Eng Ru
Отправить письмо

GOS / 14 Переменный Электрический Ток. Формулы переменного тока


Переменный Ток

Переменный Ток

Рассмотрим процессы, происходящие в проводнике, включенном в цепь переменного тока.

Если индуктивность проводника настолько мала, что при включении его в цепь переменного тока индукционными полями можно пренебречь по сравнению с внешним электрическим полем, то движение электрических зарядов в проводнике определяется действием только внешнего электрического поля, напряженность которого пропорциональна напряжению на концах проводника.

При изменении напряжения по гармоническому закону U = Um cos wt напряженность электрического поля в проводнике изменяется по такому же закону.

Под действием переменного электрического поля в проводнике возникает переменный электрический ток, частота и фаза колебаний которого совпадает с частотой и фазой колебаний напряжения:

peremenniiy_tok_renamed_8636.jpg
где i - мгновенное значение силы тока, Im- амплитудное значение силы тока.

Колебания силы тока в цепи являются вынужденными электрическими колебаниями, возникающими под действием приложенного переменного напряжения.

Амплитуда силы тока равна: 

peremenniiy_tok_renamed_8446.jpg

При совпадении фаз колебаний силы тока и напряжения мгновенная мощность переменного тока равна:

peremenniiy_tok_renamed_15045.jpg

Среднее значение квадрата косинуса за период равно 0,5. В результате средняя мощность за период

peremenniiy_tok_renamed_10894.jpg

Для того чтобы формула для расчета мощности переменного тока совпадала по форме с аналогичной формулой для постоянного тока (Р = PR), вводится понятие действующих значений силы тока и напряжения. Из равенства мощностей получим

peremenniiy_tok_renamed_21347.jpg

Действующим значением силы тока называют величину, в корень из 2 раз меньшую ее амплитудного значения:

peremenniiy_tok_renamed_27810.jpg

Действующее значение силы тока равно силе такого постоянного тока, при котором средняя мощность, выделяющаяся в проводнике в цепи переменного тока, равна мощности, выделяющейся в том же проводнике в цепи постоянного тока.

Действующее значение переменного напряжения в корень из 2 раз меньше его амплитудного значения:

peremenniiy_tok_renamed_28939.jpg

Средняя мощность переменного тока при совпадении фаз колебаний силы тока и напряжения равна произведению действующих значений силы тока и напряжения:

peremenniiy_tok_renamed_20414.jpg

Сопротивление элемента электрической цепи, в которой происходит превращение электрической энергии во внутреннюю энергию, называют активным сопротивлением. Активное сопротивление участка цепи можно определить как частное от деления средней мощности на квадрат действующего значения силы тока:

peremenniiy_tok.jpg

sfiz.ru

14 Переменный Электрический Ток

Вынужденные Электромагнитные Колебания

Вынужденными электромагнитными колебаниями называют периодические изменения силы тока и напряжения в электрической цепи, происходящие под действием переменной ЭДС от внешнего источника. Внешним источником ЭДС в электрических цепях являются генераторы переменного тока, работающие на электростанциях.

Принцип действия генератора переменного тока легко показать при рассмотрении вращающейся рамки провода в магнитном поле.

В однородное магнитное поле с индукцией В помещаем прямоугольную рамку, образованную проводниками (abсd).

Пусть плоскость рамки перпендикулярна индукции магнитного поля В и ее площадь равна S.

Магнитный поток в момент времени t0 = 0 будет равен Ф = В*8.

При равномерном вращении рамки вокруг оси OO1 с угловой скоростью w магнитный поток, пронизывающий рамку, будет изменяться с течением времени по закону:

Изменение магнитного потока возбуждает в рамке ЭДС индукцию, равную

где Е0= ВSw - амплитуда ЭДС.

Если с помощью контактных колец и скользящих по ним щеток соединить концы рамки с электрической цепью, то под действием ЭДС индукции, изменяющейся со временем по гармоническому закону, в электрической цепи возникнут вынужденные гармонические колебания силы тока - переменный ток.

На практике синусоидальная ЭДС возбуждается не путем вращения рамки в магнитном поле, а путем вращения магнита или электромагнита (ротора) внутри статора - неподвижных обмоток, навитых на сердечники из магнитомягкого материала. В этих обмотках находится переменная ЭДС, что позволяет избежать снятия напряжения с помощью контактных колец. 

Переменный Ток

Рассмотрим процессы, происходящие в проводнике, включенном в цепь переменного тока.

Если индуктивность проводника настолько мала, что при включении его в цепь переменного тока индукционными полями можно пренебречь по сравнению с внешним электрическим полем, то движение электрических зарядов в проводнике определяется действием только внешнего электрического поля, напряженность которого пропорциональна напряжению на концах проводника.

При изменении напряжения по гармоническому закону U = Um cos wt напряженность электрического поля в проводнике изменяется по такому же закону.

Под действием переменного электрического поля в проводнике возникает переменный электрический ток, частота и фаза колебаний которого совпадает с частотой и фазой колебаний напряжения:

где i - мгновенное значение силы тока, Im- амплитудное значение силы тока.

Колебания силы тока в цепи являются вынужденными электрическими колебаниями, возникающими под действием приложенного переменного напряжения.

Амплитуда силы тока равна: 

При совпадении фаз колебаний силы тока и напряжения мгновенная мощность переменного тока равна:

Среднее значение квадрата косинуса за период равно 0,5. В результате средняя мощность за период

Для того чтобы формула для расчета мощности переменного тока совпадала по форме с аналогичной формулой для постоянного тока (Р = PR), вводится понятие действующих значений силы тока и напряжения. Из равенства мощностей получим

Действующим значением силы тока называют величину, в корень из 2 раз меньшую ее амплитудного значения:

Действующее значение силы тока равно силе такого постоянного тока, при котором средняя мощность, выделяющаяся в проводнике в цепи переменного тока, равна мощности, выделяющейся в том же проводнике в цепи постоянного тока.

