СУДОВЫЕ ЭНЕРГЕТИЧЕСКИЕ УСТАНОВКИ И ДВИЖИТЕЛИ. Энергетические установкиэнергетическая установка - это... Что такое энергетическая установка?3.9 энергетическая установка: Комплекс взаимосвязанного оборудования и сооружений, предназначенный для производства или преобразования, передачи, накопления, распределения или потребления энергии. Смотри также родственные термины:129 энергетическая установка железнодорожного нетягового подвижного состава: Дизельный двигатель, генератор переменного или постоянного тока, электромашинный агрегат и аккумуляторная батарея, обеспечивающие автономно и от внешних источников электроэнергией нетяговый подвижной состав во время движения по железнодорожному пути и на стоянках. энергетическая установка железнодорожного тягового подвижного состава: Первичный двигатель и вспомогательное оборудование автономного локомотива, предназначенные для получения механической энергии и преобразования ее в электрическую для питания тяговых электрических двигателей тягового подвижного состава или вращающие колесные пары при использовании тягового гидравлического привода. [ГОСТ Р 55056-2012, статья 65] 3.5 энергетическая установка на топливных элементах (fuel cell propulsion system): Комбинация бортовой системы хранения топлива, электрической энергосистемы на ТЭ и трансмиссии. Словарь-справочник терминов нормативно-технической документации. academic.ru. 2015.
Смотреть что такое "энергетическая установка" в других словарях:
СУДОВЫЕ ЭНЕРГЕТИЧЕСКИЕ УСТАНОВКИ И ДВИЖИТЕЛИ СУДОВЫЕ ЭНЕРГЕТИЧЕСКИЕ УСТАНОВКИ И ДВИЖИТЕЛИ устройства для обеспечения движения кораблей, катеров и других судов. К движителям относятся гребной винт и гребное колесо. В качестве судовых энергетических установок используются, как правило, паровые машины и турбины, газовые турбины и двигатели внутреннего сгорания, в основном дизельные. На крупных и мощных специализированных судах типа ледоколов и подводных лодок часто применяются атомные энергетические установки. По-видимому, первым предложил использовать энергию пара для движения судов Леонардо да Винчи (1452-1519). В 1705 Т.Ньюкомен (Англия) запатентовал первую довольно эффективную паровую машину, но его попытки использовать возвратно-поступательное движение поршня для вращения гребного колеса оказались неудачными.ТИПЫ СУДОВЫХ УСТАНОВОКПар - традиционный источник энергии для движения судов. Пар получают при сжигании топлива в водотрубных котлах. Чаще других применяются двухбарабанные водотрубные котлы. В этих котлах имеются топки с водоохлаждаемыми стенками, пароперегреватели, экономайзеры, а иногда и воздухоподогреватели. Их КПД достигает 88%.См. также КОТЕЛ ПАРОВОЙ. Дизели впервые появились в качестве судовых двигателей в 1903. Расход топлива в судовых дизелях составляет 0,25-0,3 кг/кВтЧч, а паровые машины расходуют 0,3-0,5 кг/кВтЧч в зависимости от конструкции двигателя, привода и других конструктивных особенностей. Дизели, особенно в сочетании с электроприводом, очень удобны для применения на паромах и буксирах, поскольку обеспечивают высокую маневренность. См. также ДВИГАТЕЛЬ ТЕПЛОВОЙ.Поршневые паровые машины. Времена поршневых машин, когда-то служивших самым разнообразным целям, прошли. По КПД они существенно уступают как паровым турбинам, так и дизелям. На тех судах, где еще стоят паровые машины, - это компаунд-машины: пар расширяется последовательно в трех или даже четырех цилиндрах. Поршни всех цилиндров работают на один вал.Паровые турбины. Судовые паровые турбины обычно состоят из двух каскадов: высокого и низкого давления, каждый из которых через понижающий редуктор вращает вал гребного винта. На военно-морских судах часто дополнительно ставят небольшие турбины для крейсерского режима, которые используют для повышения экономичности, а при максимальных скоростях включаются мощные турбины. Каскад высокого давления вращается со скоростью 5000 об/мин.См. также ТУРБИНА. На современных паровых судах питательная вода из конденсаторов в подогреватели подается через несколько ступеней нагрева. Нагрев производится за счет тепла рабочего тела турбины и отходящих топочных газов, обтекающих экономайзер. Почти все вспомогательное оборудование имеет электрический привод. Электрогенераторы с приводом от паровых турбин обычно вырабатывают постоянный ток напряжением 250 В. Используется и переменный ток. Если передача мощности от турбины на винт осуществляется через редуктор, то для обеспечения заднего хода (обратное вращение винта) применяется дополнительная небольшая турбина. Мощность на валу при обратном вращении составляет 20-40% основной мощности. Электропривод от турбины к гребному винту был очень популярен в 1930-е годы. В этом случае турбина вращает высокооборотный генератор, а выработанная электроэнергия передается на малооборотные электродвигатели, которые вращают гребной вал. КПД зубчатой передачи (редуктора) примерно 97,5%, электропривода - около 90%. В случае электропривода обратное вращение обеспечивается просто переключением полярности.Газовые турбины. Газовые турбины появились на судах значительно позже, чем в авиации, поскольку выигрыш в весе в судостроении не так важен, и этот выигрыш не перевешивал высокую стоимость и сложность монтажа и эксплуатации первых газовых турбин.См. также АВИАЦИОННАЯ СИЛОВАЯ УСТАНОВКА. Газовые турбины используют на судах не только как главные двигатели; они нашли применение в качестве приводов для пожарных насосов и вспомогательных электрогенераторов, где выгодны их небольшой вес, компактность и быстрый запуск. В военно-морском флоте газовые турбины широко применяются на небольших скоростных судах: десантных катерах, минных тральщиках, судах на подводных крыльях; на больших кораблях их используют для получения максимальной мощности. Современные газовые турбины обладают приемлемым уровнем надежности, стоимости эксплуатации и производства. Учитывая их малый вес, компактность и быстрый запуск, они во многих случаях становятся конкурентоспособными с дизелями и паровыми турбинами.