ измерения сопротивленияПри выполнении работ по этому методу исходя из требований безопасности требуется отключение автоматического выключателя в вводном щитке питания либо снятия с заземлителя РЕ-проводника.
Совет #1. В целях контроля правильности выполнения работы следует провести несколько измерений, переставляя потенциальный стержень на различные расстояния. Отличие полученных значений друг от друга допускается до 5%. Метод пробного электродаИзмерения необходимо производить до установки ЗУ. Порядок выполнения работ следующий:
Такой метод применим только при установке несложных заземляющих устройств, к примеру, при заземлении индивидуального дома. Читайте также статью: → «Для чего выполняется заземление крыши дома ». Четырехэлектродная схема измеренияТакая схема измерения, иначе называющаяся способом вертикального электрозондирования (ВЭЗ), дает достаточную точность результатов, так как при ней учитываются свойства всех слоев грунта — от глубинных до поверхностных. К внешним стержням (№1 и №2) подключается ЭДС, а на штырях, находящихся внутри (№3 и №4), определяется разность потенциалов. Четырехэлектродная схема измерений Компенсационный способ выполнения замеровПри выполнении замеров таким способом потребуются промышленные высокоточные приборы. Пара стержней-электродов заглубляется в землю на единой линии так, чтобы охватить заземляющий контур. Основным средством измерения является зонд, подключающийся к стержням №1 и №2 на максимальном приближении к шине (2) заземляющего контура. Выполнение замеров компенсационным способом Через погруженные в почву дополнительные штыри, грунт, проводники и первичную обмотку трансформатора подается электродвижущая сила. На вторичной обмотке возникает ток (I1 ). Реохордом (б) напряжения устанавливаются так, чтобы U1 =U2. достигающееся обнулением показаний вольтметра, подключенного к реохорду посредством трансформатора. Совет #2. Значение сопротивления заземления определяется установкой показаний вольтметра на ноль и кручением ручки реостата исходя из положения стрелки реохорда. Применение калиброванного резистораИзмерение сопротивления через резистор Через охлаждаемый резистор на заземляющее устройство электричество подается непосредственно с фазы питания. По известному значению сопротивления и определенному напряжению выявляется сила проходящего через заземлительное устройство тока. Измерения производятся при отсоединении РЕ-проводника от заземлителя, на который через калиброванное сопротивление 46 Ом подается фазное напряжение. Преимущество данного метода, особенно эффективного в стесненных условиях города, заключается в следующем:
Использование токовых клещейПри работе с клещами нет необходимости в отключении цепи заземления. В цепь подается напряжение и по ней начинает протекать ток. Определив его силу клещами, становятся известны все значения, требующиеся для выполнения расчета сопротивления. а) Схема измерения; б) Схема эквивалентная Что влияет на сопротивление заземления?Сопротивление ЗУ находится в прямой зависимости от удельного сопротивления грунта, которое в разных условиях может иметь различные значения. Оно зависит от: Ошибки при выполнении замеровНаиболее часто встречающимися ошибками являются:
Часто задаваемые вопросыВопрос №1. Какие участки следует выбирать для контроля ВЛ? Для выполнения замеров рекомендуется выбирать участки с наиболее агрессивными грунтами. При этом контролю подлежат не менее 2% опор. Вопрос №2. Можно ли вместо высокоточных приборов использовать другие средства измерения? В принципе, замеры можно произвести и мультиметром, но его применение чревато получением данных со слишком большой погрешностью. Вопрос №3. Когда лучше всего проводить измерения? Выполнять замеры лучше всего в разгар лета либо в середине зимы при благоприятной погоде и максимальном сопротивлении почвы. Вопрос №4. Какова периодичность выполнения замеров? Проверка производится сразу же после сдачи дома в эксплуатации. Согласно нормативам, периодичность замеров сопротивления должно проводиться каждые 6 лет, но для себя лучше выполнять их каждый год. Вопрос №5. При выполнении нескольких замеров какой результат принимать окончательным? Реальное значение сопротивления необходимо принимать по самому худшему результату. Оцените качество статьи. Нам важно ваше мнение: Источники: http://electry.ru/zazemlenie/izmerenie-soprotivleniya-zazemleniya.html, http://samelectrik.ru/obzor-priborov-dlya-izmereniya-soprotivleniya-kontura-zazemleniya.html, http://electric-tolk.ru/izmerenie-soprotivleniya-zazemleniya/ electricremont.ru Измерение контура заземления - Всё о электрике в домеИзмерение сопротивления контура защитного заземленияЗащитным заземлением называется преднамеренное электрическое соединение с землей или эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением вследствие замыкания на корпус. Задача защитного заземления – устранение опасности поражения током в случае прикосновения к корпусу и другим нетоковедущим металлическим частям электроустановки, оказавшейся под напряжением. Принцип действия заземления – снижение напряжения между корпусом, оказавшимся под напряжением, и землей до безопасного значения. Заземляющие устройства после монтажных работ и периодически не реже один раз в год испытываются по программе Правил устройства электроустановок. По программе испытания производится измерение сопротивления заземляющего устройства. Сопротивление заземляющего устройства, к которому присоединены нейтрали генераторов или трансформаторов или выводов источников однофазного тока, в любое время года должно быть не более 2, 4, 8 Ом соответственно при линейных напряжениях 660, 380, и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока. Измерения сопротивления контура заземляющего устройства производятся измерителем заземления М416 или Ф4103-М1. Описание измерителя заземления М416 Измерители заземления М416 предназначены для измерения сопротивления заземляющих устройств, активных сопротивлений и могут быть использованы для определения удельного сопротивления грунта (ρ). Диапазон измерения прибора от 0,1 до 1000 Ом и имеет четыре диапазона измерения: 0,1 … 10 Ом, 0,5 … 50 Ом, 2,0 … 200 Ом, 100 … 1000 Ом. Источником питания служат три соединенные последовательно сухие гальванические элемента напряжением по 1,5 В. Измеритель сопротивления заземления Ф4103-М1 Измеритель сопротивления заземления Ф4103-М1 предназначен для измерения сопротивления заземляющих устройств, удельного сопротивления грунтов и активных сопротивлений как при наличии помех, так и без них с диапазоном измерений от 0-0,3 Ом до 0-15 Ком (10 диапазонов). Измеритель Ф4103 является безопасным. При работе с измерителем в сетях с напряжением выше 36 В необходимо выполнять требования безопасности, установленные для таких сетей. Класс точности измерительного прибора Ф4103 – 2,5 и 4 (в зависимости от диапазона измерения). Питание – элемент (R20, RL20) 9 шт. Частота оперативного тока – 265-310 Гц. Время установления рабочего режима — не более 10 секунд. Время установления показаний в положении «ИЗМ I» — не более 6 секунд, в положении «ИЗМII» — не более 30 секунд. Продолжительность непрерывной работы не ограничена. Норма средней наработки на отказ — 7250 часов. Средний срок службы — 10 лет Условия эксплуатации — от минус 25 ° С до плюс 55 ° С. Габаритные размеры, мм – 305х125х155. Масса, кг. не более – 2,2. Перед проведением измерений измерителем Ф4103 необходимо, по возможности, уменьшить количество факторов, вызывающих дополнительную погрешность, например, устанавливать измеритель практически горизонтально, вдали от мощных электрических полей, использовать источники питания 12±0,25В, индуктивную составляющую учитывать только для контуров, сопротивление которых меньше 0,5 Ом, определять наличие помех и так далее. Помехи переменного тока выявляются по качаниям стрелки при вращении ручки ПДСТ в режиме «ИЗМI». Помехи импульсного (скачкообразного) характера и высокочастотные радиопомехи выявляются по постоянным непериодическим колебаниям стрелки. Порядок проведения измерения сопротивления контура защитного заземления 1. Установить элементы питания в измеритель заземления. 