Действующее значение переменного напряжения в корень из 2 раз меньше его амплитудного значения:

Средняя мощность переменного тока при совпадении фаз колебаний силы тока и напряжения равна произведению действующих значений силы тока и напряжения:

Сопротивление элемента электрической цепи, в которой происходит превращение электрической энергии во внутреннюю энергию, называют активным сопротивлением. Активное сопротивление участка цепи можно определить как частное от деления средней мощности на квадрат действующего значения силы тока:

Активным сопротивлением R называется физическая величина, равная отношению мощности к квадрату силы тока , что получается из выражения для мощности . При небольших частотах практически не зависит от частоты и совпадает с электрическим сопротивлением проводника.

Пусть в цепь переменного тока включена катушка. Тогда при изменении силы тока по закону в катушке возникает ЭДС самоиндукции . Т.к. электрическое сопротивление катушки равно нулю, то ЭДС равна минус напряжению на концах катушки, созданному внешним генератором (??? Каким еще генератором???) . Следовательно, изменение силы тока вызывает изменение напряжения, но со сдвигом по фазе . Произведение является амплитудой колебаний напряжение, т.е. . Отношение амплитуды колебаний напряжения на катушке к амплитуде колебаний тока называется индуктивным сопротивлением .

Пусть в цепи находится конденсатор. При его включение он четверть периода заряжается, потом столько же разряжается, потом то же самое, но со сменой полярности. При изменении напряжения на конденсаторе по гармоническому закону заряд на его обкладках равен . Ток в цепи возникает при изменении заряда: , аналогично случаю с катушкой амплитуда колебаний силы тока равна . Величина, равная отношению амплитуды к силе тока, называется емкостным сопротивлением .

АКТИВНОЕ СОПРОТИВЛЕНИЕ.  ДЕЙСТВУЮЩИЕ ЗНАЧЕНИЯ СИЛЫ ТОКА И НАПРЯЖЕНИЯ Перейдем к более детальному рассмотрению процессов, которые происходят в цепи, подключенной к источнику переменного напряжения.

Сила тока в цени с резистором. Пусть цепь состоит из соединительных проводов и нагрузки с малой индуктивностью и большим сопротивлением R (рис. 4.10). Эту величину, которую мы до сих пор называли электрическим сопротивлением или просто сопротивлением, теперь будем называть активным сопротивлением.   Сопротивление R называется активным, потому что при наличии нагрузки, обладающей этим сопротивлением, цепь поглощает энергию, поступающую от  генератора. Эта энергия превращается во внутреннюю энергию проводников — они  нагреваются.   Будем  считать, что напряжение на зажимах цепи меняется по гармоническому закону: u = Um cos t. Как и в случае постоянного тока, мгновенное значение силы тока прямо пропорционально мгновенному значению напряжения. Поэтому для нахождения мгновенного значения силы тока можно применить закон Ома:   В проводнике с активным сопротивлением колебания силы тока совпадают по фазе с колебаниями напряже ния (рис. 4.11), а амплитуда силы тока определяется равенством

Мощность в цепи с резистором. В цепи переменного тока промышленной частоты (v = 50 Гц) сила тока и напряжение изменяются сравнительно быстро. Поэтому при прохождении тока по проводнику, например по нити электрической лампочки, количество выделенной энергии также будет быстро меняться со временем. Но этих быстрых изменений мы не замечаем.

Как правило, нам нужно бывает знать среднюю мощ ностъ тока на участке цепи за большой промежуток времени, включающий много периодов. Для этого достаточно найчи среднюю мощность за один период. Под средней за период, мощностью переменного тока понимают отношение суммарной энергии, поступающей в цепь за период, к периоду.

Мощность в цепи постоянного тока на участке с сопротивлением R определяется формулой P = I2R.       (4.18) На протяжении очень малого интервала времени переменный ток можно считать практически постоянным.  Поэтому мгновенная моoность в цепи переменного тока на участке, имеющем активное сопротивление R, определяется формулой P = i2R.                                              (4.19) Найдем среднее значение мощности за период. Для этого сначала преобразуем формулу (4.19), подставляя в нее выражение (4.16) для силы тока и используя известное из математики соотношение  График зависимости мгновенной мощности от времени изображен на рисунке 4.12, а. Согласно графику (рис. 4.12, б.), на протяжении одной восьмой периода, когда , мощность в любой момент времени больше, чем  .  Зато на протяжении следующей восьмой части периода, когда cos 2t < 0, мощность в любой момент времени меньше    чем  . Среднее за период значение cos 2t равно нулю, а значит равно нулю второе слагаемое в уравнении (4.20). Средняя мощность  равна, таким образом, первому члену в формуле (4.20): Действующие значения силы тока и напряжения. Из формулы (4.21) видно, что величина   есть среднее за период значение квадрата силы тока:     Величина, равная квадратному корню из среднего значения квадрата силы тока, называется действующим значением силы неременного тока. Действующее зртачепие силы неременного тока обозначается через I: Действующее значение силы переменного тока равно силе такого постоянного тока, при котором в проводнике выделяется то же количество теплоты, что и при переменном токе за то же время.

Действующее значение переменного напряжения определяется аналогично действующему значению силы тока: Заменяя в формуле (4.17) амплитудные значения силы тока и напряжения на их действующие значения, получаем Это закон Ома для участка цепи переменного тока с резистором.

Как и при механических колебаниях, в случае электрических колебаний обычно нас не интересуют значения силы тока, напряжения и других величин в каждый момент времени. Важны общие характеристики колебаний, такие, как амплитуда, период, частота, действующие значения силы тока и напряжения, средняя мощность. Именно действующие значения силы тока и напряжения регистрируют амперметры ивольтметры переменного тока.

Кроме того, действующие значения удобнее мгновенных значений еще и потому, что именно они непосредственно определяют среднее значение мощности Р переменного тока: P = I2R = UI. Колебания силы тока в цепи с резистором совпадают по фазе с колебаниями напряжения, а мощность определяется действующими значениями силы тока и напряжения.

Переменный ток оценивается его действием, эквивалентной действия постоянного тока. Активным сопротивлением называют такое сопротивление проводника, в котором электрическая энергия необратимо превращается во внутреннюю. Пусть напряжение в цепи переменного тока изменяется по гармоничным законом. Под действием переменного электрического поля в проводнике возникает переменный ток, частота и фаза колебаний которого совпадает с частотой и фазой колебания напряжения. Амплитудное значение силы тока равна отношению амплитудного значения напряжения к сопротивлению проводника. Мощность тока равна произведению силы тока и напряжения. Тогда активное сопротивление можно определить как отношение мощности переменного тока на участке цепи к квадрату действующей силы тока. Действующим значением силы тока называется сила постоянного тока, благодаря которой в проводнике выделяется за одинаковое время такое же количество теплоты, что и переменным током. Найти действующее значение силы тока можно как отношение амплитудного значения силы тока до квадратного корня из двух. Действующее значение напряжения также в корень из двух меньше его амплитудного значения.

