Большая Энциклопедия Нефти и Газа. Эффективно заземленная нейтральРежимы заземления нейтралей электрических сетей напряжением110кВ и вышеРабота электрических систем напряжением 110 – 150 кВ может предусматриваться как с глухозаземлённой, так и с эффективно заземлённой нейтралью. Электрические сети напряжением 220 кВ и выше должны работать только с глухозаземлённой нейтралью. Глухим заземлением называют такой способ заземления, при котором нейтраль обмотки трансформатора присоединена к заземляющему устройству металлически или через малое сопротивление (например, через трансформаторы тока). Эффективным заземлением нейтрали – называют такую сеть, в которой нейтрали большей части силовых элементов (трансформаторов, генераторов) заземлены. В данном режиме повышение напряжения по отношению к земле на неповреждённых фазах при однофазных замыканиях на землю в установившемся режиме не превышает 0,8 линейного напряжения и коэффициент замыкания на землю не превышает 1,4. Коэффициентом замыкания на землю в трёхфазной электрической сети называется отношение разности потенциалов между неповреждённой фазой и землёй в точке замыкания на землю другой или двух других фаз к разности потенциалов между фазой и землёй в этой точке до замыкания. Например, для сети 154 кВ: Кз= 0,8 ·Uлин/ Uфаз.= 0,8· 154 / 89 =123,2/89 = 1,384<1,4. Эффективное или глухое заземление нейтрали применяется во всех электроустановках напряжением 110 кВ и выше, и это объясняется большими технико-экономическими преимуществами такого способа именно для установок высокого напряжения. Внутренние перенапряжения в таких установках ниже, чем перенапряжения в сетях с изолированной нейтралью (не превышают 2.5) и поэтому стоимость изоляции линий и аппаратов получается значительно ниже, чем при изолированной нейтрали. Другим преимуществом эффективного заземления нейтрали является возможность обеспечить чёткую быстродействующую защиту однофазных К.З., которые составляют до 80% всех видов повреждений. Кроме этого в этих сетях более эффективно применение автоматического повторного включения (АПВ). Количество заземленных нейтралей на станции (подстанции) определяется необходимым значением тока, однофазного К.З., который не должен быть меньше 60% тока трехфазного К.З. в той же точке (Хо ≤ 3Х1) , чтобы повышение напряжения при этом на неповрежденных фазах не превышало 0,8. междуфазного напряжения в нормальном режиме работы. Такое значение тока может быть обеспечено при заземлении большей части нейтралей трансформаторов станции (подстанции), число которых должно быть определено специальным расчётом. При этих расчётах необходимо учитывать обязательность заземления нейтралей автотрансформаторов, трансформаторов 220 кВ, и тяговых трансформаторов установленных на электрических станциях и подстанциях. Чем больше число заземлённых нейтралей, тем меньше величина внутренних перенапряжений. Поэтому в сетях напряжением 220 кВ и выше применяют глухое заземление всех трансформаторов и автотрансформаторов, а в электропередачах 500-750 кВ, кроме того , в ряде случаев прибегают к дополнительному ограничению внутренних перенапряжений техническими средствами. Заземление нейтралей всех без исключения трансформаторов подстанции не практикуется, так как при этом увеличиваются токи однофазных К.З. на землю, чего следует избегать в тех случаях, когда это возможно, как, например, в сетях напряжением 110 – 150 кВ. Кроме того, при наличии большого количества подстанций, присоединённых к линиям электропередачи глухими ответвлениями, количество заземлённых нейтралей трансформаторов в сети ограничивается также условиями релейной защиты. Поэтому в сетях 110 – 150 кВ заземляют только такое количество нейтралей, которое обеспечивает упомянутую выше эффективность заземления и допустимое напряжение на нейтрали незаземлённых трансформаторов с РПН при однофазных коротких замыканиях. Однако рассматриваемый режим нейтрали имеет и ряд недостатков. Так, при замыкании одной фазы на землю образуется короткозамкнутый контур через землю и нейтраль источника с малым сопротивлением, к которому приложена Э.Д.С фазы (рис. 1).