2. Установить переключатель в положение «Контроль 5 Ω», нажать кнопку и вращением ручки «реохорд» добиться установки стрелки индикатора в нулевую отметку шкалы. 3. Подключить соединительные провода к прибору, как показано на рисунке 1, если измерения производятся прибором М416 или рисунке 2, если измерения производятся прибором Ф4103-М1. 4. Углубить дополнительные вспомогательные электроды (заземлитель и зонд ) по схеме рис. 1 и 2 на глубину 0,5 м и подключить к ним соединительные провода. 5. Переключатель установить в положение «Х1». 6. Нажать кнопку и вращая ручку «реохорда» приблизить стрелку индикатора к нулю. 7. Результат измерения умножить на множитель. Подключение прибора М416 для измерения сопротивления контура заземления Статьи и схемыПолезное для электрикаИзмерение сопротивления контура заземленияВ данной своей статье я хочу затронуть тему — измерение сопротивления контура заземления. После того, как был произведён монтаж контура заземления, необходимо проверить качество выполненных работ. Для этого и измеряют сопротивление заземления, оно должно соответствовать требованиям нормативно-технических документов. Давайте немного вспомнить о самом заземлении. Защитным заземлением называется устройство, предназначенное для обеспечения безопасности от поражения электрическим током, в котором нормально не находящиеся под напряжением металлические элементы электроустановки или части оборудования преднамеренно соединены с землёй. Принцип действия заземления – оно снижает напряжение между металлическим корпусом электрооборудования, оказавшимся под напряжением, и землей до безопасного значения.Заземляющие устройства после всех монтажных работ испытывают не реже одного раза в год по программе Правил устройства электроустановок. По этой программе производится измерение сопротивления заземляющего устройства. Сопротивлением заземляющего устройства называется суммарное сопротивление, слагающееся из сопротивления растеканию заземлителя и сопротивления заземляющих проводников. Сопротивление заземляющего устройства. к которому присоединены нейтрали генераторов или трансформаторов или выводов источников однофазного тока, в любое время года должно быть не более 2, 4, 8 Ом, соответственно при линейных напряжениях 660, 380, и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока. Измерения сопротивления контура заземляющего устройства производятся измерителями заземления М416 или Ф4103-М1. Описание измерителя заземления М416 Измеритель заземления М416 предназначен для замера сопротивления заземляющих устройств. активных сопротивлений, а также могут быть использованы для определения удельного сопротивления грунта (ρ). Диапазон измерения прибора — от 0,1 до 1000 Ом. Прибор М416 имеет четыре диапазона измерения: 0,1 … 10 Ом, 0,5 … 50 Ом, 2,0 … 200 Ом, 100 … 1000 Ом. Источником питания измерителя служат три соединенные последовательно сухие гальванические элемента напряжением по 1,5 В. Измеритель сопротивления заземления Ф4103-М1 Измеритель сопротивления заземления Ф4103-М1 предназначен для измерения сопротивления заземляющих устройств, удельного сопротивления грунтов и активных сопротивлений, как при наличии помех, так и без них с диапазоном измерений от 0-0,3 Ом до 0-15 Ком (10 диапазонов). Прибор Ф4103 является безопасным.При работе прибором Ф4103-М1 в сетях с напряжением выше 36 В, необходимо выполнять требования безопасности, установленные для таких электрических сетей. Класс точности измерительного прибора Ф4103 – 2,5 и 4 (в зависимости от диапазона измерения).Питание – элемент (R20, RL20) 9 шт. Частота оперативного тока – 265-310 Гц. Время установления рабочего режима — не более 10 секунд. Время установления показаний в положении "ИЗМ I" — не более 6 секунд, в положении "ИЗМII" — не более 30 секунд. Продолжительность непрерывной работы не ограничена. Норма средней наработки на отказ — 7250 часов. Средний срок службы — 10 лет Условия эксплуатации — от минус 25 ° С до плюс 55 ° С. Габаритные размеры, мм – 305х125х155. Масса, кг. не более – 2,2. Перед проведением измерений прибором Ф4103 необходимо, по возможности, уменьшить количество факторов, вызывающих дополнительную погрешность, например, устанавливать измеритель практически горизонтально, вдали от мощных электрических полей, использовать источники питания 12±0,25В, индуктивную составляющую учитывать только для контуров, сопротивление которых меньше 0,5 Ом, определять наличие помех и так далее. Помехи переменного тока выявляются по качаниям стрелки при вращении ручки ПДСТ в режиме "ИЗМI". Помехи импульсного (скачкообразного) характера и высокочастотные радиопомехи выявляются по постоянным непериодическим колебаниям стрелки. Порядок проведения измерения сопротивления контура защитного заземления 1. Установить элементы питания в измеритель заземления .2. Установить переключатель в положение «Контроль 5 Ω», нажать кнопку и вращением ручки «реохорд» добиться установки стрелки индикатора в нулевую отметку шкалы.3. Подключить соединительные провода к прибору.4. Углубить дополнительные вспомогательные электроды (заземлитель и зонд ) на глубину 0,5 м и подключить к ним соединительные провода.5. Переключатель установить в положение «Х1».6. Нажать кнопку и вращая ручку «реохорда» приблизить стрелку индикатора к нулю.7. Результат измерения умножить на множитель. Безопасность пользования электрической энергией зависит не только от правильного монтажа электроустановки, но и от соблюдения требований, заложенных нормативной документацией в ее эксплуатацию. Контур заземления здания, как составная часть защитного электрического оборудования, требует периодического контроля своего технического состояния. Как работает заземляющее устройство В нормальном режиме электроснабжения контур заземления РЕ-проводником соединен с корпусами всех электроприборов, системой выравнивания потенциалов здания и бездействует: через него, грубо говоря, не проходят никакие токи, за исключением небольших фоновых. Как заземление защищает человека При возникновении аварийной ситуации, связанной с пробоем слоя изоляции электропроводки, опасное напряжение появляется на корпусе неисправного электроприбора и по РЕ-проводнику через контур заземления стекает на потенциал земли. За счет этого величина прошедшего на нетоковедущие части высокого напряжения должна снизиться до безопасного уровня, неспособного причинить