При изучении вынужденных механических колебаний мы ознакомились с явлением резонанса. Резонанс наблюдается в том случае, когда собственная частота колебаний системы совпадает с частотой изменения внешней силы. Если трение мало, то амплитуда установившихся вынужденных колебаний при резонансе резко увеличивается. Совпадение вида уравнений для описания механических и электромагнитных колебаний (позволяет сделать заключение о возможности резонанса также и в электрической цепи, если эта цепь представляет собой колебательный контур, обладающий определенной собственной частотой колебаний.

При механических колебаниях резонанс выражен отчетливо при малых значениях коэфициента трения . В электрической цепи роль коэффициента трения выполняет ее активное сопротивление R. Ведь именно наличие этого сопротивления в цепи приводит к превращению энергии тока но внутреннюю энергию проводника (проводник нагревается). Поэтому резонанс в электрическом колебательном кон-lype должен быть выражен отчетливо при малом активном сопротивлении R.

Мы с вами уже знаем, что если активное сопротивление мало, то собственная циклическая частота колебаний в контуре определяется формулой Сила тока при вынужденных колебаниях должна достигать максимальных значений, когда частота переменного напряжения, приложенного к контуру, равна собственной частоте колебательного контура: Резонансом в электрическом колебательном контуре называется явление резкого возрастания амплитуды вынужденных колебаний силы тока при совпадении частоты внегннего переменного напряжения с собственной частотой колебательного контура.

Амплитуда силы тока при резонансе. Как и в случае механического резонанса, при резонансе в колебательном контуре создаются оптимальные условия для поступления энергии от внешнего источника в контур. Мощность в контуре максимальна в том случае, когда сила тока совпадает по фазе с напряжением. Здесь наблюдается полная аналогия с механическими колебаниями: при резонансе в механической колебательной системе внешняя сила (аналог напряжения в цепи) совпадает по фазе со скоростью (аналог силы тока).

Не сразу после включения внешнего переменного напряжения в цепи устанавливается резонансное значение силы тока. Амплитуда колебаний силы тока нарастает постепенно — до тех пор, пока энергия, выделяющаяся за период на резисторе, не сравняется с энергией, поступающей в контур за это же время:  Отсюда амплитуда установившихся колебаний силы тока при резонансе определяется уравнением    При R  0 резонансное значение силы тока неограниченно возрастает: (Im)рез  . Наоборот, с увеличением R максимальное значение силы тока уменьшается, и при больших R говорить о резонансе уже не имеет смысла. Зависимость амплитуды силы тока от частоты при различных сопротивлениях (R1 < R2 < R3) показана на рисунке 4.19. Одновременно с увеличением силы тока при резонансе резко возрастают напряжения на конденсаторе и катушке индуктивности. Эти напряжения при ма.пом активном сопротивлении во много раз превышают внешнее напряжение.

Использование резонанса в радиосвязи. Явление электрического резонанса широко используется при осуществлении радиосвязи. Радиоволны от различных передающих станций возбуждают в антенне радиоприемника переменные токи различных частот, так как каждая передающая радиостанция работает на своей частоте. С антенной индуктивно связан колебательный контур (рис. 4.20). Вследствие электромагнитной индукции в контурной катушке возникают переменные ЭДС соответствующих частот и вынужденные колебания силы тока тех же частот. Но только при резонансе колебания силы тока в контуре и напряжения в нем будут значительными, т. е. из колебаний различных частот, возбуждаемых в антенне, контур выделяет только те, частота которых равна его собственной частоте. Настройка контура на нужную частоту  обычно осуществляется путем изменения емкости конденсатора. В этом обычно состоит настройка радиоприемника на определенную радиостанцию. Необходимость учета возможности резонанса в электрической цепи. В некоторых случаях резонанс в электрической цепи может принести большой вред. Если цепь не рассчитана на работу в условиях резонанса, то его возникновеие может привести к аварии.

Чрезмерно большие токи могут перегреть провода. Большие напряжения приводят к пробою изоляции.

Такого рода аварии нередко случались еще сравнительно недавно, когда плохо представляли себе законы электрических колебаний и не умели правильно рассчитывать электрические цепи.

При вынужденных электромагнитных колебаниях возможен резонанс — резкое возрастание амплитуды колебаний силы тока и напряжения при совпадении частоты внешнего переменного напряжения с собственной частотой колебаний. На явлении резонанса основана вся радиосвязь.