Рисунок 1 – Трехфазная сеть с эффективнозаземленной нейтралью Возникает режим К.З. сопровождающийся протеканием больших токов. Во избежание повреждения оборудования длительное протекание больших токов недопустимо, поэтому К.З. быстро отключается релейной защитой. Правда, значительная часть однофазных повреждений в электрических сетях напряжением 110 кВ и выше относятся к самоустраняющимся, т.е. исчезающим после снятия напряжения. В таких случаях эффективны устройства автоматического повторного, включения (АПВ), которые, действуя после роботы устройств релейной защиты, восстанавливают питание потребителей за минимальное время. Второй недостаток — значительное удорожание выполняемого в распределительных устройствах контура заземления, который должен отвести на землю большие токи К.З. и поэтому представляет собой в данном случае сложное инженерное сооружение. Для такого контура ПУЭ допускает максимальную величину сопротивления заземляющего контура – 0,5 Ом, т.е., в 20 раз меньше, чем для систем с малыми токами замыкания на землю, к которым относятся сети 6-10-35 кВ. Отсюда следует, что число электродов в данном случае должно быть весьма большими и, действительно, в зависимости от свойств грунта составляет от 75 до 200 электродов. Несмотря на малое сопротивление заземляющего контура, падение напряжения на заземлителе при коротких замыканиях будет велико даже при сопротивлении 0,5 Ом. Например, при Ìз = 3000 А , Uз = 0,5·3000 = 1500 В. При таких условиях безопасность обслуживания может быть обеспечена быстрым автоматическим отключением повреждённой электроустановки, а также уменьшением напряжения прикосновения и шага, применением изолирующей обуви, перчаток, подставок и т. п. Третий недостаток – значительный, ток однофазного К.З, который при большом количестве заземленных нейтралей трансформаторов, а также в сетях с автотрансформаторами может превышать токи трехфазного К.З. Для уменьшения токов однофазного К.З. применяют, если это возможно и эффективно, частичное разземление нейтралей в сетях 110–150 кВ. Возможно применение токоограничивающих сопротивлений, включаемых в нейтрали трансформаторов. В сетях 110–220 кВ с эффективно заземленной нейтралью со значением отношения хо/х1= 2-3 при r0 / r1 ≤ 1 трёхфазное К.З. приводит к появлению наибольших токов, а поэтому является наиболее опасным видом аварии. Однако вероятность такого повреждения сравнительно невелика и тем меньше, чем выше напряжение. Так как благодаря широкому применению автотрансформаторов отношение х0 / х1 в мощных энергосистемах достигает значений 0,5 – 1,5, то уже в настоящее время нередки случаи, в особенности в сетях сверхвысоких напряжений, когда наиболее частый вид однофазных повреждений одновременно является наиболее тяжёлым, по которому нужно, в частности, производить выбор выключателей и другой аппаратуры, ошиновки, а также определять электродинамическую стойкость отдельных обмоток автотрансформаторов. Необходимо также отметить, что вследствие того, что автотрансформаторы имеют малые значения напряжения К.З. между сторонами ВН→СН, токи однофазного К,З. в современных энергосистемах при глухом заземлении нейтралей резко возрастают также на стороне среднего напряжения, что приводит к увеличению предельных токов отключения выключателей в этих сетях. Это обстоятельство необходимо тщательно анализировать в конкретных случаях, а результаты учитывать при выборе типа и параметров выключателей. В соответствии со сказанным следует отметить, что токи однофазного К.З. в перспективе будут расти быстрее, чем токи трёхфазного К.З. В то же время ограничение токов однофазного К.З. труднее, чем трёхфазного. В связи с этим высказываются различные предложения. В частности, было предложено отказаться от заземления нейтралей всех блочных повышающих трансформаторов; применять в отдельных случаях кроме ограничительных межсистемных связей трансформаторы с электрически не связанными обмотками вместо автотрансформаторов. Известно, что токи трёхфазного и однофазного К.З. соответственно равны: Ì(3)= Е/ Х1; Ì(1) = 3Е / (2х1 + х0 ) при Х1 = Х2, где Х1, Х2, Х0 – реактивные сопротивления прямой, обратной и нулевой последовательностей. Отсюда Ì(3)/ Ì(1) = (2Х1 + Х0) / 3Х1, следовательно, если Х0 ≤Х1, Ì(3) ≤ Ì(1). Так как в современных энергосистемах благодаря применению автотрансформаторов с обязательным глухим заземлением нейтралей, как правило, Х0 < Х1, то Ì(1) >Ì(3),что подтверждается рядом конкретных расчётов в энергосистемах. Так, в сети 400 кВ Англии Ì(1) / Ì(3) =1,2; в некоторых пунктах системы Центральной Сибири Ì(1) / Ì(3) изменяется от 1,05 в сети 500 кВ до 1,28 в сети 220 кВ. Увеличение токов однофазного К.З. в современных сетях обусловлено общим уменьшением полного сопротивления нулевой последовательности, вызванным помимо обязательного глухого заземления нейтрали автотрансформаторов и непосредственной электрической связи сетей ВН и СН также наличием третичной обмотки. Необходимость последней в настоящее время широко дискутируется в ряде стран. Известно, что третичная обмотка автотрансформатора служит для образования цепи с малым полным сопротивлением для прохождения тока третьей гармоники в намагничивающем токе и исключения искажения синусоидального напряжения за счёт появления третьей и кратной ей гармоник в фазном напряжении и третьей гармоники тока в линиях электропередачи. Одновременно она используется для подключения синхронного компенсатора или блока шунтовых реакторов, для питания собственных нужд подстанции и других целей. Однако благодаря повсеместному резкому увеличению токов однофазного К.З. и их частой вероятности возникновения, естественно, снова подвергается сомнению необходимость во всех случаях третичной обмотки. Следует подчеркнуть, что для образования пути прохождения токов третьей гармоники третичная обмотка может быть принципиально малой мощности, определяемой только её термической стойкостью (5 – 15% мощности главной обмотки). Однако для обеспечения электродинамической стойкости мощность третичной обмотки ранее принималась равной не менее 33,5% мощности главной обмотки. Примеры расчётов для автотрансформатора 300 МВА, 200/132 кВ и 1200 МВА, 400/275 кВ показали, что отказ от третичной обмотки существенно снижает значение несимметричных токов К.