электротравму человеку, контактирующему с корпусом неисправного оборудования через землю. Когда РЕ-проводник или контур заземления нарушены, то отсутствует путь стекания напряжения и ток станет проходить через тело человека. оказавшегося между потенциалами поврежденного бытового прибора и землей. Поэтому при эксплуатации электрооборудования важно поддерживать в исправном состоянии контур заземления и периодическими электрическими замерами контролировать его состояние. Как возникает неисправность у заземляющего устройства В новом исправном контуре электрический ток аварии по РЕ-проводнику поступает на токоотводящие электроды, контактирующие своей поверхностью с грунтом и через них равномерно уходит на потенциал земли. При этом основной поток равномерно разделяется на составляющие части. В результате длительного нахождения в агрессивной среде почвы металл тоководов покрывается поверхностной окисной пленкой. Начинающаяся коррозия постепенно ухудшает условия прохождения тока, повышает электрическое сопротивление контактов всей конструкции. Ржавчина, образующаяся на стальных деталях, обычно носит общий, а на отдельных участках ярко выраженный местный характер. Связано это с неравномерным наличием химически активных растворов солей, щелочей и кислот, постоянно находящихся в почве. Образующиеся частицы коррозии в виде отдельных чешуек отодвигаются от металла и этим прекращают местный электрический контакт. Со временем таких мест становиться столько, что сопротивление контура увеличивается и заземляющее устройство, теряя электрическую проводимость, становится неспособным надежно отводить опасный потенциал в землю. Определить момент наступления критического состояния контура позволяют только своевременные электрические замеры. Принципы, заложенные в измерение сопротивления заземляющего устройства В основу метода оценки технического состояния контура заложен классический закон электротехники, выявленный Георгом Омом для участка цепи. С этой целью достаточно через контролируемый элемент пропустить ток от калиброванного источника напряжения и с большой степенью точности замерить проходящий ток, а потом вычислить величину сопротивления. Метод амперметра и вольтметра Поскольку контур работает в земле всей своей контактной поверхностью, то ее и следует оценивать при замере. Для этого в почву на небольшом удалении (порядка 20 метров) от контролируемого заземляющего устройства заглубляют электроды: основной и дополнительный. На них подают ток от стабилизированного источника переменного напряжения. По цепи, образованной проводами, источником ЭДС и электродами с подземной токопроводящей частью грунта начинает протекать электрический ток, величина которого замеряется амперметром. На очищенную до чистого металла поверхность контура заземления и контакт основного заземлителя подключается вольтметр. Он замеряет падение напряжения на участке между основным заземлителем и контуром заземления. Разделив значение показания вольтметра на измеренный амперметром ток, можно вычислить общее сопротивление участка всей цепи. При грубых замерах им можно ограничиться, а для вычисления более точных результатов потребуется скорректировать полученное значение вычитанием величины сопротивления соединительных проводников и влияния диэлектрических свойств почвы на характер токов растекания в грунте. Уменьшенное на эту величину и замеренное по первому действию общее сопротивление и даст искомый результат. Описанный способ является довольно простым и неточным, имеет определенные недостатки. Поэтому для выполнения более качественных измерений, производимых специалистами электротехнических лабораторий, разработана более усовершенствованная технология. Замер основан на использовании уже готовых конструкций метрологических приборов высокого класса точности, выпускаемых промышленностью. При этом способе тоже используется установка основного и вспомогательного электродов в почву. Их разносят по длине около 10÷20 метров и заглубляют на одной линии, захватывающей испытываемый контур заземления. К шине заземлительного устройства подключают измерительный зонд, стараясь разместить прибор поближе к контакту шины. Соединительными проводниками соединяют клеммы прибора с установленными в землю электродами. Источник переменной ЭДС выдает в подключенную схему ток I1, который проходит по замкнутой цепи, образованной первичной обмоткой трансформатора тока ТТ, соединительным проводам, контактам электродов и землей. Вторичная обмотка трансформатора ТТ воспринимает ток I2, равный первичному и передает его на сопротивление реостата R, позволяющего реохордом «б» выставлять баланс между напряжениями U1 и U2. Изолирующий трансформатор ИТ транслирует проходящий по его первичной обмотке ток I2 в свою вторичную цепь, замкнутую на измерительный прибор V. Ток I1, протекающий по грунту на участке между основным заземлителем и контуром заземления, образует на замеряемом нами участке падение напряжения U1, которое вычисляется по формуле: Ток I2, проходящий по участку реостата R «аб» с сопротивлением rаб, формирует падение напряжения U2, определяемое выражением: Во время выполнения замера перемещают ручку реохорда таким образом, чтобы отклонение стрелки прибора V установилось на ноль. В этом случае будет выполнено равенство: U1=U2. Тогда получим: I1∙rx=I2∙rаб. Поскольку конструкция прибора выполнена так, что I1=I2, то соблюдется соотношение: rx=rаб. Остается только узнать сопротивление участка аб. Но, для этого достаточно ручку потенциометра сделать побольше и на ее подвижную часть вмонтировать стрелку, которая будет перемещаться по неподвижной шкале, проградуированной заранее в единицах сопротивления реостата R. Таким образом, положение стрелки-указателя реостата при компенсации падений напряжений на двух участках позволяет замерить сопротивление заземляющего устройства. Используя изолирующий трансформатор ИТ и специальную конструкцию измерительной головки V, добиваются надежной отстройки прибора от блуждающих токов. Высокая точность измерительного механизма способствует малому влиянию переходных сопротивлений зонда на результат замера. Приборы, работающие по компенсационному методу, позволяют точно замерять сопротивления отдельных элементов. Для этого достаточно на один конец измеряемой цепи подключить проводник, снятый с точки 1, а на второй — измерительный зонд (точка 2) и провод с точки 3 от вспомогательного электрода. Приборы для измерения сопротивления заземляющего устройства За время развития энергетики измерительные приборы постоянно совершенствовались в вопросах облегчения использования и получения высокоточных результатов. Еще несколько десятилетий назад широко применялись только аналоговые измерители производства СССР таких марок, как МС-08, М4116, Ф4103-М1 и их модификации. Они продолжают работать и в наши дни. Сейчас их успешно дополняют многочисленные приборы, использующие цифровые технологии и микропроцессорные устройства. Они несколько упрощают процесс замера, обладают высокой точностью, хранят в памяти результаты последних вычислений. Методика выполнения замера сопротивления заземлительного устройства После доставки прибора на место проведения замера и извлечения его из транспортировочного кейса готовят шинопровод к подключению контактного проводника: отчищают от следов коррозии место для подключения зажима типа крокодил напильником или устанавливают струбцину с винтовым зажимом, продавливающим верхний слой металла. Замер сопротивления трехпроводным методом Требования безопасной работы требуют выполнять измерения при отключенном автоматическом выключателе во вводном щите питания здания либо снятом с заземлителя РЕ-проводнике. Иначе при возникновении аварийного режима ток утечки пойдет через контур и прибор или тело оператора. Соединительный проводник подключают к прибору и струбцине. На установленной дистанции молотком забивают в грунт электроды заземлители. Навешивают на них катушки с соединительными проводниками и подключают их концы. Устанавливают контакты проводов в гнезда прибора, проверяют готовность схемы к работе и величину напряжения помехи между установленными электродами. Она не должна превышать 24 вольта. Если это положение не выполнено, то придется менять места установки электродов и перепроверять этот параметр. Остается только нажать кнопку выполнения автоматического замера и снять вычисленный результат с дисплея. Однако, успокаиваться после получения результата первого замера нельзя. Чтобы проверить свою работу необходимо выполнить небольшую серию контрольных измерений, переставляя потенциальный штырь на небольшие дистанции. Расхождение всех полученных значений сопротивлений не должны расходиться более чем на 5%. Замер сопротивления четырехпроводным методом Для использования способов вертикального электрического зондирования измерители сопротивления контура заземления можно использовать по четырехпроводной схеме, расставляя приемные электроды по методике Веннера или Шлюмберже. Этот способ больше подходит для глубинных исследований и вычисления удельного электрического сопротивления грунта. Вариант подключения прибора марки ИС-20/1 по этой схеме показан на картинке. Замер сопротивления заземлителя с применением токоизмерительных клещей При использовании метода необходимо иметь фоновый ток от электроустановки здания в контур заземления. Его величина у большинства приборов, работающих по этому типу, не должна превышать 2,5 ампера. Замер сопротивления контура без разрыва цепи заземлителей с применением измерительных клещей Используя измеритель ИС-20/1м можно выполнить электрическую оценку состояния заземлительного устройства здания по следующей схеме. Замер сопротивления контура без вспомогательных электродов с применением двух измерительных клещей При этом способе не требуется устанавливать дополнительные электроды в землю, а можно выполнить работу пользуясь двумя токовыми клещами. Их потребуется разнести по шинопроводу заземлительного устройства на расстояние большее чем 30 сантиметров. Выбор методики проведения замера зависит от конкретных условий эксплуатации оборудования и определяется специалистами лаборатории. Оценку состояния заземлительного устройства можно выполнять в разное время года. Однако, следует учитывать, что в период большого нахождения влаги в почве во время осенне-весенней распутицы условия для растекания токов в земле наиболее благоприятные, а в сухую жаркую погоду — наихудшие. Летние замеры при высушенном грунте наиболее качественно отражают реальное состояние контура. Некоторые электрики рекомендуют для снижения значения сопротивления проливать почву около электродов растворами солей. Следует понимать, что это мера временная и неэффективная. С уходом влаги состояние проводимости вновь ухудшится, а ионы растворенной соли будут разрушать металл, расположенный в почве. Всем внимательным читателям и опытным электрикам предлагается посмотреть на прилагаемую ниже картинку, демонстрирующую простой, на первый взгляд, способ реализации измерения сопротивления заземляющего устройства, который не нашел широкого практического применения в лабораториях. Объясните в комментариях какие электротехнические процессы происходят при таком способе и как они влияют на точность измерения. Проверьте свои знания, удачи! Электрик Инфо — электротехника и электроника, домашняя автоматизация, статьи про устройство и ремонт домашней электропроводки, розетки и выключатели, провода и кабели, источники света, интересные факты и многое другое для электриков и домашних мастеров. Информация и обучающие материалы для начинающих электриков. Кейсы, примеры и технические решения, обзоры интересных электротехнических новинок. Вся информация на сайте Электрик Инфо предоставлена в ознакомительных и познавательных целях. За применение этой информации администрация сайта ответственности не несет. Сайт может содержать материалы 12+ Перепечатка материалов сайта запрещена. Источники: http://electricalschool.info/main/naladka/244-izmerenie-soprotivlenija-kontura.html, http://elektrikdom.com/index/izmerenie_soprotivlenija_kontura_zazemlenija/0-178, http://electrik.info/main/school/1068-kak-vypolnyaetsya-izmerenie-soprotivleniya-zazemleniya.html electricremont.ru Измерение сопротивления контура защитного заземленияЗащитным заземлением именуется намеренное электронное соединение с землей либо эквивалентом железных нетоковедущих частей, которые возможно окажутся под напряжением вследствие замыкания на корпус. Задачка защитного заземления – устранение угрозы поражения током в случае прикосновения к корпусу и другим нетоковедущим железным частям электроустановки, оказавшейся под напряжением. Принцип деяния заземления – понижение напряжения меж корпусом, оказавшимся под напряжением, и землей до неопасного значения. Заземляющие устройства после монтажных работ и временами не пореже один раз в год испытываются по программке Правил устройства электроустановок. По программке тесты делается измерение сопротивления заземляющего устройства. Сопротивление заземляющего устройства, к которому присоединены нейтрали генераторов либо трансформаторов либо выводов источников однофазового тока, в хоть какое время года должно быть менее 2, 4, 8 Ом соответственно при линейных напряжениях 660, 380, и 220 В источника трехфазного тока либо 380, 220 и 127 В источника однофазового тока. Измерения сопротивления контура заземляющего устройства выполняются измерителем заземления М416 либо Ф4103-М1. Описание измерителя заземления М416 Измерители заземления М416 созданы для измерения сопротивления заземляющих устройств, активных сопротивлений и могут быть применены для определения удельного сопротивления грунта (ρ).Спектр измерения прибора от 0,1 до 1000 Ом и имеет четыре спектра измерения:0,1 … 10 Ом,0,5 … 50 Ом,2,0 … 200 Ом,100 … 1000 Ом.