Изучение цепей переменного тока с активным, емкостным и индуктивным сопротивлениями происходит в следующей логической последовательности: сначала дается понятие о том или ином виде сопротивлений в цепи переменного тока (сравнение с его поведением в цепи постоянного тока), затем фазовые соотношения, формула соответствующего сопротивления, преобразования энергии в цепи, содержащей только активное, емкостное или индуктивное сопротивление. Последовательность изучения сопротивлений в цепи переменного тока может быть и несколько иной.  Понятие действующего значения силы тока и напряжения можно ввести так: вначале выводят выражение для расчета мгновенных значений мощности на активном сопротивлении, отсюда находят среднее значение мощности за период и выясняют, что  есть среднее значение квадрата силы тока за период. Вводят определение: корень квадратный из этой величины называют действующим значением переменного тока. Название связано с тем, что при прохождении такого тока по участку с активным сопротивлением выделяется мощность Такая же мощность выделяется в цепи постоянного тока, величина которого равна действующему значению переменного тока. Итак, действующим значением переменного тока является такое значение постоянного тока, которое в резисторе R выделяет такое же количество теплоты, что и переменный ток. Очень важно отметить, что шкалы электроизмерительных приборов, для измерения переменных силы тока и напряжения градуируют именно в действующих значениях этих величин. Рассмотрение цепи переменного тока со смешанным сопротивлением начинают с эксперимента — измеряют напряжение на каждом из последовательно включенных элементов цепи (лампе, катушке и батарее конденсаторов), подключенных к источнику переменного напряжения. Обращают внимание на следующие опытные факты: 1. Общее напряжение не равно сумме напряжений на отдельных участках, как это имело место для цепей постоянного тока. 2. Напряжение на участке, включающем в себя катушку и конденсатор, равно не сумме, а разности напряжений на каждом из них в отдельности. Объяснить этот результат можно предложить самим учащимся; им известно, что на индуктивности напряжение опережает ток на π/2, а на электроемкости отстает от него на ту же величину. Так как мгновенное значение силы тока в цепи всюду одно и то же, то ясно, что колебания напряжения на индуктивности и электроемкости происходят со сдвигом фаз, равным π, т. е. их фазы противоположны. 3. Полное сопротивление цепи меньше суммы всех включенных в нее сопротивлений (активного, индуктивного и емкостного). Учащихся нужно убедить, что чем меньше сдвиг фаз между током и напряжением, тем большую часть мощности, подводимой к цепи, используют полезно, необратимо превращая в другие виды энергии. Далее рассматривают устройство и работу трансформатора. На примере однофазного трансформатора показывают его действие (повышение и понижение напряжения) и устройство. Вначале рассматривают режим холостого хода, а затем нагруженного трансформатора. В качестве нагрузки целесообразно использовать реостат, так как им проще изменять нагрузку. Показывают, что при увеличении нагрузки возрастает сила тока как во вторичной, так и в первичной обмотке трансформатора. Учащимся предлагают самим с энергетических позиций объяснить возрастание силы тока в первичной цепи (увеличение потребления энергии на нагрузке естественно должно сопровождаться увеличением потребления энергии первичной обмоткой от генератора). Для изучения электромагнитных колебаний широко используется школьный прибор- звуковой генератор школьный ГЗШ. Он перекрывает диапазон генерируемых частот синусоидальных колебаний от 20 до 20000 Гц с диапазонами: «X1» (от 20 до 200 Гц), «X10» (от 200 до 2000 Гц), «X100» ( от 2000 до 20000 Гц), питается от сети переменного тока напряжением 220 В. На лицевую панель генератора выведены тумблёр включения генератора в сеть, сигнальная лампочка, переключатель поддиапазонов на три фиксированных положения, отмеченных «X1», «X10», «X100», диск с неравномерной шкалой деления (от 20 до 200) ручка переменного резистора, позволяющая менять амплитуду выходного сигнала, выходные зажимы, рассчитанные на подключение цепей с разным сопротивлением (5, 600, 5000 Ом). Если для опытов необходимы частоты 20 – 200 Гц, то переключатель устанавливают в положение «X1» если 200 – 2000 Гц – в положение «X10», а для частот 2000 – 20000 Гц используют положение «X100». Плавную регулировку частоты осуществляют поворотом диска.  Так же широко используются выпрямители ВУП-1 и ВУП-2 ВУП-2 предназначен для обеспечения питанием демонстрационных установок в опытах по электричеству. Технические данные: Прибор позволяет получить на выходных зажимах: выпрямленное напряжение 350В при максимальной силе тока 220мА; постоянное отфильтрованное напряжение 250В при максимальной нагрузке 50мА; регулируемое напряжение от 0 до 250В постоянного тока до 50мА; регулируемое напряжение от 0 до +100В и от 0 до-100В постоянного тока до 10мА; напряжение 6.3В переменного тока до 3А. Еще один источник питания без которого практически невозможно осуществлять многие опыты по электричеству РНШ. Регулятор напряжения школьный предназначен для плавного регулирования напряжения однофазного переменного тока с частотой 50 Гц, при проведении лабораторных и демонстрационных опытов в физических кабинетах школ. Прибор присоединяется к сети выводным шнуром. Прибор можно включить в сеть напряжением 127 и 220В. Рабочее напряжение снимается с зажимов, обозначенных «Выходное напряжение». В целях правильной эксплуатации регулятора напряжения в паспорте прибора приведена таблица допустимых значений электрической мощности нагрузки регулятора при разных напряжениях, подаваемых на нагрузку, и при сетевых напряжениях 127 и 220В. Установленный в регуляторе напряжения вольтметр имеет неравномерную шкалу. Достоверный отсчет можно вести только при 50В. В случае необходимости снимать с регулятора более низкие напряжения нужно параллельно выходным зажимам подключать дополнительный вольтметр с соответствующим пределом измерения. Регулятор напряжения может быть использован как для повышения, так и для понижения напряжений переменного тока, при разных демонстрационных и лабораторных опытах Для наглядного отображения электромагнитных колебаний применяют школьные осциллографы ОДШ-2 и ОЭШ-70.  