З. Таким образом, при возможности отказа от третичной обмотки такие автотрансформаторы могут быть использованы для ограничения однофазных токов К.З. в системе. При отказе от третичных обмоток обязательно глухое заземление нейтралей обмоток ВН и СН. Следует также иметь в виду, что при отсутствии третичной обмотки через нейтраль автотрансформатора и присоединённые к нему линии будут проходить токи третьей гармоники к ближайшему источнику с заземлённой нейтралью или к ближайшему автотрансформатору с третичной обмоткой, оказывая влияние на проходящие вблизи линии связи. Как указано выше, с точки зрения питания потребителей на низшем напряжении необходимость обмотки невелика, однако при отказе от неё подстанция лишается источника для питания собственных нужд, синхронного компенсатора и третичного блока шунтирующих реакторов. Поэтому в настоящее время вопрос об отказе от третичной обмотки в каждом случае решается индивидуально. В этом случае снижаются токи однофазного К.З., а также внутренние перенапряжения в режиме включения автотрансформатора вместе с линией со стороны общей обмотки, что отмечалось в сети 500 кВ системы. В настоящее время в сетях имеет место работа автотрансформаторов, как с третичной обмоткой, так и без неё. Таким образом, в современных энергосистемах возможным путём для уменьшения токов однофазного К.З. является увеличение полного сопротивления нулевой последовательности за счёт: – отказа от третичной обмотки; – частичного разземления нейтралей; – введения дополнительного реактивного сопротивления в цепь нулевой последовательности. Под системой с эффективно заземлённой нейтралью принято считать систему, в которой Х0 / Х1 ≤ 3 и r0 / r1 ≤ 1 для всех конфигураций сети, где r0 – активное сопротивление нулевой последовательности. В системах, где нейтрали всех трансформаторов заземлены наглухо, х0 / х1 ≤ 1. В большинстве систем с целью ограничения токов однофазного К.З. часть нейтралей разземляется; в этом случае за счёт влияния реактивного сопротивления линий х0 / х1 >1. На подстанциях сетей напряжением 110–150 кВ в соответствии с требованиями пп 3.2.28, 3.2.63 ПУЭ для исключения повреждений трансформаторов и вентильных разрядников из–за перенапряжений при неполнофазных режимах, а также снижения токов однофазного короткого замыкания и обеспечения надежной работы релейной защиты режим работы нейтралей силовых трансформаторов в сети 110–150 кВ устанавливается следующий: 1. Должны иметь глухое заземления нейтралей: 1.1. Трансформаторы 110–150 кВ с устройствами регулирования напряжения под нагрузкой (РПН) с уровнем изоляции нейтралы 35 кВ (испытательное напряжение нейтрали частоты 50 Гц равно 85 кВ). 1.2. Трансформаторы, имеющие генерирующие источники питания со стороны низкого или среднего напряжения, независимо от класса изоляции нейтрали. Допускается часть нейтралей таких трансформаторов не заземлять, если в ремонтных или в аварийных режимах невозможно их выделение на работы с участком сети, не имеющим трансформаторов с заземлёнными нейтралями, или обеспечивается при замыканиях на землю отключение трансформаторов с изолированной нейтралью до отключения трансформаторов с заземленной нейтралью. При этом, нейтрали, имеющие неполную изоляцию, должны быть защищены соответствующими разрядниками. 2. При подключении к транзитной линии или линии с радиальным питанием трансформаторов с уровнем изоляции нейтрали в соответствии с ГОСТ 1516.1–76 (испытательное напряжение нейтрали частоты 50 Гц 100 и 130 кВ трансформаторов 110–50 кВ соответственно ) необходимо производить: 2.1. При одном трансформаторе на данной ВЛ – глухое заземление его нейтрали. 2.2. При двух и более трансформаторах на данной ВЛ – глухое заземление нейтрали двух трансформаторов. Работа других трансформаторов допускается с изолированной нейтралью при защите её соответствующим разрядником. 3. При подключении к транзитной линии или линии с радиальным питанием только трансформаторов с полным классом изоляции нейтрали необходимо производить глухое заземление нейтрали одного трансформатора. 4. При подключении одного или несколько трансформаторов с уровнем изоляции нейтрали в соответствии с ГОСТ 1516.1–76 к шинам подстанций, имеющих питание от двух и более источников, необходимо глухое заземление нейтрали одного трансформатора из числа подключенных к данной системе шин или секции, работа других трансформаторов этой системы шин или секций допускается с изолированной нейтралью при её защите соответствующим разрядником. 5. Защита нейтрали обмотки 110 и 150 кВ трансформаторов с уровнем изоляции по ГОСТ 1516.1–76 должна осуществляться вентильным разрядником: РВС – 35 + РВС15 или РВМ – 35 + РВМ15 для трансформаторов 110 кВ и РВС 60 (2РВС20 + РВС–15) или 2РВМ35 (четыре элемента) для трансформаторов 150 кВ. 6. При отключении в ремонт трансформатора с глухозаземленной нейтралью должна заземляться нейтраль на другом трансформаторе, подключённом к данной линии или системе шин. При этом количество трансформаторов с глухозаземлённой нейтралью должно соответствовать требованию пунктов 2, 3, 4. 7. При производстве операций по включению и отключению трансформатора, имеющего неполную изоляцию нейтрали, необходимо, на время операции его нейтраль заземлять. 8. Все вновь вводимые силовые трансформаторы с уровнем изоляции нейтрали в соответствии с ГОСТ 1516.1–76 должны предусматривать работу, как с изолированной, так и заземленной нейтралью, для чего в его нейтрали должны быть смонтированы ЗОН – 110 и разрядник в соответствии с П.5. Запрещается разземление нейтрали трансформаторов 110 кВ и выше и установка в цепи её заземления коммутационных аппаратов и вентильных разрядников, если изоляция нейтрали рассчитана на работу при глухом заземлении (тяговые трансформаторы и автотрансформаторы). Вентильные разрядники для защиты нейтралей рекомендуется устанавливать непосредственно у трансформаторов.