Источником питания служат три соединенные поочередно сухие гальванические элемента напряжением по 1,5 В. Измеритель сопротивления заземления Ф4103-М1 Измеритель сопротивления заземления Ф4103-М1 предназначен для измерения сопротивления заземляющих устройств, удельного сопротивления грунтов и активных сопротивлений как при наличии помех, так и без их с спектром измерений от 0-0,3 Ом до 0-15 Ком (10 диапазонов). Измеритель Ф4103 является неопасным. При работе с измерителем в сетях с напряжением выше 36 В нужно делать требования безопасности, установленные для таких сетей. Класс точности измерительного прибора Ф4103 – 2,5 и 4 (зависимо от спектра измерения). Питание – элемент (R20, RL20) 9 шт. Частота оперативного тока – 265-310 Гц. Время установления рабочего режима — менее 10 секунд. Время установления показаний в положении «ИЗМ I» — менее 6 секунд, в положении «ИЗМII» — менее 30 секунд. Длительность непрерывной работы не ограничена. Норма средней выработки на отказ — 7250 часов. Средний срок службы — 10 лет Условия эксплуатации — от минус 25 ° С до плюс 55 ° С. Габаритные размеры, мм – 305х125х155. Масса, кг , менее – 2,2. Перед проведением измерений измерителем Ф4103 нужно, по способности, уменьшить количество причин, вызывающих дополнительную погрешность, к примеру, устанавливать измеритель фактически горизонтально, вдалеке от массивных электронных полей, использовать источники питания 12±0,25В, индуктивную составляющую учесть только для контуров, сопротивление которых меньше 0,5 Ом, определять наличие помех и т.д.. Помехи переменного тока выявляются по качаниям стрелки при вращении ручки ПДСТ в режиме «ИЗМI». Помехи импульсного (скачкообразного) нрава и высокочастотные радиопомехи выявляются по неизменным непериодическим колебаниям стрелки. Порядок проведения измерения сопротивления контура защитного заземления 1. Установить элементы питания в измеритель заземления. 2. Установить тумблер в положение «Контроль 5 Ω», надавить кнопку и вращением ручки «реохорд» достигнуть установки стрелки индикатора в нулевую отметку шкалы. 3. Подключить соединительные провода к прибору, как показано на рисунке 1, если измерения выполняются прибором М416 либорисунке 2, если измерения выполняются прибором Ф4103-М1. 4. Углубить дополнительные вспомогательные электроды (заземлитель и зонд ) по схеме рис.1 и 2 на глубину 0,5 м и подключить к ним соединительные провода. 5. Тумблер установить в положение «Х1». 6. Надавить кнопку и вращая ручку «реохорда» приблизить стрелку индикатора к нулю. 7. Итог измерения помножить на множитель. Подключение прибора М416 для измерения сопротивления контура заземления Подключение прибора Ф4103-М1 для измерения сопротивления контура заземления:а – схема подключения; б – контур заземления elektrica.info Измерение сопротивления контура заземления | ЭлкомэлектроО компании » Электролаборатория » Виды измерений » Измерение сопротивления контура заземления Сегодня практически вся электрическая цепь имеет устройство защитного отключения и контур заземления, которые защищают человека от возможного удара током, при замыкании на корпус. Электричество всегда проходит по проводнику, у которого электрическое сопротивление меньше. Контур заземления в свою очередь способствует равенству потенциалов грунта и защитного устройства, включенного в электрическую цепь. Долговечность и надежность контура заземления можно обеспечить хорошими материалами и квалифицированным монтажом, в процессе которого производится измерение сопротивления контура заземления, силами электролаборатории, чтобы достичь необходимых параметров. Нормы заземления регулируют ПЭУ и ПТЭЭП. Так, в электроустановках сетей с напряжением до 1000 Вольт и глухозаземленной нейтралью, с включенной нейтралью трансформатора или генератора, или выводами однофазного источника тока, сопротивление заземления обладает постоянной величиной 2/4/8 Ом, которая соразмерна линейному напряжению 660/380/220 Вольт трехфазного источника тока или 380/220/127 Вольт однофазного источника тока. При этом для искусственного заземлителя, находящегося вблизи от нейтрали, сопротивление заземления равно 15/30/60 Ом соразмерно линейному напряжению 660/380/220 Вольт трехфазного источника тока или 380/220/127 Вольт однофазного источника тока. Данные нормы сопротивления разрешается увеличить в 0,01 r раз, но не > чем в 10 раз, с учетом сопротивления грунта составляющего > 100 Ом•метр. Существует методика для измерения сопротивления контура заземления, которая, как правило, проводится в момент, когда удельное сопротивление грунта максимально. Измерение сопротивления происходит с помощью метода двух, трёх и четырёх полюсной схемы. Для получения нормированного сопротивления контура заземления, используются различные приборы измерения сопротивления. Так, различными измерительными функциями и лучшими эргономичными показателями характеризуется прибор для измерения сопротивления контура MRU-101. Кроме того, данный прибор позволяет проводить анализ условий, которые отрицательно влияют на точность результатов измерений. Питание прибора осуществляется с помощью аккумулятора. Для оформления результатов измерения сопротивления используется протокол измерения контура заземления. Периодичность измерений изложена в ПТЭЭП: 1. визуальный осмотр заземляющего устройства проводится ответственным лицом за электроэнергию или уполномоченным им, с проверкой отсутствия обрывов, ржавчины на контактах защитных проводников и оборудования, и записью результатов в паспорт устройства заземления - 1 раз в полгода; 2. измерение сопротивления проводится в момент максимальной засухи или замерзания грунта; 3. измерение для высоковольтных линий, проводится у двух процентов опор (металлических и железобетонных), которые имеют разрядники, защитные промежутки, нулевой провод повторного заземления, разъединители - ежегодно; 4. измерение проводится при возникновении разрушений и возникновении электрической дуги в изоляторах высоковольтных линий - после ремонта и реконструкции заземляющего устройства. Наша компания имеет современное оборудование и огромный опыт, что позволяет в кратчайшие сроки провести измерение сопротивления контура заземления и обеспечить Вам комфорт и электробезопасность.www.megaomm.ru Сопротивление контура заземления - Всё о электрике в домеКонтур заземления по нормам ПУЭЧтобы контур заземления эффективно выполнял свои функции, необходимо использование норм, которые приведены в «Правилах устройства электроустановок». Они утверждены Министерством энергетики России, приказом от 08. 07. 2002 г. Сейчас действительной является седьмая редакция. Но перед реализацией конкретного проекта необходимо уточнить новейшие изменения. Так как далее в статье есть ссылки на этот документ, будут применяться следующие сокращения: «ПУЭ», или «Правила». Типовые схемы контуров заземления дома Для чего выполнять требованияМожет показаться, что неукоснительное соблюдение Правил избыточно, необходимо только для прохождения официальных проверок, ввода в действие объекта недвижимости. Конечно, это не так. Нормативы созданы на основе научных знаний и практического опыта. В ПУЭ есть следующие сведения:
Применение на практике этих нормативов позволит предотвратить поражение электрическим током людей и животных. Создание контура должно быть безупречным, в точном соответствии с Правилами. Это снизит вероятность возгораний при авариях, поможет исключить развитие негативных процессов, способных нанести ущерб имуществу. В данной статье рассматриваются вопросы защиты частного дома. Таким образом, будут изучаться те разделы ПУЭ, которые относятся к работе с напряжением до 1 000 V. Составные части системыКлючевым параметром данной системы является сопротивление заземления. Сопротивление заземления должно быть настолько малым, чтобы именно по такому пути шел ток при возникновении аварийной ситуации. Это обеспечит защиту при случайном прикосновении человека к поверхности, на которую подано напряжение. Специалисты рекомендуют подключать бытовую технику к системе заземления Для получения необходимого результата шасси и корпуса бытовых устройств дома соединяют с главной шиной заземляющего устройства, создается внутренний контур. К нему же подключают металлические элементы конструкции здания, трубы водопровода. Подробно состав такой системы выравнивания потенциалов описан в ПУЭ (п.1.7.82). Снаружи строения устанавливается другая часть защиты, внешний контур. Его также подключают к главной шине. Для оснащения частного дома можно использовать разные схемы. Но проще всего заглубить в землю металлические стержни. В следующем списке приведены отдельные компоненты системы и требования к ним:
Почвы обладают разной проводимостью Проводники системы заземленияЧастью внутреннего контура являются изолированные провода. Их оболочки делают цветными (чередующиеся зеленые и желтые продольные полосы). Такое решение уменьшает ошибочные действия при выполнении монтажных операций. Подробно требования изложены в разделе «Защитные проводники» Правил, начиная с раздела 1.7.121. В частности, там приведена методика простого расчета допустимой площади изолированного проводника в сечении (без поверхностного слоя). Если фазный провод меньше, или не превышает 16 мм 2. то выбирают равные диаметры. При увеличении размеров применяют иные пропорции. Для точных расчетов используется формула из пункта 1.7.126 ПУЭ:
Величина тока должна быть достаточной для срабатывания автомата за время, не превышающее пяти секунд. Чтобы система была рассчитана с определенным запасом, выбирают ближайшее большее по типоразмеру изделие. Специальный коэффициент берут из таблиц 1.7.6. 1.7.7. 1.7.8. и 1.7.9. Правил. Если планируется использовать многожильный алюминиевый кабель, в котором один из проводников – защитный, то применяют следующие коэффициенты с учетом разных изоляционных оболочек. Таблица коэффициентов с учетом типа изоляционных оболочек В качестве следующих элементов внутреннего контура частного дома допустимо применение конструкционных деталей. Подойдет металлическая арматура, которая находится внутри железобетонных изделий. При использовании такого варианта обеспечивается непрерывность цепи, предпринимаются дополнительные меры для защиты от механических воздействий. Учитываются особенности конкретного строения, структурные деформации, которые возникают в процессе усадки. Не разрешается использовать:
Если используется отдельный медный проводник, не входящий в состав кабеля цепи питания, или он находится не в общей изоляционной, защитной оболочке с фазными проводами, допустимо следующее минимальное сечение в мм 2 :
Этот медный проводник не защищен от случайного механического повреждения Алюминий менее прочен по сравнению с медью. Поэтому сечение проводника из такого металла (вариант – отдельная прокладка) должно быть равно, или более следующей нормы: 16 мм 2 . Какое должно быть сечение проводников внешнего контура заземления дома можно посмотреть в таблице ниже. Сечение проводников внешнего контура заземления Здесь приведены минимально допустимые нормы. Определенная величина проводника установлена с учетом большей устойчивости цветных металлов к процессам окисления, относительно небольшой механической прочности алюминия, других важных факторов. При проходе через внешнюю толстую стену дома проще просверлить тонкое отверстие. Его изнутри можно укрепить трубкой подходящих размеров. Медный провод не сложно будет согнуть под углом для присоединения к стальной шине внешнего контура. Допустимое сопротивление заземляющего устройства определено в п. 1.7.101 ПУЭ. Сводные нормы приведены в таблице ниже. Нормы допустимого сопротивления заземляющего устройства При подсоединении заземлителя к нейтрали генератора, или другого источника Приведенные выше нормы справедливы для случаев, когда сопротивление грунта (удельное) не превышает порог R=100 Ом на метр. В противном случае допустимо увеличение сопротивления с умножением исходного значения на R*0,01. Итоговое сопротивление заземлителя не должно быть больше, чем в 10 раз исходного значения. За городом для подключения дома часто используют воздушные линии электропередачи. Поэтому уместно упомянуть нормы ПУЭ, относящиеся к соответствующей ситуации. Если проводник одновременно выполняет функции защитного и нулевого (PEN-типа), то на концах таких линий, участках подключения потребителей устанавливают устройство повторного заземления. Как правило, такие действия обязана выполнить энергетическая компания, но хозяину дома следует сделать соответствующую проверку. В качестве заземлителя используют металлические части опор, заглубленные в грунт. Заземление воздушной линии электропередачи При выборе комплектующих элементов личного внешнего контура, который будет установлен в земле, используют следующие нормы ПУЭ. Параметры комплектующих элементов внешнего контура заземления по нормам ПУЭ Профиль изделия в сечении Круглый (для вертикальных элементов системы заземления) Круглый (для горизонтальных элементов системы заземления) Если повышен риск повреждения горизонтальных участков окислительными процессами, применяют следующие решения:
Траншеи с горизонтальными заземлителями засыпают грунтом с однородной структурой, без мусора. Повысить сопротивление способно чрезмерное осушение грунта, поэтому в летние периоды, когда долго нет дождей, специально поливают соответствующие участки. При прокладке контура заземления избегают соседства с трубопроводами, повышающими искусственно температуру почвы. Какое должно быть сопротивлениеПрочность металлических проводников, их электрическое сопротивление определить несложно. Если должно быть определенное сопротивление по ПУЭ, то соблюдение правил не будет чрезмерно сложным. Так, например, для заземления опор воздушных линий установлен максимально допустимый норматив 10 Ом, если эквивалентное сопротивление грунта не превышает 100 Ом*м (Таблица 2.5.19.). Целостность сварных соединений обеспечивают дополнительной защитой антикоррозийным слоем. При риске разрыва в процессе сдвижек почвы, или деформации строения, соответствующий участок делают из гибкого кабеля. Но гораздо больше проблем возникает с землей. В этой неоднородной среде, подверженной самым разным внешним воздействиям, одинаковая величина проводимости в течение длительного времени невозможна. Именно поэтому в ПУЭ отдельный раздел посвящен устройствам заземления, которые устанавливаются в почвах с большим удельным сопротивлением (нормы по пунктам 1.7.105. – 1.7.108.). Ниже перечислены основные рекомендации для таких случаев:
Горизонтальные заземлители в системе заземления Если удельное сопротивление грунта превышает 500 Ом на м, а создание заземлителя сопряжено с чрезмерными затратами, разрешено превышение нормы заземляющих устройств не более чем в 10 раз. Используется следующая формула для вычисления. Точное значение должно быть: R * 0,002. Здесь величина R – это удельное эквивалентное сопротивление грунта, в Ом на м. Внутренний и внешний контурКак правило, главную шину внутри здания устанавливают внутри устройства ввода. Ее допустимо изготавливать только из стали или из меди. Применение алюминия в данном случае не разрешено. Предпринимают меры, предотвращающие свободный доступ к ней посторонних людей. Шина размещается в запирающемся шкафчике, или в отдельном помещении.
