Содержание
формула расчёта тока по мощности трехфазной сети.
Америка, Европа, Азия, Африка: где бы вы не находились, в 99% случаев увидите, что электроэнергия передается по 3-ем высоковольтным лебам (проводкам), проходящими через вышки. Почему именно по 3-ем проводам? Для чего физики ввели эти понятия, как сделать расчет мощности по току и напряжению для трехфазной сети?
Объяснить именно такое количество проводов на станции – легко: эта цифра создает магнитное поле. Это невидимая материя для электронных частиц. Когда они попадают внутрь поля – превращаются в ионы (заряженные частицы), в итоге образуются электрические разряды!
Но можно сделать вывод: почему не создать многофазную цепь, чтобы заряда выделялось еще больше? Чем больше добавлять дополнительных проводков – тем более невыгодна будет такая система!
Содержание
- Особенности трехфазной системы
- Как выяснить свою схему
- Схема “Треугольник”
- Схема “Звезда”
- Характеристики
- Трёхфазное или однофазное подключение
- Как вычислить?
- Формулы для расчётов цепи постоянного тока
Особенности трехфазной системы
В 2-х фазной системе передача шла по четырем проводам. В 20 веке инженеры-физики попробовали сместить обмотки на 120 градусов, в результате чего получилась 3-х фазная система. Была создана линия электропередач! В начале линии шел генератор. Он создавал напряжение. В конце стоял потребитель. Эта цепь является превалирующей до сих пор.
Мощность трехфазного тока – минимальное количество электронов, нужное для образования устойчивого вращающегося поля, чтобы можно было надежно и спокойно запускать двигатель.
При этом используется минимальное количество линий – всего 3.
Эти проводки можно объединить в 1 точку, равную 0. 3 вектора, сдвинутые на 120 градусов, в сумме дали ноль. Рассчитывать ток по мощности не надо – он нулевой. Если нагрузка симметрична – 0 не понадобится.
Мощность трехфазной сети намного выгоднее двухфазной. Она затрачивает меньше энергии, протягиваясь на дальние расстояния.
youtube.com/embed/ja2dU0wWBbA?feature=oembed» frameborder=»0″ allow=»accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture» allowfullscreen=»»/>
Как выяснить свою схему
Молодые специалисты (электрики) должны понимать, какая перед ними схема. Примеры для понимания будут рассмотрены на самом примитивном асинхронном двигателе.
Стоит сразу отметить, что у каждой цепи есть свое начало и конец. Старт всегда обозначается крупной точкой. Двигатель с тремя проводами используют во всех промышленных зданиях. Мощности для него требуется минимум.
У ассиметричного устройства имеются 3 разные катушки, используемые для создания вращающегося магнитного поля, когда I пропускается через катушку.
Все обмотки распределяют по кругу, смещая на 120 градусов. Далее подключается клеммная коробка в распределительную, где находится 6 клеммников. Каждый из них подключается к концам 3-х обмоток.
Далее заводится система в клеммную коробку и подключается к соответствующим клеммникам. Остается замкнуть цепь. Делают это двумя способами.
Схема “Треугольник”
Чтобы получилась схема-треугольник, нужно подключить конец 1-ой катушки к началу другой. Когда ток пропускается через фазы – становится заметно, что электричество переходит из одной фазы в другую.
А как соединить между собой фазы, ведь будет короткое замыкание? Замыкание не произойдет, т.к. ток проходит через обмотку, а она создает сопротивление.
Это то же самое, если поместить между двумя фазами лампу – она просто зажжется, и замыкания не произойдет!
Схема “Звезда”
Второй способ, как силу тока в трехфазной цепи распределить по катушке – это подсоединить их друг к другу в виде звезды. Для этого нужно концы 3-х обмоток соединить вместе.
Точка соединения всех концов является нейтральной. Для полного подключения потребуется контактор (устройство, способное проводить и отключать токи).
Через него проводятся провода и соединяются на выходе.
Начало обмоток подключают к потребителю энергии. Линейные провода можно назвать А, В, С.