а) у трансформаторов 110 кВ (испытательное напряжение нейтрали 100 кВ) с РП; б) у трансформаторов 150 кВ (испытательное напряжение нейтрали 130 кВ ) с РПН; в) и трансформаторов 110 -150 кВ (с испытательным напряжением нейтрали 85 кВ) с РПН; г) у тяговых трансформаторов 110 – 150 – 220 кВ; д) у автотрансформаторов; е) у трансформаторов 220750 кВ. без РПН; ж) у трансформаторов 220 кВ. с РПН; з) у трансформаторов 330 -500 кВ. с РПН Рисунок 2 – Способы заземления нейтралей трансформаторов и автотрансформаторов Свяжитесь со мной:No related posts. на Ваш сайт. electric-zone.ru Эффективное заземление - нейтраль - Большая Энциклопедия Нефти и Газа, статья, страница 2Эффективное заземление - нейтральCтраница 2 В сетях 110 кВ и выше определяющим в выборе способа заземления нейтралей является фактор стоимости изоляции. Здесь применяется эффективное заземление нейтралей, при котором во время однофазных замыканий напряжение на неповрежденных фазах относительно земли равно примерно 0 8 междуфазного напряжения в нормальном режиме работы. [16] Шунтирующие реакторы оказывают значительное влияние на перенапряжения промышленной частоты. Сеть 735 кв имеет эффективное заземление нейтрали, и реакторы способствуют этому. Отношение XD / XI оказывается даже меньше единицы; при этом, конечно, ток однофазного превышает ток трехфазного к. Более того, шунтирующие реакторы уменьшают также перенапряжения при сбросе нагрузки. Чтобы учесть влияние генераторов и их устройств регулирования на перенапряжения промышленной частоты при сбросе нагрузки, была использована физическая модель. Как видно из рис. 2, эти перенапряжения имеют вид модулированных низкочастотных колебаний с убывающей амплитудой. Перенапряжения в начале переходного процесса воспроизводятся неточно из-за неадекватного моделирования работы выключателя. Эти данные имеют чрезвычайно важное значение для выбора номинального напряжения вентильного разрядника. [18] I уровень изоляции соответствует эффективному заземлению нейтрали, II - не соответствует. В нейтралях параллельно дугогасяшим катушкам должны устанавливаться вентильные разрядники. [20] В практике релейной защиты, нашедшей отражение и в Правилах устройства электроустановок ( ПУЭ), сети принято подразделять на сети с большим током замыкания на землю, у которых ток замыкания равен или больше 500 А, и сети с малым током замыкания на землю, у которых ток замыкания не превышает 500 А. Очевидно, что первые являются сетями с эффективным заземлением нейтралей. [21] Сети с UHOM110 кВ и выше выполняются с эффективным заземлением нейтрали по соображениям стоимости изоляции, так как в таких сетях при замыкании на землю одной фазы напряжение на двух других не превышает 0 8 междуфазного напряжения. Это означает, что изоляцию рассчитывают на это напряжение, а не на полное междуфазное напряжение в случае изолированной или компенсированной нейтрали. [23] Если рассмотренные выше закономерности учесть в соответствующих стандартах, то можно существенно снизить стоимость аппаратов, так как, по-видимому, из-за чрезмерных требований к величинам испытательных напряжений в выключателях заложены излишние запасы, уменьшение которых может дать очень большую экономию. В соответствии с этим выключатели, предназначенные для работы в системах с эффективным заземлением нейтрали, следовало бы, по возможности, испытывать в режиме, воспроизводящем двухполюсное к. В качестве реактивности может быть применена третья фаза трансформатора ( неиспользуемая в этой схеме), к низкой стороне которой подключаются соответствующие реакторы. При испытаниях в сети с эффективно заземленной нейтралью ( рис. 7 - 9, б) дополнительная индуктивность L может подключаться в тех случаях, когда напряжение на первом гасящем полюсе оказывается меньшим 1 3 иф. [25] Следует отметить, что в мировой практике нет пока единого мнения об оптимальной области применения того или другого способа заземления нейтралей. Так, в странах Западной Европы и в Японии резонансное заземление нейтралей используется в сетях до 220 кВ, в то время как, например, в США имеются распределительные сети 10 - 35 кВ с эффективным заземлением нейтралей. [26] Системы с напряжением 35 кв и ниже работают с резонансным заземлением нейтрали или с изолированной нейтралью, если ток замыкания на землю очень мал. В последнее время нейтрали генераторов тоже заземляются через дуго-гасящие аппараты с целью уменьшить ток в месте замыкания на землю и тем самым уменьшить причиняемые этим замыканием повреждения генератора. Интересно отметить, что тенденция разделения сфер влияния двух основных способов заземления нейтрали в последние годы начинает проникать и в другие страны мира. В США сети низкого напряжения начали оборудовать дугогасящими аппаратами, а в Европе, напротив, постепенно внедряется эффективное заземление нейтрали для систем наиболее высоких номинальных напряжений. [28] Условия обеспечения надежности в системах с эффективно заземленной нейтралью практически не зависят от мощности и номинального напряжения, поэтому иногда этот режим нейтрали является единственно возможным. В системах с заземленной нейтралью участок линии, на котором произошло замыкание, немедленно отключается релейной защитой. Для того чтобы при этом электроснабжение не прерывалось, необходимо либо осуществлять резерв по сети ( двухцепные линии, кольцевые сети и др.), либо оборудовать линейные выключатели автоматическим повторным включением. В некоторых случаях приходится применять оба мероприятия одновременно. Поэтому обеспечение надежной работы систем с эффективным заземлением нейтрали связано с дополнительными расходами, целесообразность которых определяется экономическими соображениями. [29] Поэтому напряженности электрического и магнитного полей, создаваемые отдельными фазами в произвольной точке пространства, компенсируют друг друга и влияние на линию связи практически отсутствует. При замыкании одной фазы на землю появляются составляющие напряжения и тока нулевой последовательности, одинаковые во всех фазах, которые и являются основным источником помех. При изолированной нейтрали токи нулевой последовательности малы, поэтому основное значение имеет электростатическое влияние, которое может быть ограничено относительно простыми средствами. При заземлении нейтрали, напротив, основное значение имеет электромагнитное влияние, создаваемое магнитным полем токов нулевой последовательности, бороться с которым значительно труднее. Поэтому проблема защиты линий связи при эффективном заземлении нейтрали систем сильного тока решается в общем более сложно. [30] Страницы: 1 2 www.ngpedia.ru Эффективное заземление - нейтраль - Большая Энциклопедия Нефти и Газа, статья, страница 1Эффективное заземление - нейтральCтраница 1 Эффективное заземление нейтралей уменьшает коммутационные перенапряжения в сети, снижает требования к уровню изоляции и как следствие удешевляет сеть, позволяет выполнить чувствительную быстродействующую защиту от коротких замыканий на землю, уменьшает вероятность появления наиболее тяжелых трехфазных коротких замыканий, однако увеличивает уровень токов короткого замыкания на землю. Резонансное заземление нейтралей уменьшает уровни токов замыкания на землю, но увеличивает напряжение на неповрежденных фазах. [1] Эффективное заземление нейтрали, которое осуществляется путем соединения с землей наглухо или через небольшие сопротивления нейтралей всех или некоторых трансформаторов системы. Основ-jjfle jia3Ha 4eHHe заземления неиТра - ли затслючается - ттгмТ - чтоШ сде-дать ток замыкания HIT зшлю ин-дуктдвдым по фа. [2] Итак, эффективное заземление нейтрали дает существенную экономию в изоляции, поэтому этот способ заземления нейтрали применяется в первую очередь при высоких напряжениях, когда стоимость изоляции составляет существенную долю стоимости высоковольтного оборудования. [3] Сети с эффективным заземлением нейтралей имеют / Са0 8, поэтому в них устанавливаются так называемые 80 % - ные разрядники. [4] Сети с эффективным заземлением нейтралей имеют Кз 0 8, поэтому в них устанавливают так называемые 80 % - ные разрядники. [5] Сети с эффективным заземлением нейтралей имеют Кз-0 8, поэтому в них устанавливают так называемые 80 % - ные разрядники. [6] Группа А - сети с очень эффективным заземлением нейтрали, у которых глухо заземлена нейтраль каждого трансформатора и автотрансформатора. [7] Важную роль в ограничении внутренних перенапряжений играет эффективное заземление нейтрали, препятствующее смещению ( при коммутациях) нейтрали и ограничивающее перенапряжение относительно земли. [8] В СССР сети напряжением 110 кВ и выше выполняются с эффективным заземлением нейтралей, а сети напряжением 35 кВ и ниже с неэффективным или с резонансным заземлением нейтралей ( см. гл. [10] Обмотки силовых трансформаторов напряжением 110 кВ и выше выполняются с уровнями изоляции, рассчитанными для условий работы в сетях с эффективным заземлением нейтрали ( сети с большими токами замыкания на землю), и имеют неполную изоляцию нейтрали. Поэтому обмотки трансформаторов напряжением 110 кВ и выше должны работать с глухозаземленной нейтралью. [11] ГОСТ 16357 - 70 регламентирует изготовление вентильных разрядников: до 35 кВ: для сетей с любой системой заземления нейтрали; ПОкВ: а) для сетей с эффективным заземлением нейтрали ( коэфф. [12] Такой ток замыкания на землю обеспечивается заземлением необходимого количества нейтралей трансформаторов и автотрансформаторов электрической сети данного напряжения, а сеть, работающая при таких условиях, называется сетью с эффективным заземлением нейтрали. [13] Учитывая, что метод компенсации, хотя и имеющий сравнительно ограниченное применение в Советском Союзе, но весьма распространенный в мировой практике, обычно не рассматривается сколько-нибудь подробно в других, смежных с ТВН курсах, а эффективным заземлениям нейтрали в этих курсах отводится внимание, мы остановились с достаточными подробностями на истории и особенностях работы сетей с заземлением нейтрали через катушку Петерсена. [14] В сетях 110 кВ и выше определяющим в выборе способа заземления нейтралей является фактор стоимости изоляции. Здесь применяется эффективное заземление нейтралей, при котором во время однофазных замыканий напряжение на неповрежденных фазах равно примерно 0 8 междуфазного напряжения в нормальном режиме работы. [15] Страницы: 1 2 www.ngpedia.ru Эффективно заземлённая нейтраль — Википедия (с комментариями)Материал из Википедии — свободной энциклопедии Эффективно заземлённая нейтраль — нейтраль трёхфазной электрической сети выше 1000В (110 кВ и выше), коэффициент замыкания на землю в которой не более Кзам = 1,4. Коэффициент замыкания на землю в трехфазной электрической сети — это отношение разности потенциалов между неповреждённой фазой и землёй в точке замыкания на землю другой или двух других фаз к разности потенциалов между фазой и землёй в этой точке до замыкания . Иначе говоря при замыкании фазы в сети с изолированной нейтралью напряжение между землёй и неповреждёнными фазами возрастает до линейного — примерно в 1,73 раза; в сети с эффективно заземлённой нейтралью напряжение на неповреждённых фазах относительно земли возрастёт не более чем в 1,4 раза. Это особенно важно для сетей высокого напряжения, что уменьшает количество изоляции при изготовлении сетей и аппаратов, удешевляя их производство. Согласно рекомендации МЭК к сетям с эффективно-заземлённой нейтралью относят сети высокого и сверхвысокого напряжения, нейтрали которых соединены с землёй непосредственно или через небольшое активное сопротивление. В СССР и России сети с эффективно-заземлённой нейтралью - это сети напряжением 110 кВ и выше[1]. Недостатки
Особенности выполнения эффективно заземлённой нейтралиСогласно ПТЭЭП[2] максимально допустимая величина сопротивления заземляющего устройства для сетей с эффективно заземлённой нейтралью (для электроустановок выше 1000 В и с большим током замыкания на землю — свыше 500 А — каждого объекта) составляет 0,5 Ом с учётом естественного заземления (при сопротивлении искусственного заземляющего устройства — не более 1 Ом). Это вызвано необходимостью пропускания значительных токов при к.з. на землю, высоким и сверхвысоким напряжением сети, требованием ограничения напряжения между землёй и неповреждёнными фазами, а также возможностью появления при авариях высоких напряжений прикосновения, шаговых напряжений и опасных «выносов потенциалов» за территорию подстанции. Необходимость равномерности распределения потенциалов внутри подстанции и исключения появления шаговых напряжений на значительном удалении от подстанции исключается т.н. устройством выравнивания потенциалов, которое является составной частью заземляющего устройства для эффективно заземлённых нейтралей. Особые требования для заземляющих устройств с эффективно заземлёнными нейтралями создаёт значительные трудности для их расчёта и сооружения, делает их материалоёмкими, особенно для грунтов с высоким удельным сопротивлением (каменистые, скальные, песчаные грунты) и стеснёнными условиями сооружения. Напишите отзыв о статье "Эффективно заземлённая нейтраль"Литература
Примечания
Отрывок, характеризующий Эффективно заземлённая нейтраль– А он, Ипполит, тебе не говорил? – сказал князь Василий (обращаясь к сыну и схватив за руку княгиню, как будто она хотела убежать, а он едва успел удержать ее), – а он тебе не говорил, как он сам, Ипполит, иссыхал по милой княгине и как она le mettait a la porte? [выгнала его из дома?] – Oh! C'est la perle des femmes, princesse! [Ах! это перл женщин, княжна!] – обратился он к княжне. С своей стороны m lle Bourienne не упустила случая при слове Париж вступить тоже в общий разговор воспоминаний. Она позволила себе спросить, давно ли Анатоль оставил Париж, и как понравился ему этот город. Анатоль весьма охотно отвечал француженке и, улыбаясь, глядя на нее, разговаривал с нею про ее отечество. Увидав хорошенькую Bourienne, Анатоль решил, что и здесь, в Лысых Горах, будет нескучно. «Очень недурна! – думал он, оглядывая ее, – очень недурна эта demoiselle de compagn. [компаньонка.] Надеюсь, что она возьмет ее с собой, когда выйдет за меня, – подумал он, – la petite est gentille». [малютка – мила.] Старый князь неторопливо одевался в кабинете, хмурясь и обдумывая то, что ему делать. Приезд этих гостей сердил его. «Что мне князь Василий и его сынок? Князь Василий хвастунишка, пустой, ну и сын хорош должен быть», ворчал он про себя. Его сердило то, что приезд этих гостей поднимал в его душе нерешенный, постоянно заглушаемый вопрос, – вопрос, насчет которого старый князь всегда сам себя обманывал. Вопрос состоял в том, решится ли он когда либо расстаться с княжной Марьей и отдать ее мужу. Князь никогда прямо не решался задавать себе этот вопрос, зная вперед, что он ответил бы по справедливости, а справедливость противоречила больше чем чувству, а всей возможности его жизни. Жизнь без княжны Марьи князю Николаю Андреевичу, несмотря на то, что он, казалось, мало дорожил ею, была немыслима. «И к чему ей выходить замуж? – думал он, – наверно, быть несчастной. Вон Лиза за Андреем (лучше мужа теперь, кажется, трудно найти), а разве она довольна своей судьбой? И кто ее возьмет из любви? Дурна, неловка. Возьмут за связи, за богатство. И разве не живут в девках? Еще счастливее!» Так думал, одеваясь, князь Николай Андреевич, а вместе с тем всё откладываемый вопрос требовал немедленного решения. Князь Василий привез своего сына, очевидно, с намерением сделать предложение и, вероятно, нынче или завтра потребует прямого ответа. Имя, положение в свете приличное. «Что ж, я не прочь, – говорил сам себе князь, – но пусть он будет стоить ее. Вот это то мы и посмотрим». – Это то мы и посмотрим, – проговорил он вслух. – Это то мы и посмотрим. И он, как всегда, бодрыми шагами вошел в гостиную, быстро окинул глазами всех, заметил и перемену платья маленькой княгини, и ленточку Bourienne, и уродливую прическу княжны Марьи, и улыбки Bourienne и Анатоля, и одиночество своей княжны в общем разговоре. «Убралась, как дура! – подумал он, злобно взглянув на дочь. – Стыда нет: а он ее и знать не хочет!» Он подошел к князю Василью. – Ну, здравствуй, здравствуй; рад видеть. – Для мила дружка семь верст не околица, – заговорил князь Василий, как всегда, быстро, самоуверенно и фамильярно. – Вот мой второй, прошу любить и жаловать. Князь Николай Андреевич оглядел Анатоля. – Молодец, молодец! – сказал он, – ну, поди поцелуй, – и он подставил ему щеку. Анатоль поцеловал старика и любопытно и совершенно спокойно смотрел на него, ожидая, скоро ли произойдет от него обещанное отцом чудацкое. Князь Николай Андреевич сел на свое обычное место в угол дивана, подвинул к себе кресло для князя Василья, указал на него и стал расспрашивать о политических делах и новостях. Он слушал как будто со вниманием рассказ князя Василья, но беспрестанно взглядывал на княжну Марью. – Так уж из Потсдама пишут? – повторил он последние слова князя Василья и вдруг, встав, подошел к дочери. – Это ты для гостей так убралась, а? – сказал он. – Хороша, очень хороша. Ты при гостях причесана по новому, а я при гостях тебе говорю, что вперед не смей ты переодеваться без моего спроса. – Это я, mon pиre, [батюшка,] виновата, – краснея, заступилась маленькая княгиня.wiki-org.ru Эффективно заземлённая нейтраль — ВикипедияМатериал из Википедии — свободной энциклопедии Эффективно заземлённая нейтраль — нейтраль трёхфазной электрической сети выше 1000В (1 кВ и выше), коэффициент замыкания на землю в которой не более Кзам = 1,4. Коэффициент замыкания на землю в трехфазной электрической сети — это отношение разности потенциалов между неповреждённой фазой и землёй в точке замыкания на землю другой или двух других фаз к разности потенциалов между фазой и землёй в этой точке до замыкания. Иначе говоря, при замыкании фазы в сети с изолированной нейтралью напряжение между землёй и неповреждёнными фазами возрастает до линейного — примерно в 1,73 раза; в сети с эффективно заземлённой нейтралью напряжение на неповреждённых фазах относительно земли возрастёт не более чем в 1,4 раза. Это особенно важно для сетей высокого напряжения, что уменьшает количество изоляции при изготовлении сетей и аппаратов, удешевляя их производство. Согласно рекомендации МЭК к сетям с эффективно-заземлённой нейтралью относят сети высокого и сверхвысокого напряжения, нейтрали которых соединены с землёй непосредственно или через небольшое активное сопротивление. В СССР и России сети с эффективно-заземлённой нейтралью - это сети напряжением 110 кВ и выше[1]. Недостатки
Видео по темеОсобенности выполнения эффективно заземлённой нейтралиСогласно ПТЭЭП[2] максимально допустимая величина сопротивления заземляющего устройства для сетей с эффективно заземлённой нейтралью (для электроустановок выше 1000 В и с большим током замыкания на землю — свыше 500 А — каждого объекта) составляет 0,5 Ом с учётом естественного заземления (при сопротивлении искусственного заземляющего устройства — не более 1 Ом). Это вызвано необходимостью пропускания значительных токов при к.з. на землю, высоким и сверхвысоким напряжением сети, требованием ограничения напряжения между землёй и неповреждёнными фазами, а также возможностью появления при авариях высоких напряжений прикосновения, шаговых напряжений и опасных «выносов потенциалов» за территорию подстанции. Необходимость равномерности распределения потенциалов внутри подстанции и исключения появления шаговых напряжений на значительном удалении от подстанции исключается т.н. устройством выравнивания потенциалов, которое является составной частью заземляющего устройства для эффективно заземлённых нейтралей. Особые требования для заземляющих устройств с эффективно заземлёнными нейтралями создаёт значительные трудности для их расчёта и сооружения, делает их материалоёмкими, особенно для грунтов с высоким удельным сопротивлением (каменистые, скальные, песчаные грунты) и стеснёнными условиями сооружения. Литература
Примечанияwikipedia.green Эффективно заземлённая нейтраль ВикипедияЭффективно заземлённая нейтраль — нейтраль трёхфазной электрической сети выше 1000В (1 кВ и выше), коэффициент замыкания на землю в которой не более Кзам = 1,4. Коэффициент замыкания на землю в трехфазной электрической сети — это отношение разности потенциалов между неповреждённой фазой и землёй в точке замыкания на землю другой или двух других фаз к разности потенциалов между фазой и землёй в этой точке до замыкания. Иначе говоря, при замыкании фазы в сети с изолированной нейтралью напряжение между землёй и неповреждёнными фазами возрастает до линейного — примерно в 1,73 раза; в сети с эффективно заземлённой нейтралью напряжение на неповреждённых фазах относительно земли возрастёт не более чем в 1,4 раза. Это особенно важно для сетей высокого напряжения, что уменьшает количество изоляции при изготовлении сетей и аппаратов, удешевляя их производство. Согласно рекомендации МЭК к сетям с эффективно-заземлённой нейтралью относят сети высокого и сверхвысокого напряжения, нейтрали которых соединены с землёй непосредственно или через небольшое активное сопротивление. В СССР и России сети с эффективно-заземлённой нейтралью - это сети напряжением 110 кВ и выше[1]. Недостатки
Особенности выполнения эффективно заземлённой нейтралиСогласно ПТЭЭП[2] максимально допустимая величина сопротивления заземляющего устройства для сетей с эффективно заземлённой нейтралью (для электроустановок выше 1000 В и с большим током замыкания на землю — свыше 500 А — каждого объекта) составляет 0,5 Ом с учётом естественного заземления (при сопротивлении искусственного заземляющего устройства — не более 1 Ом). Это вызвано необходимостью пропускания значительных токов при к.з. на землю, высоким и сверхвысоким напряжением сети, требованием ограничения напряжения между землёй и неповреждёнными фазами, а также возможностью появления при авариях высоких напряжений прикосновения, шаговых напряжений и опасных «выносов потенциалов» за территорию подстанции. Необходимость равномерности распределения потенциалов внутри подстанции и исключения появления шаговых напряжений на значительном удалении от подстанции исключается т.н. устройством выравнивания потенциалов, которое является составной частью заземляющего устройства для эффективно заземлённых нейтралей. Особые требования для заземляющих устройств с эффективно заземлёнными нейтралями создаёт значительные трудности для их расчёта и сооружения, делает их материалоёмкими, особенно для грунтов с высоким удельным сопротивлением (каменистые, скальные, песчаные грунты) и стеснёнными условиями сооружения. Литература
Примечанияwikiredia.ru Эффективно заземлённая нейтраль - Gpedia, Your EncyclopediaТекущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 17 января 2014; проверки требуют 24 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 17 января 2014; проверки требуют 24 правки.Эффективно заземлённая нейтраль — нейтраль трёхфазной электрической сети выше 1000В (1 кВ и выше), коэффициент замыкания на землю в которой не более Кзам = 1,4. Коэффициент замыкания на землю в трехфазной электрической сети — это отношение разности потенциалов между неповреждённой фазой и землёй в точке замыкания на землю другой или двух других фаз к разности потенциалов между фазой и землёй в этой точке до замыкания. Иначе говоря, при замыкании фазы в сети с изолированной нейтралью напряжение между землёй и неповреждёнными фазами возрастает до линейного — примерно в 1,73 раза; в сети с эффективно заземлённой нейтралью напряжение на неповреждённых фазах относительно земли возрастёт не более чем в 1,4 раза. Это особенно важно для сетей высокого напряжения, что уменьшает количество изоляции при изготовлении сетей и аппаратов, удешевляя их производство. Согласно рекомендации МЭК к сетям с эффективно-заземлённой нейтралью относят сети высокого и сверхвысокого напряжения, нейтрали которых соединены с землёй непосредственно или через небольшое активное сопротивление. В СССР и России сети с эффективно-заземлённой нейтралью - это сети напряжением 110 кВ и выше[1]. Недостатки
Особенности выполнения эффективно заземлённой нейтралиСогласно ПТЭЭП[2] максимально допустимая величина сопротивления заземляющего устройства для сетей с эффективно заземлённой нейтралью (для электроустановок выше 1000 В и с большим током замыкания на землю — свыше 500 А — каждого объекта) составляет 0,5 Ом с учётом естественного заземления (при сопротивлении искусственного заземляющего устройства — не более 1 Ом). Это вызвано необходимостью пропускания значительных токов при к.з. на землю, высоким и сверхвысоким напряжением сети, требованием ограничения напряжения между землёй и неповреждёнными фазами, а также возможностью появления при авариях высоких напряжений прикосновения, шаговых напряжений и опасных «выносов потенциалов» за территорию подстанции. Необходимость равномерности распределения потенциалов внутри подстанции и исключения появления шаговых напряжений на значительном удалении от подстанции исключается т.н. устройством выравнивания потенциалов, которое является составной частью заземляющего устройства для эффективно заземлённых нейтралей. Особые требования для заземляющих устройств с эффективно заземлёнными нейтралями создаёт значительные трудности для их расчёта и сооружения, делает их материалоёмкими, особенно для грунтов с высоким удельным сопротивлением (каменистые, скальные, песчаные грунты) и стеснёнными условиями сооружения. Литература
Примечанияwww.gpedia.com |