Внешний контур дома создают, учитывая перечисленные выше нормы ПУЭ по отдельным частям системы. Это позволит получить необходимое минимальное сопротивление системы заземления (Ом), которое достаточно для надежной защиты. Для повторного заземления рекомендуется использовать заземлители естественного типа. Сопротивление (Ом) повторного заземлителя не определено четко положениями ПУЭ. Ниже приведены некоторые важные особенности стандартного заземлителя частного дома:
Монтаж внешнего контура заземления частного дома Если в цепи заземления применяются болтовые соединения, предпринимают меры против их раскручивания. Как правило, соответствующие узлы приваривают. Видео. Заземление своими рукамиНормы для испытательных процедур изложены в главе 1.8 ПУЭ, а также в «Правилах технической эксплуатации электроустановок потребителей» (ПТЭЭП, пр. 3.1), действующих с 1.07.2003 г. на основании решения Министерства энергетики России (приказ от 13. 01. 2003 г.). Выполняется визуальный контроль, проверяется целостность соединений. По специальной методике выясняется сопротивление контура системы заземления. Измеренное значение не должно быть выше нормы (Ом). Если такое условие не выполнено, используют заземлитель большей длины или иные технологии, приведенные в данной статье. Норма сопротивления контура заземленияОчень часто энергетики спорят на тему, какие должны быть нормы растекания тока контура заземления? Какова величина сопротивления контура заземления? Какое допустимое сопротивление контура заземления? Как правило, в таких спорах можно услышать разные цифры, одни называют 4 Ом, от других можно услышать 20 Ом, некоторые специалисты говорят, что сопротивление контура заземлителя не нормируется. Так какие же должны быть нормы и почему такая путаница? Какие бывают испытания? Начну с того, что поясню, какие бывают испытания. Электролаборатория проводит приёмо-сдаточные или эксплуатационные испытания. Приёмо-сдаточные испытания проводятся после окончания монтирования новой электроустановки, после того как, электроустановка смонтирована и сдана в эксплуатацию, с этого момента начинаются эксплуатационные испытания. Соответственно приёмо-сдаточные испытания проводятся только один раз, после окончания электромонтажных работ, а эксплуатационные испытания проводятся периодически, в процессе эксплуатации. И так, существуют приёмо-сдаточные и эксплуатационные испытания. Приёмо-сдаточные испытания регламентируются Правилами Устройства Электроустановок (ПУЭ), а эксплуатационные Правилами технической эксплуатации электроустановок потребителей (ПТЭЭП). Почему спорят специалисты? Наконец, мы подошли к самому главному. Почему спорят специалисты, почему такие разные цифры они называют? Во первых, нужно понять о каких испытаниях идёт речь. Если разговор идёт о приёмо-сдаточных испытаниях, то ответ нужно смотреть в ПУЭ, Глава 1.8, Нормы приёмо-сдаточных испытаний, а если об эксплуатационных, то ответ ищем в ПТЭЭП, Приложение 3, Нормы испытаний электрооборудования и аппаратов электроустановок потребителей. Во вторых нужно понять предназначение контура заземления. Контур заземления бывает для подстанций и распределительных пунктов выше 1000 Вольт, воздушных линий электропередач до 1000 Вольт и выше 1000 Вольт и электроустановок до 1000 Вольт. 1. Контур заземления для электроустановки напряжением до 1000 Вольт: ПУЭ, п. 1.8.39, таблица 1.8.38, п. 3 гласит: при измерении в непосредственной близости к трансформаторной подстанции, сопротивление контура заземления должно быть: 15, 30 или 60 Ом, при измерении с учетом естественных заземлителей и повторных заземлителей отходящих линий: 2, 4 или 8 Ом соответственно для напряжений 660, 380 и 220 Вольт. ПТЭЭП, Приложение № 3, таблица 36 гласит: сопротивление контура заземления — 15, 30 или 60 Ом для напряжений сети 660-380, 380-220 и 220-127 Вольт соответственно (трёхфазная/однофазная сеть), а при измерении с учётом присоединённых повторных заземлений должно быть не более 2, 4 и 8 Ом при напряжениях соответственно 660, 380 и 220 Вольт источника трехфазного тока и напряжениях 380, 220 и 127 Вольт источника однофазного тока. 2. Контур заземления для трансформаторнойподстанции и распредпунктов напряжением больше 1000 Вольт: ПУЭ, п. 1.8.39, таблица 1.8.38, п. 1 гласит: при измерении в электроустановке с глухозаземленной и эффективно заземленной нейтралью, должно быть не более 0,5 Ом. ПТЭЭП, Приложение № 3, таблица 36 гласит: при измерении в электроустановке напряжением 110 кВ и выше, в сетях с эффективным заземлением нейтрали, сопротивление контура должно быть не более 0,5 Ом. В электроустановке 3 — 35 кВ сетей с изолированной нейтралью — 250/Ip, но не более 10 Ом, где Ip — расчетный ток замыкания на землю. 3. Контур заземлениявоздушной линии электропередачи напряжением выше 1 кВ: ПУЭ, п. 1.8.39, таблица 1.8.38, п. 2 гласит: Заземляющие устройства опор высоковольтной линии (ВЛ) при удельном сопротивлении грунта, ρ, Ом·м: 100/100-500/500-1000/1000-5000 – 10, 15, 20 и 30 Ом соответственно. ПТЭЭП, Приложение № 31, таблица 35, п. 4 гласит: А. Длявоздушныхлиний электропередач на напряжение выше 1000 В: Опоры, имеющие грозозащитный трос или другие устройства грозозащиты, металлические и железобетонные опоры ВЛ 35 кВ и такие же опоры ВЛ 3 — 20 кВ внаселенной местности, заземлители оборудования на опорах 110 кВ и выше: 10, 15, 20 или 30 Ом при удельном сопротивлении грунта, соответственно: 100, 100-500, 500-1000, 1000-5000 Ом·м. Б. Длявоздушныхлиний электропередач на напряжение до 1000 Вольт: Опора ВЛ с грозозащитой – 30 Ом, Опоры с повторными заземлителями нулевого провода – 15, 30 и 60 Ом для напряжений питающей сети 660-380, 380-220 и 220-127 Вольт (трёхфазная/однофазная сеть) соответственно. Для электромонтажников, работающих в сетях напряжением ниже 1000 Вольт: Сопротивление растекания контура заземления на вновь построенной электроустановке должно быть 15, 30 или 60 Ом или 2, 4 и 8 Ом при измерении с присоединёнными естественными заземлителями и повторными заземлителями отходящих линий для напряжений питающей сети 660-380, 380-220 или 220-127 Вольт (трёхфазная/однофазная сеть) соответственно. Сопротивление растекания контура заземления на уже эксплуатирующейся электроустановке, тоже 15, 30 и 60 Ом или 2, 4, 8 Ом при измерении с присоединёнными естественными и повторными заземлителями для напряжений сети 660-380, 380-220 и 220-127 Вольт (трёхфазная/однофазная