Дизельные двигатели. Впервые дизель как судовой двигатель был установлен на "Вандале" в Санкт-Петербурге (1903). Это произошло всего через 6 лет после изобретения Дизелем своего двигателя. На "Вандале", ходившем по Волге, было два гребных винта; каждый винт устанавливался на одном валу с 75-кВт электродвигателем. Электроэнергия вырабатывалась двумя дизель-генераторами. Трехцилиндровые дизели мощностью по 90 кВт имели постоянную частоту вращения (240 об/мин). Мощность от них нельзя было передавать непосредственно на гребной вал, поскольку не было реверса. Пробная эксплуатация "Вандала" опровергла общее мнение, что дизели нельзя применять на судах из-за опасности вибраций и высоких давлений. Более того, расход топлива составил только 20% от расхода топлива на пароходах того же водоизмещения.Внедрение дизелей. За десять лет, прошедших после установки первого дизеля на речное судно, эти двигатели подверглись значительному усовершенствованию. Увеличилась их мощность за счет повышения числа оборотов, увеличения диаметра цилиндра, удлинения хода поршня, а также разработки двухтактных двигателей. Число оборотов существующих дизелей составляет от 100 до 2000 об/мин; высокооборотные дизели применяются на небольших быстроходных катерах и во вспомогательных дизель-генераторных системах. Их мощность варьируется в столь же широком диапазоне (10-20 000 кВт). В последние годы появились дизели с наддувом, что увеличивает их мощность примерно на 20%.Сравнение дизельных двигателей с паровыми. Дизели имеют преимущество над паровыми двигателями на небольших судах благодаря своей компактности; кроме того, они легче при одинаковой мощности. Дизели расходуют меньше топлива на единицу мощности; правда, дизельное топливо дороже топочного. Расход дизельного топлива можно уменьшить дожиганием отработанных газов. На выбор энергетической установки влияет и тип судна. Дизельные двигатели запускаются гораздо быстрее: их не надо предварительно разогревать. Это очень важное преимущество для портовых судов и вспомогательных или резервных силовых установок. Однако есть преимущества и у паротурбинных установок, которые надежнее в эксплуатации, способны длительное время работать без регламентного обслуживания, отличаются меньшим уровнем вибраций благодаря отсутствию возвратно-поступательного движения.Судовые дизели. Судовые дизели отличаются от прочих дизелей только вспомогательными элементами. Они непосредственно либо через редуктор вращают гребной вал и должны обеспечивать обратное вращение. В четырехтактных двигателях для этого служит дополнительная муфта обратного хода, которая входит в зацепление при необходимости обратного вращения. В двухтактных двигателях с обеспечением обратного вращения проще, поскольку последовательность работы клапанов определяется положением поршня в соответствующем цилиндре. В небольших двигателях обратное вращение получают с помощью муфты сцепления и зубчатой передачи. На некоторых сторожевых кораблях и амфибиях длиной менее 60 м ставят реверсивные гребные винты (см. ниже). Для того чтобы число оборотов двигателя не превысило безопасный предел, все двигатели оборудованы ограничителями частоты вращения.Электрическая тяга. Термином "суда с электрической тягой" называют суда, у которых одним из элементов системы преобразования энергии топлива в механическую энергию вращения гребного вала является электрическая машина. Один или несколько электродвигателей соединяются с валом винта напрямую или через редуктор. Питание электродвигателей осуществляется от электрогенераторов, приводом которых служит паровая или газовая турбина либо дизель. На подводных лодках в подводном положении питание электродвигателей осуществляется от аккумуляторов, а в надводном - от дизель-генераторов. Электрические машины постоянного тока обычно устанавливаются на небольших и на высокоманевренных судах. Машины переменного тока используются на океанских лайнерах.Турбоэлектроходы. На рис. 1 представлена схема турбоэлектропривода с котельной установкой для получения пара. Пар вращает турбину, которая, в свою очередь, вращает электрогенератор. Выработанная электроэнергия подается на электродвигатели, которые связаны с гребным валом. Обычно каждый турбогенератор работает на один электродвигатель, который вращает свой винт. Однако такая схема позволяет легко подсоединить к одному турбогенератору несколько электродвигателей, а следовательно, несколько гребных винтов.Рис. 1. СХЕМА ТУРБОЭЛЕКТРОПРИВОДА. 1 - панель управления; 2 - главный электрогенератор; 3 - конденсатор; 4 - турбина; 5 - выход охлаждающей воды; 6 - подача охлаждающей воды; 7 - главный паропровод; 8 - клапан парового котла; 9 - паровой котел; 10 - силовой электрический кабель; 11 - гребной электродвигатель; 12 - гребной вал; 13 - гребной винт. Судовые турбогенераторы переменного тока могут вырабатывать ток с частотой в пределах 25-100% максимальной, но не более 100 Гц. Генераторы переменного тока вырабатывают ток напряжением до 6000 В, постоянного - до СУДОВЫЕ ЭНЕРГЕТИЧЕСКИЕ УСТАНОВКИ И ДВИЖИТЕЛИ900 В.Дизельэлектроходы. Дизельэлектрический привод по существу не отличается от турбоэлектрического, за исключением того, что котельная установка и паровая турбина заменены дизельным двигателем. На небольших судах обычно на каждый винт работают один дизель-генератор и один электродвигатель, однако при необходимости можно отключить один дизель-генератор для экономии или включить дополнительный для увеличения мощности и скорости.КПД. Электродвигатели постоянного тока на низких оборотах создают больший крутящий момент, чем турбины и дизели с механической передачей. Кроме того, у двигателей и постоянного и переменного тока крутящий момент одинаков как при прямом, так и при обратном вращении. Полный КПД турбоэлектропривода (отношение мощности на гребном валу к энергии топлива, выделяющейся в единицу времени) ниже, чем КПД турбинного привода, хотя турбина и соединена с гребным валом через два понижающих редуктора. Турбоэлектропривод тяжелее и дороже механического турбинного привода. Полный КПД дизельэлектропривода примерно такой же, как у механического турбинного привода. Каждый тип привода имеет свои достоинства и недостатки. Поэтому выбор типа двигательной установки определяется типом судна и условиями его эксплуатации.