Наиболее широко при­меняют осциллографы для исследования периодических процессов, а также для изучения вольтамперных характеристик диода и трио­да, петли гистерезиса и др. В простейшем случае осциллограф состоит из четырех блоков: блока электронно-лучевой трубки ЭЛТ, генератора развертки ГР, усилителя исследуемого сигнала УС и блока питания БП . Основным элементом первого блока является электронно-лучевая трубка, на экране которой формируется картина исследуемого сиг­нала (осциллограмма). Нить накала НН подогревает ка­тод К, с поверхности которого вылетают элект­роны. Электроны, пролетев через отверстия уп­равляющего электрода, фокусирующего ци­линдра ФЦ и анода А, а также между пласти­нами XX и УУ, попадают на экран и вызывают его свечение. Изменением разности потенциалов между катодом и управляющим электродом мож­но менять число электронов в пучке, а это по­зволяет регулировать яркость изображения на экране. Чем больше по модулю отрицательный потенциал на управляющем электроде относи­тельно катода, тем меньше электронов пройдет через управляющий электрод и достигнет анода. Осциллограф снабжен ручкой «яркость» для уп­равления потоком электронов в пучке. Электрическое поле между фокусирующим цилиндром и анодом способно фокусировать рас­ходящийся электронный пучок. Обычно на передней стенке смонтированы выключатель сети, сигнальная лампочка, за­жимы «Вход У», «Вход X» и делитель входного сигнала. На боко­вую панель выведены ручки управления электронным пучком, «Синхронизация», «Внутр. — от сети — внешн.», «Уси­ление», ручки развертки, «Диапазоны 0, 30, 150, 500 Гц, 2, 8, 16 кГц», «Частота плавно», а также ручки усиления сигнала «Уси­ление У», «Усиление X». Осциллограф ОДШ-2 отличается от ОЭШ-70 конструктивно и внешним оформлением. На переднюю панель выведен не только экран электронно-лучевой трубки, но и основные ручки уп­равления. Верхний ряд ручек предназначен для управления элек­тронным пучком: «Яркость», «Фокус», «Вверх-вниз», «Влево-вправо». Во втором ряду сверху смонтированы ручки управления уси­лителем «Усиление У» и делитель напряжения 1:1, 1:10, 1:30, 1:1OO, 1:1000, а также выключатель сети с сигнальной лампоч­кой. В третьем ряду сверху расположены ручки и кнопки генера­тора развертки: «Частота плавно», «Вкл. 1, 2, 3, 4», «Усиление X». Кнопочный переключатель позволяет менять пилообразное напря­жение частотой от 20 Гц до 20 кГц. Генератор развертки рабо­тает только при нажатой кнопке «Вкл». В нижнем ряду располо­жены зажимы «Вход У», «Вход X», «Внешн. синхр», кнопки син­хронизации «Внешн.», «Внутр.» и ручка синхронизации. На боковую панель осциллографа ОДШ-2 выведены ручки уп­равления двухканальным коммутатором с двумя входами. Комму­татор позволяет наблюдать на экране осциллографа одновремен­но сигналы от двух источников переменного тока. Если частоты источников одинаковы, то по полученным осциллограммам мож­но судить о сдвиге фаз поданных сигналов. Например, на один вход можно подать сигнал, пропорциональный напряжению на конденсаторе, а на другой — пропорциональный силе тока, текущего через конденсатор. Тогда на экране осциллографа можно наблю­дать две синусоиды, сдвинутые по фазе на 90°. Применяя комму­татор, можно сравнивать частоту исследуемого сигнала со стан­дартной частотой, если эти сигналы отличаются по частоте. На задней стенке осциллографов ОДШ-2 и ОЭШ-70 смонтиро­ваны гнезда, позволяющие подавать исследуемый сигнал непосред­ственно на пластины электронно-лучевой трубки. Возможность подавать исследуемый сигнал непосредственно на пластины позво­ляет применить осциллограф и для цепей постоянного тока. По­давая сигнал постоянного напряжения на пластины XX (или УУ) при отключенной развертке, можно наблюдать смещение светя­щейся точки по горизонтали (или вертикали), причем отклонение этой точки пропорционально приложенному напряжению. Следо­вательно, осциллограф можно применить как вольтметр с боль­шим внутренним сопротивлением. Для усиления электромагнитных колебаний применяют усилители низкой частоты. Усилитель низкой частоты – электронный прибор. Предназначенный для усиления электрических колебаний звуковой частоты от 20 Гц до 20 кГц. Обычно усилитель состоит из нескольких блоков: предварительного усилителя напряжения, усилителя мощности, согласующего выходного трансформатора и блока питания. Для школ выпускаются усилители разной конструкции и отличающиеся по внешнему виду. Усилитель УНЧ-3 на лицевой панели имеет ручку регулятора громкости и сигнальную лампочку. Ручкой регулятора громкости производят также включение и выключение сети. В крайнем левом положении ручки при повороте против часовой стрелки прибор отключен. Включение осуществляют поворотом ручки по часовой стрелке после щелчка. Так как усилитель собран на электронных лампах, то он начинает работать после их прогрева.  На боковой стенке смонтированы три входных гнезда: для подключения М – микрофона, АД – адаптера, Л – линии. Нижние гнёзда соединены с корпусом прибора. На задней стенке имеются две пары гнёзд: Гр – для подключения громкоговорителя (низкоомный выход) и Л – высокоомный выход. Здесь же имеются вывод сетевого шнура с вилкой и октальная панель, в которую вставлена специальная вилка с предохранителем (на 0,5 А) для сети с напряжением 220 В. Вилку можно устанавливать в двух положениях: «220 В» и «127 В». Усилитель УНЧ-5 собран на транзисторах. На лицевой панели усилителя смонтирован выключатель сети с индикаторной лампочкой, гнезда выхода, гнезда входа для микрофона и звукоснимателя, разъем для подключения микрофона, ручки регулировки тембра по низкой и высокой частоте, ручка регулировки уровня сигнала, индикатор перегрузки. На задней стенке имеются вывод сетевого шнура с вилкой и предохранитель (на 0,5 А). На вход усилителя могут подаваться сигналы не только с микрофона и звукоснимателя, но и от других датчиков электрических колебаний напряжением от нескольких милливольт до вольт (сигналы с элементов цепи переменного тока, звукового генератора и т.д.). К выходу усилителя можно подключить не только громкоговоритель, но и другие приборы: осциллограф, измерительные приборы переменного тока, головные телефоны и пр. Потребляемая усилителем мощность не более 40 Вт, выходная – около 5 Вт. Запрещается при эксплуатации усилителя менять предохранитель, разбирать и ремонтировать прибор, включенный в сеть. Усилитель на вертикальной панели входит в комплект демонстрационных приборов по радиотехнике. Слева смонтированы универсальные зажимы входа усилителя. Первая лампа работает в режиме усиления напряжения, вторая – как усилитель мощности. В анодную цепь второй лампы включен согласующий трансформатор, вторичная обмотка которого соединена с зажимами низкого и высокого выходного напряжения. Три нижних зажима служат для подключения питания от ВУП –2, на два нижних зажима подаётся напряжение переменного тока 6,3 В для питания накала ламп, а на средний и третий снизу – напряжение постоянного тока 250 В для анодной цепи ламп, причём на третий снизу зажим подаётся положительный потенциал. Подключение блока питания и сборку установок с усилителем на панели запрещается выполнять при включённом в сеть выпрямителе ВУП-2. В демонстрационных установках предпочтение следует отдавать усилителю УНЧ-5.