Точка N называется нейтральной, но если она соединена с землей, то нулевой. Напряжение между линейным проводом и нулевой точкой называется фазным. Обозначается оно Y с индексом А.
Между проводом В и нулевой линией – напряжение Y с индексом В и т.д.
Схемы соединения электродвигателя в звезду и треугольник:
Характеристики
Данная система так построена, что даже если одна из сетей оборвется – не произойдет короткого замыкания, цепочка продолжит свое функционирование. Все благодаря симметричному размещению.
Если посмотреть на рисунок сети-треугольника – можно заметить простую математическую зависимость!
Вся схема построена в виде равностороннего треугольника.
Он разделен внутри на 3 маленьких треугольника. Все их катеты равны 220 В, а соединение 2-х противоположных сторон = 380 В. Причем градус между В 120 градусов – тот самый сдвиг.
Трёхфазное или однофазное подключение
В сети обмотки смещены на 120 градусов. Если представить этот сдвиг в виде 2-х вращающихся векторов – они тоже размещены под таким же градусом наклона.
И линейное напряжение не будет равняться сумме векторов. Другими словами, представьте прямой угол (равный 90 градусам), линии которого по 220 В. Если их соединить, чтобы образовать полноценный треугольник – расстояние для соединения будет равно 380 В, как показано на фото внизу.
Подключение сети было уже разобрано вверху. Про подключение однофазного прибора ничего не было сказано. Но вы уже знаете, что однофазный имеет целых 4 провода подключения, в отличие от устройства с тремя фазами.
- На первую клемму подается питание-фаза.
- Вторая клемма является выходом нагрузки электропотребителя.
- Ноль приходится на третью клемму.
- Выход нулевой подается на четвертую.
Т.е. первый и второй провода проходят через автомат и входят в саму квартиру. А остальные 2 приходятся на нулевое заземление. Примерами однофазных потребителей являются розетки.
Как вычислить?
Расчет мощности трехфазной сети считается так: I=P/U. Это самая примитивная формула, которой пользуются в школах.
Общее высчитывание строится на такой записи: Pобщ=Uа∙Iа∙cosа+ Ub∙Ib∙cosb+ Uc∙Ic∙cosc. Здесь cos обозначает перемены в P, а буквы рядом с ним – те самые фазы, идущие рядом с линиями.
Формулы для расчётов цепи постоянного тока
Расчет и формула мощности в трехфазной сети: P=U*I
Расчет силы тока по мощности и напряжению: I=P/U
Существует формула расчета мощности по току (полной нагрузке). Здесь нужно теоретическое понимание того, что есть 3 линии и у каждой есть свое P и U: Р=А1+В1+С1. Нужно просто сложить все значения.
Формула расчета тока нагрузки:
Рассчитать ток по мощности можно самому, но это тяжело. 1 из способов – устроить короткое замыкание (электросеть слишком сильно перегревается) или с устройством амперметром. Сделать это, в отличие, от расчета напряжения сложнее.
Понять, что у вас проблема с подачей напряжения можно по тусклому свету лампочек, периодическому “миганию”. I – непостоянная характеристика, меняющаяся и зависящая от разных факторов. Но делать замеры Ампер нужно, так вы сможете оценить способность автоматических выключателей включить защиту от КЗ, проверить контур заземления.
3.
5. Мощность трёхфазной цепи
3.При каком условии сумма мгновенных значений линейных токов будет равна нулю?
4.Почему при соединении нагрузки треугольником в трёхпроводной сети отсутствует взаимное влияние фазной нагрузки?
3.5.1. Мощность при несимметричной нагрузке
Каждая фаза нагрузки представляет собой отдельный элемент электрической цепи, в котором происходит преобразование энергии или её обмен с источником питания. Поэтому активная и реактивная мощности трёхфазной цепи равны суммам мощностей отдельных фаз:
P = Pa + Pb + Pc ; Q =Qa +Qb +Qc – для соединения звездой;
P = Pab + Pbc + Pca ; Q =Qab +Qbc +Qca – для соединения треугольником. Активная и реактивная мощности каждой фазы определяются так же, как
в однофазной цепи: |
|
|
|
cos ϕ = R I 2 ; |
|
|
|
|
|
|
|
|
I 2 . |
|
|
P =U |
ф |
I |
ф |
Q |
=U |
ф |
I |
ф |
sin ϕ |
= X |
ф |
(3.14) |
|||
ф |
|
ф |
ф ф |
ф |
|
|
ф |
|
ф |
|
|||||
Полная мощность трёхфазной цепи равна: |
|
|
|
|
|
|
|
||||||||
|
|
|
|
S = |
P2 +Q2 , |
|
|
|
|
|
|
|
|
||
причём S ≠ Sa + Sb + Sc ; |
S ≠ Sab + Sbc + Sca . |
|
|
|
|
|
|
|
|
Полную мощность можно представить также в комплексной форме. Например, для соединения нагрузки звездой:
S = P + jQ =(Pa + Pb + Pc )+ j (Qa +Qb +Qc )=
* * *
= S a + Sb + Sc =U a I a +U b I b +U c I c
3.5.2. Мощность при симметричной нагрузке
При симметричной нагрузке мощности всех фаз одинаковы, поэтому её можно определить, умножив на три выражения (3.14):
P =3Pф =3UфIф cos ϕф =3RфIф2;
Q =3Q |
=3U I |
ф |
sin ϕ |
=3X |
I 2 |
; |
(3.15) |
ф |
ф |
ф |
|
ф ф |
|
|
S =3Sф =3UфIф.
Фазные токи и напряжения в (3.15) можно выразить через линейные с учётом того, что при симметричной нагрузке и соединении её звездой
Uф =Uл / |
3; Iф = Iл, |
а |
при |
соединении |
треугольником |
– |
Uф =Uл; |
Iф = Iл / 3 . Подставляя эти соотношения в (3.15), мы получим для |
обеих схем соединения одинаковые выражения для мощности:
P = 3UлIл cos ϕф; Q = 3UлIл sin ϕф; (3.16)
S = 3UлIл.
10
Вопросы для самопроверки
1.Как определяется мощность трёхфазной сети при несимметричной нагрузке?
2.Какое условие выполняется для активной и реактивной мощности трёхфазной сети и не выполняется для полной?
3.Какими величинами нужно воспользоваться для вычисления мощности, чтобы выражения не зависели от схемы соединения симметричной нагрузки?
11
Используйте формулу фазового угла, чтобы понять мощность
Ключевые выводы
-
Подача мощности в системе переменного тока зависит от фазового угла между напряжением и током.
-
Фазовый угол также зависит от импеданса цепи, который вызывает изменение фазы.
-
При наличии разности фаз между напряжением и током реальная мощность, подаваемая на нагрузку, может быть довольно низкой. Вы можете определить, когда это произойдет, посмотрев на графики для вашей схемы.
Поддерживайте высокий коэффициент мощности при работе с 3-фазным питанием в ваших системах переменного тока.
Работа с подачей энергии может быть опасной и сложной, особенно когда мы рассматриваем реактивное сопротивление в практических цепях переменного тока. Обеспечение реальной подачи мощности на резистивную нагрузку зависит от поддержания высокого коэффициента мощности в ваших цепях, что в свою очередь требует поддержания фазового угла в вашей системе близким к нулю. Время от времени вам нужно будет проверять угол сдвига фаз между напряжением и током в реактивной цепи, чтобы обеспечить достаточную подачу мощности на элемент нагрузки.
Просто взглянув на разницу во времени между подаваемым напряжением и током на вашем компоненте нагрузки, вы можете определить фазовый угол, определяющий реальную подачу мощности. Затем вы можете использовать формулу фазового угла для реальной и полной мощности, чтобы определить коэффициент мощности в вашей системе. Затем вы можете определить, потребуется ли коррекция коэффициента мощности, которая будет зависеть от входного напряжения и мощности в системе.
Формула фазового угла
Фазовый угол цепи зависит от разности фаз между напряжением и током в цепи. Предполагая, что у нас есть простая система LTI, состоящая только из резисторов, конденсаторов и катушек индуктивности, вы можете определить простое соотношение фазового угла между напряжением и током в каждом элементе схемы.
Разность фаз в различных цепях RLC графически показана на изображении ниже, где мы видим, что напряжение и ток смещены друг относительно друга во временной области. Здесь реактивное сопротивление элементов C и L создает разность фаз между напряжением и током. Эта разность фаз станет важной позже, когда вы захотите рассчитать реальную мощность, подаваемую на компонент нагрузки.
Комплексные напряжения и токи в различных цепях, а также их разности фаз.
Фазовый угол можно определить, просто взглянув на разницу во времени между кривыми напряжения и тока. Это равно разнице во времени между соседними пиками тока и напряжения, деленной на 180 градусов. В качестве альтернативы, если вы знаете импеданс в вашей цепи переменного тока, вы можете рассчитать разницу фаз, которую вы увидите между напряжением и током:
Формула фазового угла в терминах импеданса.
Обратите внимание, что это относится к цепям LTI, где фаза является постоянной величиной (т. е. не зависит от напряжения или тока). Для обычной сети RLC фазовый угол может быть функцией частоты, даже если цепь представляет собой систему LTI. Теперь, когда у нас есть четкое определение разности фаз в цепи переменного тока, мы можем определить реальную мощность, подаваемую на компонент нагрузки в цепи переменного тока.
Мощность и угол сдвига фаз
Когда ток и напряжение имеют некоторую разность фаз между собой, мощность в цепи представлена комплексным числом S. Действительная и мнимая части комплексной мощности представляют реальную отдаваемую мощность и реактивную мощность соответственно. Следующая формула определяет комплексную мощность S, которая выражается через комплексное сопротивление Z.
Комплексная мощность через комплексное сопротивление.
Обратите внимание, что резистивные части цепи всегда рассеивают активную мощность, как мы сейчас увидим, а реактивные части получают только реактивную мощность. Физически реактивная мощность представляет собой мощность, ограниченную реактивным элементом в цепи (т. е. элементами L и C). Напротив, реальная мощность рассеивается в виде тепла в резистивных элементах.
Если вы знаете фазовый угол из импеданса или разницы во времени между током и напряжением, то вы можете рассчитать реальную мощность, подаваемую на нагрузку. Это определяется ниже с точки зрения величины S и фазового угла:
Фактическая мощность, подаваемая на компонент нагрузки.
Чтобы рассчитать реактивную мощность, просто замените косинус на синус в приведенном выше уравнении. Обратите внимание на знак фазового угла в этом расчете, так как он покажет вам, когда мощность ограничивается реактивными элементами, а когда она рассеивается в резистивных элементах. Это различие между кажущейся мощностью и реальной мощностью становится более ясным, когда мы исследуем распределение тока и напряжения в последовательной цепи RLC, как показано на рисунке ниже.
Распределение напряжения и тока в последовательной цепи RLC.
На этом изображении ток и индуктивность имеют напряжения, которые не совпадают по фазе друг с другом, поэтому общая реактивная мощность в LC-ветви цепи равна нулю. Другими словами, элементы C и L имеют противоположное реактивное поведение в разные моменты времени; один элемент генерирует реактивную мощность, а другой ограничивает ее.
Фазовый угол от активной и реактивной мощности
Другой важной величиной является кажущаяся мощность |S|, которая учитывает активную и реактивную мощности вместе без фазовой постоянной. В другом случае вы можете уже знать реальную мощность Re[S] и кажущуюся мощность |S|, и вам нужно найти фазовый угол. Отношение этих двух величин известно как коэффициент мощности, который очень важен в регулируемых системах преобразования переменного тока в постоянный. Коэффициент мощности определяется по фазовому углу следующим образом:
Определение коэффициента мощности по фазовому углу.
В идеале, коэффициент мощности системы преобразования мощности должен быть равен 1. Поскольку реальные схемы регуляторов имеют коэффициент мощности где-то около ~0,7, схема PFC обычно добавляется на этапе выпрямления AC-DC, чтобы обеспечить коэффициент мощности как можно ближе к 1. Вычисление фазового угла говорит вам, как вам нужно будет компенсировать низкий коэффициент мощности при проектировании ваших цепей.
После того, как вы использовали формулу фазового угла и определили, какой уровень коррекции коэффициента мощности вам нужен, вы можете создать макет платы с помощью лучшего программного обеспечения для компоновки и проектирования печатных плат с полным набором инструментов проектирования. Allegro PCB Editor включает в себя функции, необходимые для компоновки плат для любого приложения, включая системы преобразования энергии переменного тока. Затем вы можете использовать инструменты анализа Cadence для моделирования и анализа поведения вашей силовой электроники.
Если вы хотите узнать больше о том, как у Cadence есть решение для вас, обратитесь к нам и нашей команде экспертов. Вы также можете посетить наш канал YouTube и посмотреть видеоролики о моделировании и системном анализе, а также узнать, что нового в нашем наборе инструментов для проектирования и анализа.
Решения Cadence PCB — это комплексный инструмент для проектирования от начала до конца, позволяющий быстро и эффективно создавать продукты. Cadence позволяет пользователям точно сократить циклы проектирования и передать их в производство с помощью современного отраслевого стандарта IPC-2581.
Подпишитесь на Linkedin
Посетить сайт
Больше контента от Cadence PCB Solutions
УЧИТЬ БОЛЬШЕ
Что такое трехфазное питание и какие преимущества оно дает
Трехфазное питание переменного тока (AC) обычно используется для подачи электроэнергии в центры обработки данных, а также в коммерческие и промышленные здания, в которых размещается энергоемкое оборудование. Для этого есть веская причина, потому что 3-фазное питание может обеспечить большую мощность с большей эффективностью, в отличие от однофазного питания переменного тока. Однофазный переменный ток — это тип, обычно используемый для большинства бытовых и легких коммерческих приложений, таких как освещение и небольшие бытовые приборы. На этой странице мы объясним, почему это так, и основные различия между однофазными и трехфазными системами электропитания.
Почему нам нужно трехфазное питание
Способность поставлять постоянно увеличивающееся количество энергии особенно важно, поскольку в центрах обработки данных и серверных комнатах по-прежнему наблюдается рост плотности. Более мощные вычислительные системы размещаются в тех же помещениях, где когда-то размещались серверы, потребляющие лишь часть электроэнергии, необходимой для современных компьютеров и сетей.
Не так давно одна ИТ-стойка с 10 серверами потребляла в общей сложности пять киловатт (кВт) энергии. Сегодня в той же стойке могут находиться десятки серверов, потребляющих в совокупности 20 или 30 кВт. На таких уровнях вы, естественно, хотите сделать ставку на эффективность, поскольку даже небольшое процентное улучшение энергопотребления будет означать значительную экономию долларов с течением времени.
Электропроводка — еще одна проблема. Рассмотрим стойку на 15 кВт. При использовании однофазной сети переменного тока 120 вольт (VAC) для питания стойки требуется 125 ампер, для чего потребуется провод диаметром почти четверть дюйма (AWG 4) — слишком толстый, чтобы с ним было легко работать, не говоря уже о том, дорогой. Поскольку 3 фазы более эффективны, они могут обеспечивать ту же мощность (и даже больше) при использовании проводки меньшего размера. Для поддержки той же стойки на 15 кВт с использованием трехфазного питания требуются три провода, способные подавать 42 ампера (AWG 10), которые имеют небольшую часть размера — каждый меньше одной десятой дюйма в диаметре.
Объяснение однофазного питания переменного тока
Итак, что такое трехфазное питание? И где мы должны его использовать?
Прежде чем углубиться в это обсуждение, полезно начать с понимания однофазного питания переменного тока.
Однофазная сеть переменного тока использует трехпроводную систему подачи, состоящую из одного «горячего» провода, нейтрального провода и заземления. При питании от сети переменный ток или напряжение периодически меняются местами, протекая в одну сторону по горячему проводу, подающему питание на нагрузку, и в другую сторону по нейтральному проводу. Полный цикл питания происходит во время изменения фазы на 360 градусов, и напряжение меняется на противоположное 50 или 60 раз в секунду, в зависимости от системы, используемой в разных частях мира. В Северной Америке это 60 раз или 60 герц (Гц).
Важно отметить, что две токонесущие ветви всегда отстоят друг от друга на 180 градусов. Чтобы визуализировать это, представьте, что мощность движется по волне, технически это синусоида с определенной частотой и амплитудой. В каждом цикле волны на каждом проводе дважды одновременно проходят через нулевую амплитуду (см. рис. 1). В этих случаях мощность на нагрузку не подается.
Рисунок 1
Эти очень короткие прерывания не имеют значения для жилых и коммерческих зданий, таких как офисы, но имеют серьезные последствия для двигателей, которые приводят в действие крупное оборудование, а также компьютеры и другие устройства. ИТ-оборудование.
Погружение в трехфазное питание
Как следует из названия, трехфазные энергосистемы обеспечивают три отдельных тока, каждый из которых разделен на одну треть времени, необходимого для завершения полного цикла. Но, в отличие от однофазного, где две горячие ветви всегда разнесены на 180 градусов, в трехфазном токи разнесены на 120 градусов.
На рис. 2 ниже вы увидите, что, когда какая-либо одна линия имеет пиковый ток, две другие нет. Например, когда фаза 1 находится на своем положительном пике, фазы 2 и 3 имеют значение -0,5. Это означает, что, в отличие от однофазного тока, нет точки, в которой мощность не подается на нагрузку. Фактически, в шести различных положениях каждой фазы одна из линий находится в максимально положительном или отрицательном положении.
Для практических целей это означает, что общее количество энергии, вырабатываемой всеми тремя токами, остается постоянным; у вас нет циклических пиков и спадов, как с однофазным.
Компьютеры и многие двигатели, используемые в тяжелой технике, разработаны с учетом этого. Они могут получать устойчивый поток постоянной мощности, вместо того, чтобы учитывать колебания, присущие однофазной мощности переменного тока. В результате они потребляют меньше энергии.
В качестве аналогии подумайте об одноцилиндровом и трехцилиндровом двигателе. Оба работают по четырехтактной модели (впуск, сжатие, мощность, выпуск). В одноцилиндровом двигателе вы получаете только один «мощный» цикл на каждые четыре такта цилиндра, что обеспечивает довольно неравномерную подачу мощности. Трехтактный двигатель, напротив, будет обеспечивать мощность в трех чередующихся фазах (опять же, разделенных на 120 градусов), для более плавной, постоянной и эффективной мощности.
Рисунок 2
Преимущества трехфазного питания
Среди преимуществ, которые дает трехфазное питание, — возможность обеспечить почти вдвое большую мощность по сравнению с однофазными системами, не требуя вдвое большего количества проводов. Это не в три раза больше мощности, как можно было бы ожидать, потому что на практике вы обычно берете одну горячую линию и подключаете ее к другой горячей линии.
Чтобы понять, как 3-фазное питание обеспечивает большую мощность, нужно посчитать. Формула для однофазной мощности: мощность = напряжение (В) x ток (I) x коэффициент мощности (PF). Если мы предположим, что нагрузка в цепи является только резистивной, коэффициент мощности равен единице (или единице), что сводит формулу к P = V x I. Если мы рассмотрим 120-вольтовую цепь, поддерживающую 20 ампер, мощность будет равна 2400 Вт. .
Формула мощности трехфазной цепи: Мощность = Напряжение (В) x Ток (I) x Коэффициент мощности (PF) x квадратный корень из трех. Если предположить, что нагрузка в цепи является только резистивной, коэффициент мощности равен единице (или единице), что сводит формулу к P = V x I x квадратный корень из трех. Если мы рассмотрим 120-вольтовую трехфазную цепь, и каждая фаза поддерживает 20 ампер, формула работает как 120 вольт x 20 ампер x 1,732 = 4157 Вт.
Добавить комментарий