Электроиндукционная муфта. В этом случае передача мощности от двигателя к гребному винту производится электромагнитным полем. Принципиально такой привод подобен обычному асинхронному электродвигателю, за исключением того, что и статор и якорь электродвигателя в электромагнитном приводе сделаны вращающимися; один из них связан с валом двигателя, а другой - с гребным валом. Элемент, связанный с двигателем, представляет собой обмотку возбуждения, которая питается от внешнего источника постоянного тока и создает электромагнитное поле. Элемент, связанный с гребным валом, представляет собой короткозамкнутую обмотку без внешнего питания. Оба элемента разделены воздушным промежутком. Вращающееся магнитное поле возбуждает в обмотке второго элемента ток, что заставляет этот элемент вращаться, но всегда медленнее (со скольжением), чем первый элемент. Возникающий крутящий момент пропорционален разности частот вращения этих элементов. Выключение тока возбуждения в первичной обмотке "разъединяет" эти элементы. Частоту вращения второго элемента можно регулировать, меняя ток возбуждения. При одном дизельном двигателе на судне использование электромагнитного привода позволяет снизить вибрации благодаря отсутствию механической связи двигателя с гребным валом; при нескольких дизельных двигателях такой привод повышает маневренность судна за счет переключения гребных винтов, поскольку направление их вращения легко изменить.Атомные энергетические установки. На судах с атомными энергетическими установками главным источником энергии является ядерный реактор. Тепло, выделяющееся в процессе деления ядерного горючего, служит для генерации пара, поступающего затем в паровую турбину.См. АТОМНАЯ ЭНЕРГЕТИКА. В реакторной установке, как и в обычном паровом котле, имеются насосы, теплообменники и другое вспомогательное оборудование. Особенностью ядерного реактора является его радиоактивное излучение, которое требует специальной защиты обслуживающего персонала.Безопасность. Вокруг реактора приходитсяставить массивную биологическую защиту. Обычные защитные материалы от радиоактивного излучения - бетон, свинец, вода, пластмассы и сталь. Существует проблема хранения жидких и газообразных радиоактивных отходов. Жидкие отходы хранятся в специальных емкостях, а газообразные поглощаются активированным древесным углем. Затем отходы переправляются на берег на предприятия по их переработке.Судовые ядерные реакторы. Основными элементами ядерного реактора являются стержни с делящимся веществом (ТВЭЛы), управляющие стержни, охладитель (теплоноситель), замедлитель и отражатель. Эти элементы заключены в герметичный корпус и расположены так, чтобы обеспечить управляемую ядерную реакцию и отвод выделяющегося тепла. Горючим может быть уран-235, плутоний либо их смесь; эти элементы могут быть химически связаны с иными элементами, быть в жидкой или твердой фазе. Для охлаждения реактора используется тяжелая или легкая вода, жидкие металлы, органические соединения или газы. Теплоноситель может быть использован для передачи тепла другому рабочему телу и производства пара, а может использоваться непосредственно для вращения турбины. Замедлитель служит для уменьшения скорости образующихся нейтронов до значения, наиболее эффективного для реакции деления. Отражатель возвращает в активную зону нейтроны. Замедлителем и отражателем обычно служат тяжелая и легкая вода, жидкие металлы, графит и бериллий. На всех военно-морских судах, на первом атомном ледоколе "Ленин", на первом грузо-пассажирском судне "Саванна" стоят энергетические установки, выполненные по двухконтурной схеме. В первичном контуре такого реактора вода находится под давлением до 13 МПа и поэтому не вскипает при температуре 270° С, обычной для тракта охлаждения реактора. Вода, нагретая в первичном контуре, служит теплоносителем для производства пара во вторичном контуре. В первичном контуре могут использоваться и жидкие металлы. Такая схема применена на подводной лодке ВМС США "Си Вулф", где теплоносителем является смесь жидкого натрия с жидким калием. Давление в системе такой схемы сравнительно невелико. Это же преимущество можно реализовать, используя в качестве теплоносителя парафинообразные органические вещества - дифенилы и трифенилы. В первом случае недостатком является проблема коррозии, а во втором - образование смолистых отложений. Существуют одноконтурные схемы, в которых рабочее тело, нагретое в реакторе, циркулирует между ним и главным двигателем. По одноконтурной схеме работают газоохлаждаемые реакторы. Рабочим телом служит газ, например, гелий, который нагревается в реакторе, а затем вращает газовую турбину.Защита. Ее главная функция - обеспечить защиту экипажа и оборудования от излучения, испускаемого реактором и другими элементами, имеющими контакт с радиоактивными веществами. Это излучение делится на две категории: нейтроны, выделяющиеся при делении ядер, и гамма-излучение, возникающее в активной зоне и в активированных материалах. В общем случае на судах имеются две защитные оболочки. Первая расположена непосредственно вокруг корпуса реактора. Вторичная (биологическая) защита охватывает парогенераторное оборудование, систему очистки и емкости для отходов. Первичная защита поглощает большую часть нейтронов и гамма-излучение реактора. Это снижает радиоактивность вспомогательного оборудования реактора. Первичная защита может представлять собой двухоболочечный герметичный резервуар с пространством между оболочками, заполненным водой, и наружным свинцовым экраном толщиной от 2 до 10 см. Вода поглощает большую часть нейтронов, а гамма-излучение частично поглощается стенками корпуса, водой и свинцом. Основная функция вторичной защиты - снизить излучение радиоактивного изотопа азота 16N, который образуется в теплоносителе, прошедшем через реактор. Для вторичной защиты используются емкости с водой, бетон, свинец и полиэтилен. Экономичность судов с атомными энергетическими установками. Для боевых кораблей стоимость постройки и эксплуатационные расходы имеют меньшее значение, чем преимущества почти неограниченной дальности плавания, большей энерговооруженности и скорости кораблей, компактности установки и сокращения обслуживающего персонала. Эти достоинства атомных энергетических установок обусловили их широкое применение на подводных лодках. Оправданно и применение энергии атома на ледоколах.СУДОВЫЕ ДВИЖИТЕЛИСуществует четыре основных вида судовых движителей: водометные движители, гребные колеса, гребные винты (в том числе с направляющей насадкой) и крыльчатый движитель.