studfiles.net

Переменный электрический ток: формулы и примеры

 

Электромагнитные колебания, как и механические, бывают двух типов: свободные и вынужденные.

Свободные электромагнитные колебания, всегда колебания затухающие. Поэтому на практике они почти не используются. В то время, как вынужденные колебания используются везде и повсеместно. Ежедневно мы с вами можем наблюдать эти колебания.

Переменный электрический ток

Все наши квартиры освещены с помощью переменного тока. Переменный ток есть не что иное, как вынужденные электромагнитные колебания. Сила тока и напряжение будут меняться с течением времени согласно гармоническому закону. Колебания, например, напряжения можно обнаружить, если подать напряжение из розетки, на осциллограф.

На экране осциллографа появится синусоида. Можно вычислить частоту переменного тока. Она будет равняться частоте электромагнитных колебаний. Стандартная частота для промышленного переменного тока принята равной 50 Гц. То есть за 1 секунду направление тока в розетке меняется 50 раз. В промышленных сетях США используется частота 60 Гц.

Изменение напряжения на концах цепи будет вызывать за собой изменение силы тока в цепи колебательного контура. Следует всё же понимать, что изменение электрического поля во всей цепи не происходит мгновенно.

Но так как это время, значительно меньше, чем период колебания напряжения на концах цепи, то обычно считают, что электрическое поле в цепи сразу же меняется как меняется напряжение на концах цепи.

Переменное напряжение в розетке создается генераторами на электростанциях. Простейшим генератором можно рассматривать проволочную рамку, которая вращается в однородном магнитном поле. 

рисунок

Магнитный поток, пронизывающий контур, будет постоянно меняться и будет пропорционален косинусу угла между вектором магнитной индукции и нормалью к рамке. Если рамка вращается равномерно, то угол будет пропорционален времени.

Следовательно, магнитный поток будет изменяться по гармоническому закону:

Ф = B*S*cos(ω*t)

Скорость изменения магнитного потока, взятая с обратным знаком, согласно закону ЭМИ, будет равняться ЭДС индукции.

Ei = -Ф’ = Em*sin(ω*t).

Если к рамке подключить колебательный контур, то угловая скорость вращения рамки определит частот колебаний напряжения на различных участках цепи и силы тока. В дальнейшем мы будем рассматривать только вынужденные электромагнитные колебания.

Они описываются следующими формулами:

u = Um*sin(ω*t),

u = Um*cos(ω*t)

Здесь Um – амплитуда колебаний наряжения. Напряжение и сила тока меняются с одинаковой частой ω. Но колебания напряжения не всегда будут совпадать с колебаниями силы тока, поэтому лучше использовать более общую формулу:

I = Im*sin(ω*t +φ), где Im - амплитуда колебаний силы тока, а φ – сдвиг фаз между колебаниями силы тока и напряжения.

Нужна помощь в учебе?

Предыдущая тема: Процессы в колебательном контуре: уравнения и примеры Следующая тема:&nbsp&nbsp&nbspАктивное сопротивление: действующие значения силы тока и напряжения

Все неприличные комментарии будут удаляться.

www.nado5.ru

Часть 3. Переменный ток (краткая теория)

Получение, передача и распределение электрической энергии осу­ществляются в основном с помощью устройств и сооружений перемен­ного тока. Для этого применяют генераторы, трансформаторы, линии передачи и распределительные сети переменного тока. Широко исполь­зуют приемники электрической энергии, работающие на переменном токе.

Переменным током называют любой изменяю­щийся с течением времени электрический ток.

Переменным синусоидальным током называют изменяю­щийся по закону синуса (косинуса) с течением времени электрический ток.

В электротехнике чаще всего приходится иметь дело с переменным током, величина которого изменяется по периодическому синусои­дальному закону. В некоторых случаях ток изменяется по периодическому несинусоидальному закону

В линейных электрических цепях переменный синусоидальныйток возникает под действием ЭДС такой же формы. Дляизучения электрических устройств и цепейпеременного тока необходимо прежде рассмотреть способы получения синусоидальной ЭДС и основные понятия, относящиеся к величинам, которые изменяются по синусоидальному закону.

3.1. Получение синусоидальной эдс

Переменным током (ЭДС) в электрических цепях называется такой ток (ЭДС), который изменяет свое значение и направление во времени.

В электротехнике в основном приходится иметь дело с током, величина которого изменяется по синусоидальному закону. Для получения ЭДС синусоидальной формы генератор переменного тока промышленного типа имеет определенные конструктивные особенности.

Рис. 3.1

Синусоидально изменяющуюся величину ЭДС со временем можно полу­чить, вращая с постоянной скоростью в однородном магнитном поле провод­ник в виде прямоугольной рамки. При движении проводника в магнитном поле в нем возбуждается ЭДС индукции

e=Bυlsina (3.1)

При вращении витка в магнитном поле с постоянной скоростью изменяет­ся угол между направлением индукции магнитного поля и нормалью к плоско­сти рамки α = ωt, где ω - угловая скорость. Наибольшее значение ЭДС дости­гается при угле α = ωt = 90°:

ЕМ =Bυl. (3.2)

Синусоидальное изменение ЭДС достигается путем равномерного изме­нения угла, под которым виток пересекает линии магнитной индукции. Таким образом,

е = ЕМ sinα = ЕМ sin ωt (3.3)

Аналогично запишутся формулы переменного напряжения и тока: и = UМ sin ωt, i = IМ sin ωt

3.2. Характеристики синусоидальных величин

Синусоидально изменяющиеся ЭДС, напряжение и ток характеризуются следующими величинами: мгновенным зна­чением, амплитудой, периодом, частотой, фазой (сдвигом фаз) (рис. 3.2). Мгновенное значение ЭДС, на­пряжения и силы тока – значение этих величин в любой момент времени. Мгновенные значения обозначаются строчными буквами е, и, i.

Амплитуда - это наибольшие значения, которые принимает ЭДС, напряжение и сила тока. Амплитудные значения обозначаются прописными буквами Еm , Um , Im .

Период Т - промежуток време­ни, в течение которого ЭДС, напря­жение и ток совершают полное коле­бание и принимают прежнее по вели­чине и знаку значение.

Рис.3.2 Графики изменения переменного тока и ЭДС.

Частота f (число периодов в секунду) - величина, обратная периоду:f = (3.4)

Единица частоты - герц (Гц). Стандартная промышленная частота 50 Гц. В США и Японии-60 Гц. В некоторых областях промышленности находят применение другие частоты.