сеть) соответственно. Как видим, значения сопротивления контура заземления одинаковы, не зависимо от вида испытаний, но разные в зависимости от назначения контура заземления! Как измерить сопротивление контура заземления – обзор методик15.08.2016 нет комментариев 10 223 просмотров Измерение сопротивления заземления нужно выполнять, чтобы удостовериться, что оно совпадает с требованием ПУЭ (правила устройства электроустановок) гл. 1.8. а также ПТЭЭП пр. 3,3.1. Замеры, которые проводятся в электроустановке с глухо заземленной нейтралью (напряжение которых составляет ниже 1000В) должны соответствовать следующим нормам. Неважно, зимой или летом, значение не должно превышать отметку 8, 4 и 2 Ом при напряжении 220, 380, 660 В (для источников с трехфазным током) соответственно, или 127, 220 и 380 В для источников с однофазным током. Для электроустановок, где используется изолированная нейтраль (напряжение ниже 1000В) сопротивление заземляющего контура должно соответствовать п 1.7.104 ПУЭ и рассчитывается по формуле Rз * Iз < 50 В. Ниже мы рассмотрим основные методики замеров контура, а также приборы, которые можно для этого использовать. Обзор методикМетод амперметра-вольтметраДля проведения измерительных работ необходимо искусственно собрать электрическую цепь, в которой ток течет через испытуемый заземлитель и токовый электрод (его еще называют вспомогательным). Также в этой схеме задействуется потенциальный электрод, назначение которого – замер падения напряжения во время протекания электрического тока по заземлителю. Потенциальный электрод нужно расположить одинаково далеко от токового электрода и испытуемого заземлителя, в зоне с нулевым потенциалом. Чтобы измерить сопротивление методом амперметра-вольтметра необходимо воспользоваться законом Ома. Итак, по формуле R=U/I находим сопротивление контура заземления. Такой метод хорошо подходит для измерений в частном доме. Чтобы получить нужный измерительный ток можно воспользоваться сварочным трансформатором. Также подойдут и другие виды трансформаторов, вторичная обмотка которых электрически не связана с первичной. Использование специальных приборовСразу отметим, что даже для измерений в домашних условиях многофункциональный мультиметр не сильно подойдет. Чтобы измерить сопротивление контура заземления своими руками используются аналоговые приборы: Рассмотрим, как измерить сопротивление прибором М-416. Сначала нужно убедиться, что у прибора есть питание. Проверим наличие батареек. Если их нет, нужно взять 3 элемента питания напряжением 1,5 В. В итоге получим 4,5 В. Готовый к использованию прибор нужно поставить на ровную горизонтальную поверхность. Далее калибруем прибор. Ставим его в положение «контроль» и, удерживая красную кнопку, выставляем стрелку на значении «ноль». Для измерения будем пользоваться трехзажимной схемой. Вспомогательный электрод и стержень зонда забиваем не менее чем на полметра в грунт. Подсоединяем к ним провода прибора по схеме. Переключатель на приборе устанавливается в одно из положений «Х1». Зажимаем кнопку и крутим ручку, пока стрелка на циферблате не сравняется с отметкой «ноль». Полученный результат необходимо умножить на ранее выбранный множитель. Это и будет искомое значение. На видео наглядно демонстрируется, как измерить сопротивления заземления прибором: Также могут быть использованы более современные цифровые приборы, которые намного упрощают работы по замерам, более точны и сохраняют последние результаты измерений. Например, это приборы серии MRU – MRU200, MRU120, MRU105 и др. Работа токовыми клещамиСопротивление контура заземления можно измерять также токовыми клещами. Их преимущество в том, что нет необходимости отключать заземляющее устройство и применять вспомогательные электроды. Таким образом, они позволяют достаточно оперативно вести контроль за заземлением. Рассмотрим принцип работы токовых клещей. Через заземляющий проводник (который в данном случае является вторичной обмоткой) протекает переменный ток под воздействием первичной обмотки трансформатора, которая находится в измерительной головке клещей. Для расчета величины сопротивления необходимо разделить значение ЭДС вторичной обмотки на величину тока, измеренную клещами. В домашних условиях можно использовать токовые клещи С.А 6412, С.А 6415 и С.А 6410. Более подробно узнать о том, как пользоваться токоизмерительными клещами. вы можете в нашей статье! Какая периодичность измерений?Проводить визуальный осмотр, измерения, а также при необходимости частичное раскапывание грунта нужно согласно графику, который установлен на предприятии, но не реже чем один раз в 12 лет. Получается, что, когда производить замеры заземления – решать вам. Если вы живете в частном доме, то вся ответственность лежит на вас, но не рекомендуется пренебрегать проверкой и замерами сопротивления, так как от этого напрямую зависит ваша безопасность, при пользовании электрооборудованием. При проведении работ необходимо понимать, что в сухую летнюю погоду можно добиться наиболее реальных результатов измерений, так как грунт сухой и приборы дадут наиболее правдивые значения сопротивлений заземления. Напротив, если замеры будут проведены осенью либо весной в сырую, влажную погоду, то результаты будут несколько искажены, так как мокрый грунт сильно влияет на растекаемость тока, что, в свою очередь, дает большую проводимость. Если вы хотите, чтобы измерения защитного и рабочего заземления проводили специалисты, то необходимо обратиться в специальную электротехническую лабораторию. По окончании работы вам будет выдан протокол измерения сопротивления заземления. В нем отображается место проведения работ, назначение заземлителя, сезонный поправочный коэффициент, а также на каком расстоянии друг от друга находятся электроды. Образец протокола предоставлен ниже: Напоследок рекомендуем просмотреть видео, в котором показывается как измеряют сопротивление заземления опоры ВЛ: Вот мы и рассмотрели существующие методики измерения сопротивления заземления в домашних условиях. Если вы не обладаете соответствующими навыками рекомендуем воспользоваться услугами специалистов, которые все сделают быстро и качественно! Также рекомендуем прочитать: Источники: http://elquanta.ru/electrobezopasnost/kontur-zazemleniya-pueh.html, http://www.megaomm.ru/norma-soprotivleniya-kontura-zazemleniya.html, http://samelectrik.ru/kak-izmerit-soprotivlenie-kontura-zazemleniya.html electricremont.ru |