Водометный движитель. Водометный движитель - это, по существу, просто поршневой или центробежный насос, который засасывает воду через отверстие в носу или днище корабля и выбрасывает через сопла в кормовой его части. Создаваемый упор (сила тяги) определяется разностью количеств движения струи воды на выходе и входе в движитель. Водометный движитель был впервые предложен и запатентован Тугудом и Хейсом в Англии в 1661. Позднее разные варианты такого двигателя предлагали многие, но все конструкции были неудачными из-за низкого КПД. Водометный движитель применяется в некоторых случаях, когда низкий КПД компенсирутся преимуществами в других отношениях, например для плавания по мелководным или засоренным рекам.Гребное колесо. Гребное колесо в самом простом случае - это широкое колесо, у которого по периферии установлены лопасти. В более совершенных конструкциях лопасти могут поворачиваться относительно колеса так, чтобы они создавали нужную пропульсивную силу при минимальных потерях. Ось вращения колеса расположена выше уровня воды, и погружена лишь его небольшая часть, поэтому в каждый данный момент времени только несколько лопастей создают упор. КПД гребного колеса, вообще говоря, возрастает с увеличением его диаметра; не редкость значения диаметра 6 м и более. Частота вращения большого колеса получается низкой. Невысокое число оборотов соответствовало возможностям первых паровых машин; однако со временем машины совершенствовались, их скорости возросли, и малые обороты колеса стали серьезным препятствием. В итоге гребные колеса уступили место гребным винтам.Гребные винты. Еще древние египтяне использовали винт для подачи воды из Нила. Есть свидетельства, что в средневековом Китае для движения судов использовали винт с ручным приводом. В Европе винт в качестве судового движителя впервые предложил Р. Гук (1680).Конструкция и характеристики. Современный гребной винт обычно имеет несколько лопастей примерно эллиптической формы, равномерно расположенных на центральной втулке. Поверхность лопасти, обращенную вперед, в нос судна, называют засасывающей, обращенную назад - нагнетающей. Засасывающая поверхность лопасти выпуклая, нагнетающая - обычно почти плоская. На рис. 2 схематично показана типичная лопасть гребного винта. Осевое перемещение винтовой поверхности за один оборот называют шагом p; произведение шага на число оборотов в секунду pn - осевая скорость лопасти винта нулевой толщины в недеформируемой среде. Разность (pn - v0), где v0 - истинная осевая скорость винта, характеризует меру деформируемости среды, называемую скольжением. Отношение (pn - v0)/pn - относительное скольжение. Это отношение - один из основных параметров гребного винта.Рис. 2. ТИПИЧНАЯ ЛОПАСТЬ гребного винта. а - вид по оси вращения; б - профили сечений лопасти в плане; в - вид сбоку.Важнейшим параметром, определяющим рабочие характеристики гребного винта, является отношение шага винта к его диаметру. Следующие по значимости - количество лопастей, их ширина, толщина и форма, форма профиля и дисковое отношение (отношение суммарной площади лопастей к площади описывающего их круга) и отношение диаметра втулки к диаметру винта. Экспериментально определены диапазоны изменения этих параметров, обеспечивающие хорошие рабочие характеристики: шаговое отношение (отношение шага винта к его диаметру) 0,6-1,5, отношение максимальной ширины лопасти к диаметру винта 0,20-0,50, отношение максимальной толщины лопасти вблизи втулки к диаметру 0,04-0,05, отношение диаметра втулки к диаметру винта 0,18-0,22. Форма лопасти обычно яйцевидная, а форма профиля - плавно обтекаемая, очень похожая на профиль крыла самолета. Размеры современных гребных винтов варьируются от 20 см до 6 м и более. Мощность, развиваемая винтом, может составлять доли киловатта, а может превышать 40 000 кВт; соответственно, частота вращения лежит в диапазоне от 2000 об/мин для малых винтов до 60 для больших. КПД хороших винтов составляет 0,60-0,75 в зависимости от шагового отношения, числа лопастей и других параметров.Применение. На судах ставят один, два или четыре гребных винта в зависимости от размеров судна и требуемой мощности. Одиночный винт обеспечивает более высокий КПД, поскольку отсутствует интерференция и часть энергии, затрачиваемой на движение судна, восстанавливается гребным винтом. Это восстановление выше, если гребной винт установлен в середине спутной струи сразу за ахтерштевнем. Некоторое увеличение пропульсивной силы может быть достигнуто с помощью разрезного руля, для чего верхнюю и нижнюю части руля немного отклоняют в противоположные стороны (соответственно вращению винта), с тем чтобы использовать поперечную составляющую скорости струи после винта для создания дополнительной составляющей силы в направлении движения судна. Применение нескольких винтов увеличивает маневренность судна и возможности поворота без использования рулей, когда винты создают упор в разных направлениях. Как правило, реверсирование упора (изменение направления действия пропульсивной силы на обратное) достигается реверсированием вращения гребных двигателей, но существуют и специальные реверсивные винты, которые позволяют реверсировать упор без изменения направления вращения валов; это достигается поворотом лопастей относительно втулки с помощью механизма, расположенного во втулке и приводимого в действие через полый вал. Гребные винты изготавливают из бронзы, отливают из стали или чугуна. Для работы в соленой воде предпочтительнее сплав бронзы, легированной марганцем, поскольку он хорошо поддается шлифованию и успешно противостоит кавитации и воздействию соленой воды. Спроектированы и созданы высокоскоростные суперкавитирующие винты, у которых вся засасывающая поверхность занята зоной кавитации. При малых скоростях такие винты обладают несколько меньшим КПД, однако они значительно эффективнее обычных при высоких скоростях. См. также КАВИТАЦИЯ.Винт с направляющей насадкой. Винт с насадкой - обычный винт, установленный в коротком сопле, - изобретен немецким инженером Л.Кортом. Насадка жестко соединена с корпусом судна или выполнена с ним как одно целое.Принцип действия. Был сделан ряд попыток установить винт в трубе для улучшения его рабочих характеристик. В 1925 Корт обобщил результаты этих исследований и существенно усовершенствовал конструкцию: он превратил трубу в короткое сопло, диаметр которого на входе был больше, а форма соответствовала аэродинамическому профилю. Корт установил, что такая конструкция обеспечивает значительно больший упор при заданной мощности по сравнению с обычными винтами, поскольку струя, ускоряемая винтом, при наличии насадки сужается в меньшей степени (рис. 3). При одинаковых расходах скорость за винтом с насадкой (v0 + uў) меньше, чем за винтом без насадки (v0 + u). Поэтому идеальный КПД винта с насадкой возрастает в отношении (2v0 + u)/(2v0 + uў).Рис. 3. СХЕМА ТЕЧЕНИЯ ЧЕРЕЗ ГРЕБНОЙ ВИНТ. а - без направляющей насадки, б - с направляющей насадкой.Преимущества. Преимущество винта с направляющей насадкой над обычным винтом проверено практикой. Выигрыш выше, когда скорость судна (v0) невелика, а винт тяжело нагружен, т.е. велика скорость скольжения (u). В связи с этим винты с насадкой чаще ставят на буксирах, траулерах и аналогичных судах, которые буксируют тяжелые грузы с малой скоростью. Для таких судов выигрыш на единицу мощности, создаваемый винтом с насадкой, может достигать 30-40%. На быстроходных судах винт с насадкой не имеет преимуществ, поскольку небольшой выигрыш в КПД теряется из-за увеличения сопротивления на насадке.Крыльчатые движители. Такой движитель представляет собой диск, на котором по периферии перпендикулярно плоскости диска размещены 6-8 лопатообразных лопастей. Диск установлен заподлицо с днищем корабля, а в поток опущены только лопасти движителя. Диск с лопастями вращается относительно своей оси, и, кроме того, лопасти совершают вращательное или колебательное движение относительно своей продольной оси. В результате вращательного и колебательного движений лопастей вода ускоряется в требуемом направлении, и создается упор для движения судна. Такой тип движителя имеет преимущество перед гребным винтом и гребным колесом, поскольку может создавать упор в любом желаемом направлении: вперед, назад и даже вбок без изменения направления вращения двигателя. Поэтому для управления судами с крыльчатым движителем не требуется рулей или других механизмов. Хотя крыльчатые движители не могут заменить гребные винты по универсальности применения, в некоторых специальных случаях они весьма эффективны.ЛИТЕРАТУРААкимов Р.Н. и др. Справочник судового механика. М., 1973-1974 Самсонов В.И. и др. Судовые двигатели внутреннего сгорания. М., 1981 Овсянников М.К., Петухов В.А. Судовые дизельные установки (спр.). Л., 1986 Артюшков Л.С. и др. Судовые движители. Л., 1988 Батырев А.Н. и др. Корабельные ядерные установки зарубежных стран. СПб., 1994
Смотреть что такое "СУДОВЫЕ ЭНЕРГЕТИЧЕСКИЕ УСТАНОВКИ И ДВИЖИТЕЛИ" в других словарях:
dic.academic.ru Судовые энергетические установкиСЭУ, Модуль 1.1., Чистяков А.Ю., 05.03.2017 Модуль 1.1 1.1.1. Историческая справкаСовременное судно оборудовано разнообразными машинами и механизмами, которые в совокупности и во взаимосвязи с устройствами и аппаратами образуют судовую энергетическую установку (СЭУ). С помощью СЭУ обеспечиваются движение судна и его маневры, безопасность плавания и живучесть, грузовые операции и другие функции в соответствии с назначением судна, сохранность перевозимого груза, нормальные условия для работы и отдыха экипажа и пассажиров. О сложности СЭУ современных, судов можно судить по таким данным: мощность главных двигателей достигает 80 МВт и более; мощности судовой электростанции бывает достаточно для энергоснабжения небольшого города, а паровых котлов — для отопления целого городского района; насосы на судне перекачивают сотни тонн воды, топлива и масла, а длина трубопроводов и кабелей составляет десятки километров; подача грузовых насосов на танкерах достигает 5000 м3 в час. Для вырабатывания, преобразования и расходования механической, электрической и тепловой энергии СЭУ должна потреблять органическое или ядерное топливо. Со времен глубокой древности ход судна осуществлялся за счет энергии ветра. В начале XIX в. парусный флот стали вытеснять самоходные суда с ЭУ, преобразующими химическую энергию топлива. На протяжении почти 100 лет практически единственным типом СЭУ были паросиловые установки (ПСУ) с паровыми поршневыми машинами и паровыми котлами, работавшими на каменном угле или на дровах. В конце XIX и начале XX вв. на судах стали устанавливать паросиловые котлотурбинные и дизельные ЭУ, а в ПСУ с поршневыми машинами или турбинами начали использовать жидкое нефтяное топливо. В 1904 г. был построен первый корабль русского флота с ПСУ «Ласточка», а в 1912 г. на верфи Путиловского завода — самый быстроходный в мире эскадренный миноносец «Новик» с паротурбинной установкой (ПТУ) мощностью 29,5 МВт и скоростью более 37 уз. Первое в мире самоходное судно с дизельной установкой (ДУ) было создано в России в 1903 г. (нефтеналивное судно «Вандал» с установкой мощностью 250 кВт). На протяжении 20-х и 30-х годов судовые ПТУ и ДУ постепенно вытесняли СЭУ с паровыми машинами, работавшими на угле. После второй мировой войны началось развитие газотурбинных (ГТУ) и ядерных (ЯЭУ) энергетических установок. В 50-х годах полностью отказались от постройки судов с паровыми машинами и от использования каменного угля в качестве топлива. На судах стали применять преимущественно ДУ. В 40-х и 50-х годах в связи с применением ГТУ фактически была совершена техническая революция — резко увеличились агрегатная мощность и скорость судна. Было построено и первое русское опытное торговое судно — сухогруз «Парижская коммуна» с ГТУ мощностью 9,55 МВт. В настоящее время ГТУ широко применяются главным образом на военных кораблях, а также на ряде специализированных судов. В 1959 г. было введено в эксплуатацию построенное в СССР первое в мире надводное судно с ЯЭУ (паротурбинной, с электродвижением) — ледокол «Ленин». В настоящее время большинство судов оборудовано ДУ. Дизели сегодня — самые экономичные тепловые двигатели, позволяющие, кроме того, сравнительно просто механизировать и автоматизировать основные производственные процессы на судне. В последние годы уделяется большое внимание топливной экономичности СЭУ и судов в целом. С этой целью принимают следующие меры: снижают сопротивление движению судна; уменьшают его скорость; применяют винты регулируемого шага (ВРШ), позволяющие эффективно использовать мощность в условиях плавания, отличающихся от спецификационных; обеспечивают повышенные среднеэксплуатационные КПД первичных двигателей их работой на полной или близкой к полной мощности на различных режимах, отбором мощности главных двигателей на вспомогательные нужды (электрогенераторы, насосы и т. п.), применением соответствующих оптимизирующих режим работы средств автоматизации. Особое значение имеет повышение полноты использования энергии топлива, сжигаемого в первичных двигателях. С этой целью применяют развитую (глубокую) утилизацию теплоты выпускных газов (впрочем, ограниченно применимую в связи со значительным усовершенствованием первичных двигателей за последние несколько десятков лет и соответственным снижением температуры выпускных газов), охлаждающей двигатели среды, горячего наддувочного воздуха для получения механической энергии (и передачи ее на винт), электроэнергии, пара и горячей воды для опреснительных и отопительных установок, подогрева топлива и горячего водоснабжения. В настоящее время дизелестроительные и судостроительные фирмы стараются решать проблему экономии топлива совершенствованием двигателя и судна в целом. Рост топливной экономичности СЭУ достигается также повышением параметров работы их главных двигателей (увеличением среднего эффективного давления в дизелях, температуры газов перед турбиной в ГТУ, давления и температуры пара в ПТУ и т. д.). Особое значение имеет решение проблемы сжигания тяжелых высоковязких и так называемых альтернативных топлив, водотопливных эмульсий. Эффективность и надежность работы СЭУ зависят от совершенства не только главных двигателей, но и вспомогательных ЭУ, их элементов. studfiles.net
studfiles.net Энергетическая установка - это... Что такое Энергетическая установка? Энергетическая установка (энергоустановка) – комплекс взаимосвязанного оборудования и сооружений, предназначенный для производства или преобразования, передачи, накопления, распределения или потребления энергии.ГОСТ 19431—84. Коммерческая электроэнергетика. Словарь-справочник. — М.: Энас. В.В. Красник. 2006.
Смотреть что такое "Энергетическая установка" в других словарях:
commercial_electric_power.academic.ru Судовые энергетические установкиСЭУ, Модуль 4.1., Чистяков А.Ю., 22.11.10 Модуль 4.1. 4.1.1. Физические основы работы ядерных энергетических реакторовИсточником энергии, вырабатываемой ядерной энергетической установкой, является процесс деления ядер атомов изотопов таких тяжелых элементов, как U235, U233, Pu239, осуществляемый в ядерном реакторе. Делящиеся вещества, используемые в работе ядерных реакторов, называют ядерным топливом, или ядерным горючим. В судовых ядерных энергетических установках практически основным ядерным горючим является U235; в природном уране его содержится всего около 0,7%. Уран с повышенным по сравнению с природным содержанием U235 называют обогащенным. Одним из возможных видов ядерных превращений является процесс деления ядер урана под воздействием нейтронов. В результате этого превращения ядро урана распадается на два одноименно заряженных и примерно равных по массе и заряду осколка, которые, отталкиваясь один от другого, разлетаются с очень большими скоростями. При столкновении осколков с атомами среды, в которой происходит деление, их кинетическая энергия переходит в тепловую энергию атомов среды. В этом процессе при каждом акте деления урана на один поглощенный нейтрон вылетают в среднем 2,5 нейтрона, которые, в свою очередь, при известных условиях вызывают деление других ядер U235. Так протекает цепная реакция деления ядерного горючего, которая может быть стационарной, затухающей или нарастающей и соответственно этому состояние реактора считается критическим, подкритическим и надкритическим. Процесс цепной реакции деления протекает в так называемой активной зоне реактора, в которой расположен делящийся материал. Испускаемые при делении ядер U235 нейтроны в среднем обладают большой энергией, а следовательно, и большой скоростью, при которой вероятность захвата их другими ядрами U235 невелика; это вызывает необходимость для обеспечения цепной реакции применять в ядерных реакторах в качестве горючего уран, обогащенный изотопом U235, а также вводить в активную зону некоторых типов реакторов специальное вещество — замедлитель нейтронов. В качестве замедлителя применяют воду (обычную и тяжелую), бериллий и графит; наилучшими замедляющими свойствами обладает тяжелая вода; бериллий и графит по своим характеристикам весьма близки один к другому. Обычная вода обладает несколько худшими замедляющими свойствами, но ввиду наличия у нее ряда других преимуществ она нашла широкое применение как замедлитель и одновременно теплоноситель в реакторах судовых энергетических установок. Таким образом, для реакторов, работающих на тепловых и промежуточных нейтронах, обязательным элементом, кроме ядерного горючего, является также и замедлитель нейтронов. Расположение ядерного горючего в энергетических реакторах может быть различным. Если ядерное горючее собрано в блоки, окруженные замедлителем, то такой реактор называют гетерогенным. Если же ядерное горючее равномерно распределено в веществе замедлителя, то реактор называют гомогенным. В судовых ядерных энергетических установках в настоящее время применяются лишь гетерогенные реакторы. Блоки ядерного горючего в гетерогенном реакторе состоят из тепловыделяющих элементов. Каждый тепловыделяющий элемент состоит из сердечника, содержащего делящийся материал, и из наружной оболочки, изолирующей последний от теплоносителя и исключающей его размыв, коррозионное разрушение или деформацию сердечника. Группа тепловыделяющих элементов обычно объединяется в топливные сборки (кассеты). Пространство внутри корпуса реактора, занятое тепловыделяющими элементами и замедлителем, называют активной зоной. Она окружена отражателем, способствующим уменьшению потерь нейтронов, а следовательно, и уменьшению критических размеров активной зоны. Кроме того, отражатель повышает равномерность нейтронного потока в зоне. В качестве отражателя применяют те же вещества, что и для замедлителя. В водо-водяном реакторе, где в качестве замедлителя и теплоносителя используется вода, последняя, окружая активную зону реактора, выполняет также и функции отражателя нейтронов. Отвод тепла из активной зоны реактора осуществляется посредством охлаждающего вещества — теплоносителя. В качестве теплоносителей могут быть применены: обычная вода, органические жидкости, жидкие металлы и их сплавы (натрий, калий и их сплавы, сплавы свинца и висмута и пр.), а также газы (гелий, азот, углекислый газ и пр.). К настоящему времени в судовых ядерных энергетических установках практическое применение нашли лишь реакторы на тепловых нейтронах, в которых в качестве теплоносителя и замедлителя нейтронов используется обычная вода высокой чистоты. При работе реактора на установившемся режиме его активная зона находится в критическом состоянии: среднее значение нейтронного потока в ней и число делений в единицу времени постоянны. При изменении заданной мощности реактора значение нейтронного потока и число делений в единицу времени должны быть временно изменены и приведены к новому постоянному значению, соответствующему новому режиму работы. Для этого реакторы имеют специальную систему автоматического регулирования мощности, связанную с системой их автоматической защиты. В процессе работы энергетических реакторов их ядерное горючее расходуется («выгорает»). После его выгорания до определенной степени требуется произвести замену ядерного горючего. Время работы активной зоны реактора между загрузками ядерным горючим называется кампанией реактора. Активная зона всякого энергетического реактора в начале ее использования обладает значительной избыточной реактивностью, постепенно уменьшающейся в процессе работы реактора. Начальную избыточную реактивность активной зоны реактора гасят специальными компенсирующими средствами, которые по мере выгорания делящихся материалов и накопления продуктов распада горючего постепенно извлекают (выдвигают) из активной зоны, чем высвобождается ее реактивность. Эксплуатацию судового энергетического реактора на тепловых нейтронах осложняет так называемое отравление реактора. Оно обусловлено тем, что в процессе работы реактора возникают осколки и продукты деления, обладающие большим сечением поглощения тепловых нейтронов. Наиболее сильно поглощает нейтроны ксенон135 (Хе135). После остановки реактора убыль Хе135 будет происходить только за счет его распада, так как нейтронный поток в реакторе уже прекратился и убыли за счет поглощения нейтронов не будет. В зависимости от уровня мощности, на которой работал реактор до его остановки, изменяется концентрация Хе135. Особенно значительной величины концентрация достигает после внезапной остановки реактора, работавшего до этого на большой мощности. Пуск реактора возможен лишь в случае наличия избыточной реактивности. Если же ее не имеется, то пуск реактора возможен лишь после снижения концентрации Хе135. на что требуется длительное время. Из сказанного следует, что обязательным составным элементом реактора является система управления и защиты. Регулирование реактора энергетических установок осуществляется воздействием на величину потока нейтронов путем введения в активную зону реактора элементов, обладающих хорошей способностью поглощать нейтроны (кадмий, бор). При управлении реактором требуется не только поддерживать его мощность на определенном заданном уровне, но также учитывать и изменение его реактивности, происходящей в результате отравления, зашлаковывания, выгорания горючего, температурных эффектов и других физических явлений. Поэтому в комплексе устройств управления и защиты реактора предусматривают: а) систему автоматического регулирования, поддерживающую мощность реактора на заданном уровне; б) систему компенсации, предназначенную для возмещения потери реактивности, происходящей из-за отравления реактора, выгорания топлива и других причин; в) систему аварийной защиты, мгновенно прекращающую цепную реакцию в активной зоне при возникновении неисправностей как в паропроизводительной, так и в турбинной установке, грозящих вывести реактор из строя. К этим неисправностям могут быть отнесены резкие отклонения от заданных значений параметров теплоносителя (повышение или падение давления и температуры сверх допустимых норм), появление радиоактивности в системе второго контура, нарушение плотности конденсационной системы и проникновение вследствие этого в питательную воду парогенераторов забортной соленой воды, обесточивание систем, обслуживающих установку (насосов, систем управления). Система управления и защиты реактора сблокирована с системой регулирования турбинной установки. Измерение мощности реактора основано на том принципе, что мощность реактора прямо пропорциональна потоку нейтронов. Следовательно, измерив поток нейтронов, можно определить мощность реактора. Измерение мощности производится с помощью так называемых ионизационных камер, принцип действия которых основан на свойстве заряженных частиц вызывать по пути своего движения ионизацию молекул газа. В результате ядерных реакций, происходящих в реакторе, примерно 80% выделяющейся энергии превращается в тепловую» а остальные 20% выделяются в виде излучений, от вредного воздействия которых на судах необходимо защищать команду и пассажиров, а также соответствующие грузы. Это достигается при помощи экранов, образующих биологическую защиту ядерной энергетической установки. При работе реактора возникают радиоактивные излучения, основными из которых при создании биологической защиты являются нейтронное и -излучение, так как- и-излучения обладают малой проникающей способностью. Нейтроны, являющиеся продуктами ядерных реакций, обладают большой проникающей способностью и могут проходить в среде большие расстояния. Следует отметить, что у большинства элементов при поглощении нейтронов возникает вторичное-излучение. В задачу биологической защиты входит как поглощение нейтронного потока и -излучений, исходящих из активной зоны реактора, так и вторичных-излучений, представляющих в некоторых случаях один из главных источников излучения. Конструкция и размеры (толщина) биологической защиты определяются также с учетом радиоактивности теплоносителя, который, проходя через активную зону реактора, подвергается воздействию интенсивных потоков нейтронов. Поэтому все оборудование, соприкасающееся с теплоносителем (трубопроводы, насосы, теплообменники), обеспечивается биологической защитой. Общую активность теплоносителя составляют как собственная активность, так и активность примесей — наведенная активность. Собственная активность связана с ядерными свойствами самого теплоносителя. Наличие в теплоносителе посторонних примесей повышает его радиоактивность и представляет дополнительный источник излучения. Примесями в теплоносителе, обусловливающими наведенную активность, могут быть продукты коррозии металла трубопроводов контура теплоносителя, минеральные соли (для воды), посторонние металлические включения и окислы (для металлических теплоносителей). Поэтому теплоносители должны подвергаться тщательной очистке до и после заполнения контура; трубопроводы контура теплоносителя изготовляются из коррозионно стойких материалов и тщательно промываются до заполнения контура теплоносителем. Биологическая защита ядерной энергетической установки должна настолько ослаблять поток излучений, чтобы их интенсивность не вызывала у людей каких-либо нарушений нормального течения биологических процессов или обмена веществ в организме. При этом комплекс биологической защиты должен обеспечить защиту не только от внешнего облучения, но и от попадания радиоактивных веществ внутрь организма через дыхательный и пищевой тракты в виде аэрозолей и газов. Это достигается герметизацией ядерных энергетических установок в специальных отсеках или контейнерах, в которых при работе установки поддерживается небольшое разрежение, предотвращающее распространение радиоактивных газов и аэрозолей. Системы очистки воздуха и кондиционирования отсеков установок конструктивно выполняются автономными, изолированными от общесудовых систем. Вес биологической защиты современных ядерных энергетических установок составляет весьма значительную часть их общего веса, особенно в установках небольшой мощности. Так, для энергетических установок мощностью около 20 000 л.с. вес биологической защиты составляет 40—50% от общего веса их паропроизводительной установки. studfiles.net Дизельные энергетические установкиБольшинство судов морского транспортного флота оборудованы дизель-ными установками с МОД (малооборотными двигателями), СОД (среднеобо-ротными двигателями) и ВОД (высокооборотными двигателями). а) Установки с МОД Применение МОД обусловлено их высокой экономичностью, возмож-ностью использования дешевых остаточных высоковязких топлив, высокой надежностью, отсутствием передач между двигателем и валопроводом, удобст-вом обслуживания, низким уровнем шума и вибрации. В состав ДУ с МОД входят один или несколько главных МОД; судовые валопроводы, гребные винты, системы. МОД выпускаются с диаметром цилиндра от 350 до 900 мм и ходом поршня от 1000 до 3000 мм. Эти двигатели имеют достаточно низкие удель-ные расходы топлива – около 167-170 г/(кВт·ч). Число цилиндров МОД может изменяться 4 до 12, что позволяет перекрывать необходимый для СЭУ диа-пазон мощности ГД от 1,5 до 40 МВт. МОД могут работать на котельных мазутах с вязкостью выше 350 мм2/с и содержанием серы до 3-4%. Для работы на тяжелых сортах топлива необходима хорошая топливоподготовка – очитка, подогрев до 100-110 °С. В МОД применяются высокие давления впрыска (до 120 – 130 МПа), что способствует повышению качества горения. Стоимость остаточных топлив в 1,5 – 2 раза ниже дисциллятных. Особенностью масляных систем МОД является наличие в них специа-льных лубрикаторных систем смазки цилиндров, которые обеспечивают по-дачу строго дозированных количеств масла в каждый цилиндр. Чтобы избе-жать образования кокса при сгорании масла, лубрикаторы обеспечивают подачу необходимого его количества в определенных точках цилиндра двигателя. Основные теплонапряженные детали МОД (цилиндровые втулки, порш-ни, крышки) охлаждаются пресной водой. б) Установки с СОД Дизельные установки с СОД применяются на морских судах транспор-тного, технического, вспомогательного и промыслового флота, на судах сме-шанного плавания, речных и специальных. После установок с МОД они занимают второе место по распространенности и область их применения постоянно расширяется. К СОД обычно относятся двигатели, частота враще-ния которых составляет 350-750 об/мин. Поскольку для эффективной работы винтов требуется несколько меньшая частота вращения (60-150 об/мин), то в состав ДУ с СОД входят редукторы. Современные СОД отличаются больши-ми значениями среднего эффективного давления (ре = 1,7-2 МПа), поэтому массогабаритные показатели СОД лучше, чем у МОД примерно в 1,5-2 раза. Высота ДРА с СОД почти в два раза меньше, чем с МОД. Судовые СОД выпускаются в рядном и V-образном исполнении. При рядном исполнении число цилиндров может быть от 6 до 10, а при V-образном от 10 до 18. Пропульсивные установки с СОД и механическими передачами могут иметь разнообразное конструктивное исполнение: одномашинные с одним ГД, подключенными к редуктору, двух-, трех-, или четырехмашинные, также подключенные к одному редуктору. Как и установки других типов, ДУ с СОД могут быть одно- и многовальными. в) Установки с ВОД К ВОД относят двигатели, имеющие частоту вращения более 750 об/мин. Ниже приведены сравнительные данные некоторых типов ДВС, применяемых в СЭУ. Высокооборотные двигатели имеют в сравнении с МОД и СОД лучшие массовые и стоимости показатели, однако большие удельные расходы топлива и масла, меньший ресурс работы и повышенный уровень шума. Большинство ВОД могут работать только на легких сортах топлива, вследствие чего они не нашли широкого применения на судах. Высокооборотные двигатели применяются на судах с динамическими принципами поддержания, катерах, портовых буксирах. Применение ВОД в ДУ позволяет значительно снизить массу и габариты ПУ, обеспечить более высокую ремонтопригодность и более низкую стоимость установки. СЭУ на основе СОД и МОД отличаются большим разнообразием конструктивных и компоновочных схем, которые во многом определяются типом и назначени-ем судов. В них чаще, чем в установках с МОД, применяется навешивание вспомогательных механизмов, что упрощает компоновку систем и уменьша-ет нагрузку СЭС. В то же время опыт эксплуатации СЭУ показывает, что навешивание механизмов может снижать ее надежность и ремонтопригод-ность. studfiles.net |