Угловая частота ω есть величина, равная числу периодов за 2п секунд. Так как в течение периода α = 2π, то ω = , т. е. ω = (3.5)

Размерность угловой частоты - град/с или рад/с.ω = или ω = 2π f

Фаза - угловое значение аргумента синусоидальной ЭДС, напряжения, тока, определяющее мгновенное значение этих величин. При α = ωt = 0 мгно­венные значения е, и и i будут равны нулю. Если фаза имеет выражение (ωt + ψ), то при t = 0 фаза не равна нулю и мгновенное значение е будет равнo е = Еm sin(ωt + ψ),а фаза ψ называется начальной фазой.

Таким образом, в общем виде уравнение ЭДС может быть записано так:

е = Еm sin(ωt + ψ) (3.6)

где α = (ωt + ψ) - угол, называемый фазой. Аналогично запишутся выражения для переменного напряжения и тока.

Две синусоидальные величины, имеющие разные начальные фазы, назы­ваются сдвинутыми по фазе (рис. 3.3). Угол сдвига фаз φ = ψu + ψi

Та величина, в которой начало периода, или положительная амплитуда достигается раньше, чем у другой, считается опережающей по фазе, а та, у которой те же значения достигаются позже - отстающей по фазе.

Изображенные на рис. 3.2 синусоидальные величины называют совпада­ющими по фазе. Если угол сдвига составляет π, то говорят, что они находятся в противофазе. Сдвиг по фазе можно установить и на графике. Для этого дос­таточно выбрать две ближайшие точки, соответствующие положительным ам­плитудам величин, и установить разность фазовых углов.

Действующая и средняя величины переменного тока. Переменный ток, как и постоянный, оказывает тепловое, механическое, магнитное и хими­ческое действие. В формулы расчета теплового, механического, магнитного и химического действия переменного тока подставляют действующее значение переменного тока. Действующим значением переменного тока называется по­стоянный ток, который за время одного периода оказывает такое тепловое (ме­ханическое и др.) действие, как и данный переменный ток. Действующее зна­чение для данного переменного тока есть величина постоянная и равна ампли­тудному значению, деленному на , т. е.IД =

Для доказательства этого рассмотрим тепловое действие тока. Тепловое действие постоянного тока определяется по закону Джоуля -Ленца: Q = I2 RT (3.7)

где Т- время, равное одному периоду.Такое же количество теплоты в данном проводнике за это время выделит­ся и при переменном токе i = 1тsinωt. Тогда формула (3.7) для переменного тока примет вид:Q = IД2RT, (3.8)

где IД - действующее значение переменного тока. Из формулы (3.8) можно записать

I Д2 R=Р (5.9)

где Р - средняя мощность переменного тока за период. Мгновенная мощность синусоидального тока равнаp = i2R =Iт2 sin2 ωt ·R =Iт2·R = Iт2·−Iт2 (3.10)

Как видно из формулы (3.10), мгновенная мощность переменного тока выражается двумя слагаемыми. Первое слагаемое является величиной посто­янной и от времени не зависит, а второе − изменяется по синусоидальному закону и в сумме за период равно нулю. Следовательно, средняя мощность переменного тока за период может быть выражена формулой

р = Iт2·(3.11)

Из равенств (3.9) и (3.11) можно записать:

I Д2 R = Iт2·, т. е. IД =илиIД = 0,707 · Iт, т. к. ≈1,41

Все определения и соотношения действующего значения переменного тока справедливы и для переменного напряжения, и для ЭДС.

Все амперметры и вольтметры при измерении переменного тока и напря­жения показывают их действующие значения, так как принцип работы их осно­ван на механическом или тепловом действии тока.Пусть при включении в сеть сопротивления R = 40 Ом амперметр показал ток 5,5 А. Действующее напряжение в сети U = R · I = 40 Ом • 5,5А = 220 В,

а амплитудное Um = 220В • 1,41 =310,2 В.

При изучении электрических машин, выпрямительных устройств пользу­ются средним значением ЭДС, силы тока и напряжения. Средним значением переменного тока, напряжения и ЭДС называется среднее арифметическое из всех мгновенных значений за полупериод.

Для синусоидального тока IСР== 0,637 ·Iт

Изображение синусоидальных величин вращающимся вектором.

Прирасчете электрических цепей переменного тока пользуются простым и нагляд­ным способом графического изображения синусоидальных величин при по­мощи вращающихся векторов.Пусть напряжение задано уравнением и = Um sin(ωt + ψ)

Проведем две перпендикулярные оси, затем из точки пересечения осей вектор длиной U в выбранном масштабе (рис/3.4). Направление вектора вы­бирается таким, чтобы с горизонтальной осью он составлял угол ψ, т. е. рав­ный начальной фазе. Проекция этого вектора на ось ординат определяет мгно­венные значения напряжения u(0) = Um sin ψt

Рис. 3.4. . Выражение переменного синусоидального напряжения через проекцию радиуса-вектора на ось у.

Вращаем вектор U против часовой стрелки с угловой скоростью ω. По­ложение радиуса-вектора в любой момент времени определяется углом (ωt + ψ). Для произвольного значения времени t мгновенное значение напряжения опре­деляется проекцией вектора U на вертикальную ось в этот момент времени. Например, для t = t1, u(t1) = Um sin(ωt1 + ψ), т. е. мы имеем уравнение такого вида, как и заданное. Это дает нам возможность изобразить напряжение вра­щающимся вектором, нанесенном на чертеж в начальном положении.Вращая вектор Um против часовой стрелки, построим в прямоугольной системе координат график изменения проекции его на вертикальную ось за один период. Соединив полученные точки, получим график синусоидальной функции, соответствующий заданному уравнению.Совокупность векторов, изображающих на одном чертеже несколько сину­соидальных величин одинаковой частоты, называется векторной диаграммой.

Достоинством векторных диаграмм является простота и наглядность. Сло­жение и вычитание синусоидальных величин осуществляется по правилам сло­жения и вычитания векторов.

studfiles.net

Закон Ома для переменного тока

Закон Ома для переменного тока — Если ток является синусоидальным с циклической частотой ω, а цепь содержит не только активные, но и реактивные компоненты (ёмкости, индуктивности), то закон Ома обобщается

\Large U=I\cdot Z

Полное сопротивление : \large Z=\sqrt{R^2+X^2}

Сила переменного тока определяется при заданном напряжении не только сопротивлением R, которым обладает данная цепь при постоянном токе, но и наличием в этой цепи конденсаторов или катушек индуктивности. Поэтому, величины R и Z различны, т. е. одна и та же цепь будет иметь различное сопротивление для постоянного и для переменного тока.

В Формуле мы использовали :

U — Напряжение (разность потенциалов)

I — Сила тока

Z — Полное сопротивление

X — Реактивное сопротивление

R — Активное сопротивление

xn--b1agsdjmeuf9e.xn--p1ai

Однофазный переменный ток. Формулы переменный ток.

Понятие переменного тока

Переменными называют токи и напряжения, изменяющиеся во времени, по величине и направлению. Их величина в любой момент времени называется мгновенным значением. Обозначаются мгновенные значения малыми буквами: i, u, e, p.

Токи, значения которых повторяются через равные промежутки времени, называются периодическими. Наименьший промежуток времени, через который наблюдаются их повторения, называется периодом и обозначается буквой Т. Величина, обратная периоду, называется частотой, т.е. f = 1/T и измеряется в герцах (Гц). Величина ω = 2πf называется угловой частотой переменного тока, она показывает изменение фазы тока в единицу времени и измеряется в радианах, деленных на секунду.

Формулы переменный ток

Максимальное значение переменного тока или напряжения называется амплитудой. Оно обозначается большими буквам с индексом »m» (например, Im). Существует также понятие, действующего значения переменного тока (I). Количественно оно равно:

Действующее значение переменного тока для синусоидального характера изменения соответствует:

Переменный ток можно математически записать в виде:

Здесь индекс выражает начальную фазу. Если синусоида начинается в точке пересечения осей координат, то φ = 0 (нет сдвига по фазе), тогда:

Начальное значение тока может быть слева или справа от оси ординат. Тогда начальная фаза будет опережающей или отстающей.

www.mtomd.info

Переменный ток | Физика. Закон, формула, лекция, шпаргалка, шпора, доклад, ГДЗ, решебник, конспект, кратко

Переменный ток — это в широком смысле электрический ток, изменяющийся во времени. Чаще всего это измене­ние происходит по синусоидальному закону I = I0 sin(ωt + φ). Именно такой ток генерируют промышленные источ­ники тока.

В разных сечениях линейного проводника сила тока одинакова, но во времени она меняется по периодическому закону. Каждое значение силы тока повторяется через про­межуток времени T = 2π/ω, который называется перио­дом, а величина ω — угловая частота. Стабильность час­тоты является важным качеством переменного тока. Аргумент у синуса — величина ωt + φ — называется фазой (полезно абстрагироваться от геометрического смысла си­нуса и не воспринимать аргумент у синуса как некоторый угол).

При постоянном токе электроны движутся в тонком про­воднике подобно воде в трубе, но при переменном токе ка­ждый из них совершает колебательное движение вдоль проводника как гармонический осциллятор. Амплитуда этих колебаний весьма мала, и в пределах отдельного про­водника все электроны колеблются в фазе, т. е. синхронно. Если к источнику с напряжением U присоединена цепь, включающая конденсатор, то (след­ствие закона Ома)

U = IR + (q / C) — ε.

Моделью генератора переменного тока служит проволочная рамка, вращающаяся между полосами постоянного магнита

Здесь первое слагаемое в правой час­ти — падение напряжения на сопро­тивлении, второе — на конденсаторе (q — заряд конденсатора), третье — ЭДС сторонних сил, действующих на рассматриваемом участке. Мощность, выделяемая в этой цепи, определяется равенством

N = UI. [1]

Это работа, которую совершает источник за единицу вре­мени.

Если U — переменное напряжение, U = U0sin ωt, а ε — ЭДС самоиндукции, ε = -L(ΔI / Δt), по цепи течет переменный ток: I = I0­sin(ωt + φ), причем

I0 = U0 / √(R2 + (Lω — 1 / ωC)2), [2]

tg φ = (1 / ωC — ωL) / R. [2]

При отсутствии конденсатора следует положить 1 / C = 0. Из формулы [1] с учетом формулы [2] найдем:

N = UI = U0sinωt × I0sin(ωt + φ) = U0I0(sin2ωt × cosφ + sinωt cosωt sinφ).

Это значение мощности в момент времени t. Среднее за пе­риод значение мощности равно:

<N> = U0I0<sin2ωt>cosφ = ½U0I0cosφ = UeffIeffcosφ. [3]

(Среднее за период значение квадрата синуса равно ½, а произведение синуса на косинус — нулю.) Величины Ueff = U0 / √2, Ieff = I0 / √2 называются эффективными зна­чениями напряжения и силы переменного тока. Именно эти величины имеются в виду, когда говорят о силе и напря­жении переменного тока. Материал с сайта http://worldofschool.ru

Пусть имеется ящик с не­известной начинкой. В точ­ке A в ящик входит про­водник с силой тока I, в точке B выходит провод­ник с такой же силой тока. Вольтметр показывает на­пряжение Ueff между точ­ками A и B. Формула [3] определяет мощность, вы­деляемую в ящике. Если эта мощность положи­тельна (cosφ > 0), то либо в ящике выделяется теп­лота, либо скрыт электро­мотор, совершающий со­ответствующую работу, либо то и другое вместе. Если cosφ < 0, то в ящике скрыт генератор тока. Ес­ли мощность близка к ну­лю, а ток не равен нулю, в ящике находится конден­сатор или катушка с большой индуктивностью. (Выделяемая мощность положительна, если в дан­ный момент ток течет в сторону меньшего потен­циала.)

При отсутствии нагрузки ток в первичной обмотке трансформатора опреде­ляется формулами [2], с учетом того, что 1 / C = 0, а потребляемая мощ­ность — формулой [3]. Разность фаз φ близка к — π / 2, и потребляемая мощность мала. При под­ключении нагрузки во вторичной обмотке появ­ляется ток, который инду­цирует дополнительный ток в первичной. Раз­ность фаз меняется, и потребляемая мощность увеличивается.

На этой странице материал по темам:
  • T период в физике формулы переменный ток

  • Переменный ток конспект

  • Краткая шпора по физике на тему переменный ток

  • Физика генетика переменного тока

  • Конспект переменный ток кратко

worldofschool.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта