Лекция № 1. Линейные электрические цепи постоянного тока. Эдс какой буквой обозначаетсяЧто такое ЭДС (электродвижущая сила) — объяснение и описаниеКогда родилось понятие «электрон», люди сразу связали его с определенной работой. Электрон – это по-гречески «янтарь». То, что грекам для того, чтобы найти этот бесполезный, в общем-то, магический камушек, надо было довольно далеко проехать на север — такие усилия тут, в общем-то, не в счет. А вот стоило проделать некоторую работу — руками по натиранию камушка о шерстяную сухую тряпочку — и он приобретал новые свойства. Это знали все. Натереть просто так, ради сугубо бескорыстного интереса, чтобы понаблюдать, как теперь к «электрону» начинает притягиваться мелкий мусор: пылинки, шерстинки, ниточки, перышки. В дальнейшем, когда появился целый класс явлений, объединенных потом в понятие «электричество», работа, которую надо обязательно затратить, не давала людям покоя. Раз нужно затратить, чтобы получился фокус с пылинками — значит, хорошо бы эту работу как-то сохранить, накопить, а потом и получить обратно. Таким образом из все более усложнявшихся фокусов с разными материалами и философских рассуждений и научились эту магическую силу собирать в баночку. А потом сделать и так, чтобы она из баночки постепенно высвобождалась, вызывая действия, которые стало уже можно ощутить, а очень скоро и померить. И померили настолько остроумно, имея всего-то пару шелковых шариков или палочек и пружинные крутильные весы, что и теперь мы вполне серьезно пользуемся все теми же формулами для расчетов электрических цепей, которые уже пронизали теперь всю планету, бесконечно сложных, сравнительно с теми первыми приспособлениями. Иллюстрация 2А название этого могучего джинна, сидящего в баночке, так до сих пор и содержит восторг давних открывателей: «Электродвижущая сила». Но только сила эта — совсем не электрическая. А наоборот, посторонняя страшная сила, заставляющая электрические заряды двигаться «против воли», то есть преодолевая взаимное отталкивание, и собираться где-то с одной стороны. От этого получается разность потенциалов. Ее и можно использовать, пустив заряды другим путем. Где их «не сторожит» эта страшная ЭДС. И заставить, тем самым, выполнить некоторую работу. Принцип работыЭДС — это сила самой разной природы, хотя измеряется она в вольтах: Схема простейшего прибора
Электризация, как первоначально предполагали, происходит именно от «трения», то есть, натирая янтарь тряпкой, мы «срываем» с его поверхности электроны. Однако исследования показали, что здесь не так все просто. Оказывается, на поверхности диэлектриков всегда имеются неравномерности заряда, и к этим неравномерностям притягиваются ионы из воздуха. Образуется такая воздушно-ионная шуба, которую мы и повреждаем, натирая поверхность.
1 — катод, 2 — анод, 3, 4 — отводы катода и анода, 5 — потребитель
То, что единицей измерения ЭДС является единица электрического напряжения, понятно. Так как самые разнородные механизмы, создающие электродвижущую силу источника тока, все преобразуют свои виды энергии в движение и накопление электронов, а это в конечном счете и приводит к появлению такого напряжения. Ток, возникающий от ЭДСЭлектродвижущая сила источника тока на то и движущая сила, что электроны от нее начинают двигаться, если замкнуть электрическую цепь. Их к этому принуждает ЭДС, пользуясь своей неэлектрической «половиной» природы, которая не зависит, все-таки, от половины, связанной с электронами. Так как считается, что ток в цепи течет от плюса к минусу (такое определение направления было сделано раньше, чем все узнали, что электрон — отрицательная частица), то внутри прибора с ЭДС ток делает движение завершающее — от минуса к плюсу. И всегда рисуют у знака ЭДС, куда направлена стрелочка – +. Только в обоих случаях — и внутри ЭДС источника тока, и снаружи, то есть в потребляющей цепи, — мы имеем дело с электрическим током со всеми его обязательными свойствами. В проводниках ток наталкивается на их сопротивление. И здесь, в первой половине цикла, имеем сопротивление нагрузки, во второй, внутренней, — сопротивление источника или внутреннее сопротивление. Внутренний процесс работает не мгновенно (хотя очень быстро), а с определенной интенсивностью. Он совершает работу по доставке зарядов от минуса к плюсу, и это тоже встречает сопротивление… Работа электрической батарейкиСопротивление это двоякого рода.
Но если только подключить к аккумулятору нагрузку из проводников, имеющих отличное от нуля сопротивление, то немедленно потечет ток, сила которого определяется по закону Ома. Померить внутреннее сопротивление источника ЭДС, казалось бы, можно. Стоит включить в цепь амперметр и шунтировать (закоротить) внешнее сопротивление. Однако внутреннее сопротивление настолько низко, что аккумулятор начнет разряжаться катастрофически, вырабатывая огромное количество теплоты, как на внешних закороченных проводниках, так и во внутреннем пространстве источника. Однако можно поступить иначе:
Обычно способность аккумулятора выдавать электроэнергию оценивается его энергетической «емкостью» в амперчасах. Но интересно было бы посмотреть, какой максимальный ток он может вырабатывать. Несмотря на то, что, быть может, электродвижущая сила источника тока заставит его взорваться. Так как идея устроить на нем короткое замыкание показалась не очень заманчивой, можно вычислить эту величину чисто теоретически. ЭДС равно Uхх. Просто нужно дорисовать график зависимости падения напряжения на резисторе от тока (следовательно, и от сопротивления нагрузки) до точки, в которой сопротивление нагрузки будет равно нулю. Это точка Iкз, пересечения красной линии с линией координаты I, в которой напряжение U стало нулевым, а все напряжение E источника будет падать на внутреннее сопротивление. Часто кажущие простыми основные понятия не всегда бывает можно понять без привлечения примеров и аналогий. Что такое электродвижущая сила, и как она работает, можно представить, только рассмотрев множество ее проявлений. А стоит рассмотреть определение ЭДС, как оно дается солидными источниками посредством умных академических слов — и все начинай с начала: электродвижущая сила источника тока. Или просто выбей на стене золотыми буквами: Надпись Похожие статьи:domelectrik.ru Про разность потенциалов, электродвижущую силу и напряжение - СтатьиРазность потенциалов Известно, что одно тело можно нагреть больше, а другое меньше. Степень нагрева тела называется его температурой. Подобно этому, одно тело можно наэлектризовать больше другого. Степень электризации тела характеризует величину, называемую электрическим потенциалом или просто потенциалом тела. Что значит наэлектризовать тело? Это значит сообщить ему электрический заряд, т. е. прибавить к нему некоторое количество электронов, если мы тело заряжаем отрицательно, или отнять их от него, если мы тело заряжаем положительно. В том и другом случае тело будет обладать определенной степенью электризации, т. е. тем или иным потенциалом, причем тело, заряженное положительно, обладает положительным потенциалом, а тело, заряженное отрицательно, — отрицательным потенциалом. Разность уровней электрических зарядов двух тел принято называть разностью электрических потенциалов или просто разностью потенциалов. Следует иметь в виду, что если два одинаковых тела заряжены одноименными зарядами, но одно больше, чем другое, то между ними также будет существовать разность потенциалов. Кроме того, разность потенциалов существует между двумя такими телами, одно из которых заряжено, а другое не имеет заряда. Так, например, если какое-либо тело, изолированное от земли, имеет некоторый потенциал, то разность потенциалов между ним и землей (потенциал которой принято считать равным нулю) численно равна потенциалу этого тела. Итак, если два тела заряжены таким образом, что потенциалы их неодинаковы, между ними неизбежно существует разность потенциалов. Всем известное явление электризации расчески при трении ее о волосы есть не что иное, как создание разности потенциалов между расческой и волосами человека. Действительно, при трении расчески о волосы часть электронов переходит на расческу, заряжая ее отрицательно, волосы же, потеряв часть электронов, заряжаются в той же степени, что и расческа, но положительно. Созданная таким образом разность потенциалов может быть сведена к нулю прикосновением расчески к волосам. Этот обратный переход электронов легко обнаруживается на слух, если наэлектризованную расческу приблизить к уху. Характерное потрескивание будет свидетельствовать о происходящем разряде. Говоря выше о разности потенциалов, мы имели в виду два заряженных тела, однако разность потенциалов можно получить и между различными частями (точками) одного и того же тела. Так, например, рассмотрим, что произойдет в куске медной проволоки, если под действием какой-либо внешней силы нам удастся свободные электроны, находящиеся в проволоке, переместить к одному концу ее. Очевидно, на другом конце проволоки получится недостаток электронов, и тогда между концами проволоки возникнет разность потенциалов. Стоит нам прекратить действие внешней силы, как электроны тотчас же, в силу притяжения разноименных зарядов, устремятся к концу проволоки, заряженному положительно, т. е. к месту, где их недостает, и в проволоке вновь наступит электрическое равновесие. Электродвижущая сила и напряжение Для поддержания электрического тока в проводнике необходим какой-то внешний источник энергии, который все время поддерживал бы разность потенциалов на концах этого проводника. Такими источниками энергии служат так называемые источники электрического тока, обладающие определенной электродвижущей силой, которая создает и длительное время поддерживает разность потенциалов на концах проводника. Электродвижущая сила (сокращенно ЭДС) обозначается, буквой Е. Единицей измерения ЭДС служит вольт. У нас в стране вольт сокращенно обозначается буквой "В", а в международном обозначении — буквой "V". Итак, чтобы получить непрерывное течение электрического тока, нужна электродвижущая сила, т. е. нужен источник электрического тока. Первым таким источником тока был так называемый "вольтов столб", который состоял из ряда медных и цинковых кружков, проложенных кожей, смоченной в подкисленной воде. Таким образом, одним из способов получения электродвижущей силы является химическое взаимодействие некоторых веществ, в результате чего химическая энергия превращается в энергию электрическую. Источники тока, в которых таким путем создается электродвижущая сила, называются химическими источниками тока. В настоящее время химические источники тока — гальванические элементы и аккумуляторы — широко применяются в электротехнике и электроэнергетике. Другим основным источником тока, получившим широкое распространение во всех областях электротехники и электроэнергетики, являются генераторы. Генераторы устанавливаются на электрических станциях и служат единственным источником тока для питания электроэнергией промышленных предприятий, электрического освещения городов, электрических железных дорог, трамвая, метро, троллейбусов и т. д. Как у химических источников электрического тока (элементов и аккумуляторов), так и у генераторов действие электродвижущей силы совершенно одинаково. Оно заключается в том, что ЭДС создает на зажимах источника тока разность потенциалов и поддерживает ее длительное время. Эти зажимы называются полюсами источника тока. Один полюс источника тока испытывает всегда недостаток электронов и, следовательно, обладает положительным зарядом, другой полюс испытывает избыток электронов и, следовательно, обладает отрицательным зарядом. Соответственно этому один полюс источника тока называется положительным (+), другой — отрицательным (—). Источники тока служат для питания электрическим током различных приборов — потребителей тока. Потребители тока при помощи проводников соединяются с полюсами источника тока, образуя замкнутую электрическую цепь. Разность потенциалов, которая устанавливается между полюсами источника тока при замкнутой электрической цепи, называется напряжением и обозначается буквой U. Единицей измерения напряжения, так же как и ЭДС, служит вольт. Если, например, надо записать, что напряжение источника тока равно 12 вольтам, то пишут: U — 12 В. Для измерения ЭДС или напряжения применяется прибор, называемый вольтметром. Чтобы измерить ЭДС или напряжение источника тока, надо вольтметр подключить непосредственно к его полюсам. При этом, если электрическая цепь разомкнута, то вольтметр покажет ЭДС источника тока. Если же замкнуть цепь, то вольтметр уже покажет не ЭДС, а напряжение на зажимах источника тока. ЭДС, развиваемая источником тока, всегда больше напряжения на его зажимах. www.alprof.info Лекция № 1. Линейные электрические цепи постоянного тока.
Совокупность соединённых друг с другом источников электрической энергии и нагрузок, по которым может протекать электрический ток, называют электрической цепью. Постоянным током называют ток, неизменный во времени. Постоянный ток представляет собой направленное упорядоченное движение частиц, несущих на себе электрические заряды. Как известно из курса физики, носителями заряда в металлах являются свободные электроны, а в жидкостях – ионы. Упорядоченное движение носителей зарядов в проводниках вызывается электрическим полем, созданных в них источниками электрической энергии. Источники электрической энергии представляют собой такие источники, которые преобразуют химическую, механическую и другие виды энергии в электрическую. Источник электрической энергии характеризуется величиной и направлением электродвижущей силы (ЭДС) и величиной внутреннего сопротивления. Условимся обозначать постоянный ток буквой , ЭДС источника – буквой , напряжение на участке цепи – буквой и сопротивление – буквой . В международной системе единиц СИ ток измеряется в амперах (А), ЭДС и напряжение – в вольтах (В) и сопротивление – в омах (Ом). Изображение электрической цепи на рисунке с помощью условных знаков принято называть электрической схемой. В соответствии с единой системой конструкторской документации (ЕСКД) стандартизованы размеры условных знаков элементов схемы. В цепи постоянного тока всего три элемента: источник ЭДС, источник тока и резистор. Условным знаком резистора, обладающего сопротивлением , на электрической схеме является вытянутый прямоугольник размером 4х10 мм согласно ЕСКД. Около него ставится обозначение сопротивления (рис. 1).
Рис. 1. Условный знак резистора Условным знаком источника ЭДС является кружок с изображённой внутри него стрелкой. Стрелка указывает полярность источника ЭДС. По ЕСКД диаметр кружка равен 10 мм (рис. 2).
Рис. 2. Условный знак источника ЭДС Условным обозначением источника тока является кружок с изображённой внутри него двойной стрелкой. Стрелка указывает полярность источника тока. По ЕСКД диаметр кружка равен 10 мм (рис. 3).
Рис. 3. Условный знак источника тока Приёмник энергии и провода, соединяющие приёмник с источником энергии, называют «внешней» частью электрической цепи или, короче, внешней цепью. Во внешней цепи ток течет от плюса источника энергии к минусу, а внутри источника – от минуса к плюсу. Зависимость тока, протекающего по резистору, от напряжения на этом резисторе принято называть вольтамперной характеристикой (ВАХ). Сопротивления, ВАХ которых являются прямыми линиями, называют линейными сопротивлениями, а электрические цепи с входящими в них только линейными сопротивлениями принято называть линейными электрическими цепями. Резисторы характеризуются линейными ВАХ. На рис. 4 показана эта ВАХ.
Рис. 4. ВАХ линейного сопротивления Наклон линии ВАХ зависит от величины сопротивления резистора. studfiles.net Электродвижущая сила и её видыВ физике такое понятие, как электродвижущая сила (сокращенно – ЭДС) используется в качестве основной энергетической характеристики источников тока. Электродвижущая сила ( ЭДС )
Электродвижущая сила (ЭДС) – способность источника энергии создавать и поддерживать на зажимах разность потенциалов. ЭДС – измеряется в Вольтах E = 1в Напряжение на зажимах источника всегда меньше ЭДС на величину падения напряжения. Электродвижущая сила
E = UR0 + URH URH = E – UR0 URH – напряжение на зажимах источника. Измеряется при замкнутой внешней цепи. Е – ЭДС – измеряется на заводе изготовителе. Электродвижущая сила (ЭДС) представляет собой физическую величину, которая равна частному от деления той работы, которая при перемещении электрического заряда совершается сторонними силами в условиях замкнутой цепи, к самому этому заряду. Следует заметить, что электродвижущая сила в источнике тока возникает и при отсутствии самого тока, то есть тогда, когда цепь является разомкнутой. Такую ситуацию принято именовать «холостым ходом», а сама величина ЭДС при ней равняется разнице тех потенциалов, которые имеются на зажимах источника тока. Химическая электродвижущая силаХимическая электродвижущая сила наличествует в аккумуляторах, гальванических батареях при протекании коррозионных процессов. В зависимости от того, на каком именно принципе построена работа того или иного источника питания, они именуются либо аккумуляторами, либо гальваническими элементами. Одной из основных отличительных характеристик гальванических элементов является то, что эти источники тока являются, так сказать, одноразовыми. При их функционировании те активные вещества, благодаря которым выделяется электрическая энергия, в результате протекания химических реакций распадаются практически полностью. Именно поэтому если гальванический элемент разряжен полностью, то в качестве источника тока использовать его далее невозможно. В отличие от гальванических элементов аккумуляторы предполагают многократное использование. Это возможно потому, что те химические реакции, которые в них протекают, имеют обратимый характер. Электромагнитная электродвижущая силаЭлектромагнитная ЭДС возникает при функционировании таких устройств, как динамо-машины, электродвигатели, дроссели, трансформаторы и т.п. Суть ее состоит в следующем: при помещении проводников в магнитное поле и их перемещении в нем таким образом, чтобы происходило пересечение магнитных силовых линий, происходит наведение ЭДС. Если цепь замкнута, то в ней возникает электрический ток. В физике описанное выше явление называется электромагнитной индукцией. Электродвижущую силу, которая при этом индуктируется, именуют ЭДС индукции. Следует заметить, что наведение ЭДС индукции происходит не только в тех случаях, когда в магнитном поле проводник перемещается, но и тогда, когда он остается неподвижным, но при этом осуществляется изменение величины самого магнитного поля. Фотоэлектрическая электродвижущая силаЭта разновидность электродвижущей силы возникает тогда, когда наличествует или внешний, или внутренний фотоэффект. В физике под фотоэффектом (фотоэлектрическим эффектом) подразумевается та группа явлений, которая возникает тогда, когда на вещество воздействует свет, и при этом в нем происходит эмиссия электронов. Это называют внешним фотоэффектом. Если же при этом появляется электродвижущая сила или изменяется электропроводимость вещества, то говорят о внутреннем фотоэффекте. Сейчас и внешний, и внутренний фотоэффекты очень широко используются для проектирования и производства огромного количества таких приемников светового излучения, которые преобразуют световые сигналы в электрические. Все эти устройства называются фотоэлементами и используются как в технике, так и при проведении разнообразных научных исследований. В частности, именно фотоэлементы используются для того, чтобы производить наиболее объективные оптические измерения. Электростатическая движущая силаЧто касается этого типа электродвижущей силы, то она, к примеру, возникает при механическом трении, возникающем в электрофорных агрегатах (специальных лабораторных демонстрационных и вспомогательных приборах), она же имеет место быть и в грозовых облаках. Генераторы Вимшурста (это еще одно название электрофорных машин) для своего функционирования используют такое явление, как электростатическая индукция. При их работе электрические заряды накапливаются на полюсах, в лейденских банках, причем разность потенциалов может достигать очень солидных величин (до нескольких сотен тысяч вольт). Природа статического электричества заключается в том, что оно возникает тогда, когда из-за потери или приобретения электронов нарушается внутримолекулярное или внутриатомное равновесие. Пьезоэлектрическая электродвижущая силаЭта разновидность электродвижущей силы возникает тогда, когда происходит или сдавливание, или растяжение веществ, называемых пьезоэлектриками. Они широко используются в таких конструкциях, как пьезодатчики, кварцевых генераторах, гидрофонах и некоторых другиех. Именно пьезоэлектрический эффект положен в основу работы пьезоэлектрических датчиков. Сами они относятся к датчикам так называемого генераторного типа. В них входной величиной является прилагаемая сила, а выходной – количество электричества. Что касается таких устройств, как гидрофоны, то в основу их функционирования заложен принцип так называемого прямого пьезоэлектрического эффекта, который имеют пьезокерамические материалы. Суть его состоит в том, что если на поверхность этих материалов оказывается звуковое давление, то на их электродах возникает разность потенциалов. При этом она пропорциональна величине звукового давления. Одной из основных сфер применения пьезоэлектрических материалов является производство кварцевых генераторов, имеющих в своей конструкции кварцевые резонаторы. Предназначены такие устройства для того, чтобы получать колебания строго фиксированной частоты, которые стабильны как по времени, так и при изменении температуры, а также имеют совсем невысокий уровень фазовых шумов. Термоионная электродвижущая силаЭта разновидность электродвижущей силы возникает тогда, когда с поверхности разогретых электродов происходит термоэмиссия заряженных частиц. Термоионная эмиссия на практике применяется достаточно широко, например, на ней основана работа практически всех радиоламп. Термоэлектрическая электродвижущая силаЭта разновидность ЭДС возникает тогда, когда на различных концах разнородных проводников или же просто на различных участках цепи температура распределяется очень неоднородно. Термоэлектрическая электродвижущая сила используется в таких устройствах, как пирометры, термопары и холодильные машины. Датчики, работа которых основана на этом явлении, называются термоэлектрическими, и являются, по сути дела, термопарами, состоящими из спаянных между собой электродов, изготовленных из разных металлов. Когда эти элементы или нагреваются, или охлаждаются, между ними возникает ЭДС, которая по своей величине пропорциональна изменению температуры. selectelement.ru ЭДС и напряжениеЧтобы электрический ток проходил по цепи продолжительное время, нужно непрерывно поддерживать на полюсах источника напряжения разность потенциалов. Аналогично этому, если соединить трубкой два сосуда с различными уровнями воды, то вода будет переходить из одного сосуда в другой до тех пор, пока уровни в сосудах не сравняются. Доливая воду в один сосуд и отводя ее из другого, можно добиться того, что движение воды по трубке между сосудами будет продолжаться непрерывно. При работе источника электрической энергии электроны с анода переходят на катод. Отсюда можно заключить, что внутри источника электрической энергии действует сила, которая должна непрерывно поддерживать ток в цепи, то есть иначе говоря, должна обеспечивать работу этого источника. Причина, которая устанавливает и поддерживает разность потенциалов, вызывает ток в цепи, преодолевая ее внешнее и внутреннее сопротивление, называется электродвижущей силой (сокращенно э. д. с.) и обозначается буквой E. Электродвижущая сила источников электрической энергии возникает под влиянием причин, специфических для каждого из них. В химических источниках электрической энергии (гальванических элементах, аккумуляторах) э. д. с. получается в результате химических реакций, в генераторах э. д. с. возникает вследствие электромагнитной индукции, в термоэлементах – за счет тепловой энергии.
Разность потенциалов, вызывающее прохождение тока через сопротивление участка электрической цепи, называется напряжением между концами этого участка. Электродвижущая сила и напряжение измеряются в вольтах. Для измерения э. д. с. и напряжения служат приборы – вольтметры (рисунок 1). Тысячные доли вольта – милливольты – измеряются милливольтметрами, тысячи вольт – киловольты – киловольтметрами. Чтобы измерить э. д. с. источника электрической энергии необходимо вольтметр включить к зажимам этого источника при разомкнутой внешней цепи (рисунок 2). Для измерения напряжения на каком-либо участке электрической цепи вольтметр нужно включить к концам этого участка (рисунок 3).
Видео 1. Что такое электродвижущая сила (э. д. с.) Источник: Кузнецов М. И., "Основы электротехники" – 9-е издание, исправленное – Москва: Высшая школа, 1964 – 560с. www.electromechanics.ru Эдс индукцииПричиной электродвижущей силы может стать изменение магнитного поля в окружающем пространстве. Это явление называетсяэлектромагнитной индукцией. Величина ЭДС индукции в контуре определяется выражением
где — поток магнитного поля через замкнутую поверхность , ограниченную контуром. Знак «−» перед выражением показывает, что индукционный ток, созданный ЭДС индукции, препятствует изменению магнитного потока в контуре (см. правило Ленца). 41. Индуктивность, ее единица СИ. Индуктивность длинного соленоида. Индукти́вность (или коэффициент самоиндукции) — коэффициент пропорциональности между электрическим током, текущим в каком-либо замкнутом контуре, и магнитным потоком, создаваемым этим током через поверхность[1], краем которой является этот контур.[2][3][4]. В формуле
— магнитный поток, — ток в контуре, — индуктивность.
Через индуктивность выражается ЭДС самоиндукции в контуре, возникающая при изменении в нём тока[4]: . Из этой формулы следует, что индуктивность численно равна ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1 А за 1 с. При заданной силе тока индуктивность определяет энергию магнитного поля, создаваемого этим током[4]: . Обозначение и единицы измеренияВ системе единиц СИ индуктивность измеряется в генри[7], сокращенно Гн, в системе СГС — в сантиметрах (1 Гн = 109см)[4]. Контур обладает индуктивностью в один генри, если при изменении тока на один ампер в секунду на выводах контура будет возникать напряжение в один вольт. Реальный, не сверхпроводящий, контур обладает омическим сопротивлением R, поэтому на нём будет дополнительно возникать напряжение U=I*R, где I — сила тока, протекающего по контуру в данное мгновение времени. Символ , используемый для обозначения индуктивности, был взят в честь Ленца Эмилия Христиановича (Heinrich Friedrich Emil Lenz)[источник не указан 1017 дней]. Единица измерения индуктивности названа в честь Джозефа Генри (Joseph Henry)[8]. Сам термин индуктивность был предложен Оливером Хевисайдом (Oliver Heaviside) в феврале 1886 года[источник не указан 1017 дней]. Электрический ток, который течет в замкнутом контуре, создает вокруг себя магнитное поле, индукция которого, согласно закону Био-Савара-Лапласа, пропорциональна току. Сцепленный с контуром магнитный поток Ф поэтому прямо пропорционален току I в контуре: (1) где коэффициент пропорциональности L называетсяиндуктивностью контура. При изменении в контуре силы тока будет также изменяться и сцепленный с ним магнитный поток; значит, в контуре будет индуцироваться э.д.с. Возникновение э.д.с. индукции в проводящем контуре при изменении в нем силы тока называетсясамоиндукцией. Из выражения (1) задается единица индуктивности генри (Гн): 1 Гн — индуктивность контура, магнитный поток самоиндукции которого при токе в 1 А равен 1 Вб: 1 Гн = 1 Вб/с = 1 В ·c/А . Вычислим индуктивность бесконечно длинного соленоида. Полный магнитный поток сквозь соленоид (потокосцепление) равен μ0μ(N2I/l)S . Подставив в (1), найдем (2) т. е. индуктивность соленоида зависит от длиныl солениода, числа его витков N, его , площади S и магнитной проницаемости μ вещества, из которого изготовлен сердечник соленоида. Доказано, что индуктивность контура зависит в общем случае только от геометрической формы контура, его размеров и магнитной проницаемости среды, в которой он расположен, и можно провести аналог индуктивности контура с электрической емкостью уединенного проводника, которая также зависит только от формы проводника, его размеров и диэлектрической проницаемости среды. Найдем, применяя к явлению самоиндукции закон Фарадея, что э.д.с. самоиндукции равна Если контур не претерпевает деформаций и магнитная проницаемость среды остается неизменной (в дальнейшем будет показано, что последнее условие выполняется не всегда), то L = const и(3) где знак минус, определяемый правилом Ленца, говорит о том, чтоналичие индуктивности в контуре приводит к замедлению изменения тока в нем. Если ток со временем увеличивается, то (dI/dt<0) и ξs>0 т. е. ток самоиндукции направлен навстречу току, обусловленному внешним источником, и замедляет его увеличение. Если ток со временем уменьшается, то (dI/dt>0) и ξs<0 т. е. индукционный ток имеет такое же направление, как и уменьшающийся ток в контуре, и замедляет его уменьшение. Значит, контур, обладая определенной индуктивностью, имеет электрическую инертность, заключающуюся в том, что любое изменение тока уменьшается тем сильнее, чем больше индуктивность контура.
42. Ток при размыкании и замыкании цепи. При всяком изменении силы тока в проводящем контуре возникает э. д. с. самоиндукции, в результате чего в контуре появляются дополнительные токи, называемые экстратоками самоиндукции. Экстратоки самоиндукции, согласно правилу Ленца, всегда направлены так, чтобы препятствовать изменениям тока в цепи, т. е. направлены противоположно току, создаваемому источником. При выключении источника тока экстратоки имеют такое же направление, что и ослабевающий ток. Следовательно, наличие индуктивности в цепи приводит к замедлению исчезновения или установления тока в цепи. Рассмотрим процесс выключения тока в цепи, содержащей источник тока с э.д.с. , резистор сопротивлением R и катушку индуктивностью L. Под действием внешней э. д. с. в цепи течет постоянный ток (внутренним сопротивлением источника тока пренебрегаем). В момент времени t=0 отключим источник тока. Ток в катушке индуктивностью L начнет уменьшаться, что приведет к возникновению э.д.с. самоиндукции препятствующей, согласно правилу Ленца, уменьшению тока. В каждый момент времени ток в цепи определяется законом Ома I=s/R, или (127.1) Разделив в выражении (127.1) переменные, получим Интегрируя это уравнение по I (от I0 до I) и t (от 0 до t), находим ln (I /I0) = –Rt/L, или (127.2) где =L/R — постоянная, называемая временем релаксации. Из (127.2) следует, что есть время, в течение которого сила тока уменьшается в е раз. Таким образом, в процессе отключения источника тока сила тока убывает по экспоненциальному закону (127.2) и определяется кривой 1 на рис. 183. Чем больше индуктивность цепи и меньше ее сопротивление, тем больше и, следовательно, тем медленнее уменьшается ток в цепи при ее размыкании. При замыкании цепи помимо внешней э. д. с. возникает э. д. с. самоиндукции препятствующая, согласно правилу Ленца, возрастанию тока. По закону Ома, или Введя новую переменную преобразуем это уравнение к виду где — время релаксации. В момент замыкания (t=0) сила тока I = 0 и u = –. Следовательно, интегрируя по и (от – до IR–) и t (от 0 до t), находим ln[(IR–)]/–= —t/, или (127.3) где — установившийся ток (при t). Таким образом, в процессе включения источника тока нарастание силы тока в цепи задается функцией (127.3) и определяется кривой 2 на рис. 183. Сила тока возрастает от начального значения I=0 и асимптотически стремится к установившемуся значению . Скорость нарастания тока определяется тем же временем релаксации =L/R, что и убывание тока. Установление тока происходит тем быстрее, чем меньше индуктивность цепи и больше ее сопротивление. Оценим значение э.д.с. самоиндукции , возникающей при мгновенном увеличении сопротивления цепи постоянного тока от R0 до R. Предположим, что мы размыкаем контур, когда в нем течет установившийся ток . При размыкании цепи ток изменяется по формуле (127.2). Подставив в нее выражение дляI0 и , получим Э.д.с. самоиндукции т. е. при значительном увеличении сопротивления цепи (R/R0>>1), обладающей большой индуктивностью, э.д.с. самоиндукции может во много раз превышать э.д.с. источника тока, включенного в цепь. Таким образом, необходимо учитывать, что контур, содержащий индуктивность, нельзя резко размыкать, так как это (возникновение значительных э.д.с. самоиндукции) может привести к пробою изоляции и выводу из строя измерительных приборов. Если в контур сопротивление вводить постепенно, то э.д.с. самоиндукции не достигнет больших значений. 43. Явление взаимной индукции. Трансформатор. Рассмотрим два неподвижных контура (1 и 2), которые расположены достаточно близко друг от друга (рис. 1). Если в контуре 1 протекает ток I1, то магнитный поток, который создавается этим током (поле, создающее этот поток, на рисунке изображено сплошными линиями), прямо пропорционален I1. Обозначим через Ф21 часть потока,пронизывающая контур 2. Тогда (1) где L21 — коэффициент пропорциональности.
Рис.1 Если ток I1 меняет свое значение, то в контуре 2 индуцируется э.д.с. ξi2 , которая по закону Фарадея будет равна и противоположна по знаку скорости изменения магнитного потока Ф21, который создается током в первом контуре и пронизыващет второй: Аналогичным образом, при протекании в контуре 2 тока I2 магнитный поток (его поле изображено на рис. 1 штрихами) пронизывает первый контур. Если Ф12 — часть этого потока, который пронизывает контур 1, то Если ток I2 меняет свое значение, то в контуре 1 индуцируется э.д.с. ξi1 , которая равна и противоположна по знаку скорости изменения магнитного потока Ф12, который создается током во втором контуре и пронизывает первый: Явление возникновения э.д.с. в одном из контуров при изменении силы тока в другом называется взаимной индукцией. Коэффициенты пропорциональности L21 и L12 называются взаимной индуктивностью контуров. Расчеты, которые подтверждены опытом, показывают, что L21 и L12 равны друг другу, т. е. (2) Коэффициенты пропорциональности L12 и L21 зависят от размеров, геометрической формы, взаимного расположения контуров и от магнитной проницаемости среды, окружающей контуры. Единица взаимной индуктивности та же, что и для индуктивности, — генри (Гн). Найдем взаимную индуктивность двух катушек, которые намотаны на общий тороидальный сердечник. Этот случай имеет большое практическое значение (рис. 2). Магнитная индукция поля, которое создавается первой катушкой с числом витков N1, током I1 и магнитной проницаемостью μ сердечника, B = μμ0(N1I1/l) где l — длина сердечника по средней линии. Магнитный поток сквозь один виток второй катушки Ф2 = BS = μμ0(N1I1/l)S
Значит, полный магнитный поток (потокосцепление) сквозь вторичную обмотку, которая содержит N2 витков, Поток Ψ создается током I1, поэтому, используя (1), найдем (3) Если рассчитать магнитный поток, который создавается катушкой 2 сквозь катушку 1, то для L12 получим выражение в соответствии с формулой (3). Значит, взаимная индуктивность двух катушек, которые намотаны на общий тороидальный сердечник, Трансформа́тор (от лат. transformo — преобразовывать) — это статическое электромагнитное устройство, имеющее две или более индуктивно связанных обмоток на каком-либо магнитопроводе и предназначенное для преобразования посредствомэлектромагнитной индукции одной или нескольких систем (напряжений) переменного тока в одну или несколько других систем (напряжений) переменного тока без изменения частоты системы (напряжения) переменного тока studfiles.net 45.2 Электродвижущая сила (ЭДС) и внутреннее сопротивление источника.45.2 Электродвижущая сила (ЭДС) и внутреннее сопротивление источника.Мы пришли к выводу, что для поддержания постоянного тока в замкнутой цепи, в нее необходимо включить источник тока. Подчеркнем, что задача источника заключается не в том, чтобы поставлять заряды в электрическую цепь (в проводниках этих зарядов достаточно), а в том, чтобы заставлять их двигаться, совершать работу по перемещению зарядов против сил электрического поля. Основной характеристики источника является электродвижущая сила1 (ЭДС) − работа, совершаемая сторонними силами по перемещению единичного положительного заряда Единицей измерения ЭДС в системе единиц СИ является Вольт. ЭДС источника равна 1 вольт, если он совершает работу 1 Джоуль при перемещении заряда 1 Кулон Для обозначения источников тока на электрических схемах используется специальное обозначение (рис. 397).рис. 397 Электростатическое поле совершает положительную работу по перемещению положительного заряда в направлении уменьшения потенциала поля. Источник тока проводит разделение электрических зарядов − на одном полюсе накапливаются положительные заряды, на другом отрицательный. Напряженность электрического поля в источнике направлена от положительного полюса к отрицательному, поэтому работа электрического поля по перемещению положительного заряда будет положительной при его движения от «плюса» к «минусу». Работа сторонних сил, наоборот, положительна в том случае, если положительные заряды перемещаются от отрицательного полюса к положительному, то есть от «минуса» к «плюсу». В этом принципиальное отличие понятий разности потенциалов и ЭДС, о котором всегда необходимо помнить. Таким образом, электродвижущую силу источника можно считать алгебраической величиной, знак которой («плюс» или «минус») зависит от направления тока. В схеме, показанной на рис. 398,рис. 398 вне источника (во внешней цепи) ток течет2 от «плюса» источника к «минусу», в внутри источника от «минуса» к «плюсу». В этом случае, как сторонние силы источника, так и электростатические силы во внешней цепи совершают положительную работу. Если на некотором участке электрической цепи помимо электростатических действуют и сторонние силы, то над перемещением зарядов «работают» как электростатические, так и сторонние силы. Суммарная работа электростатических и сторонних сил по перемещению единичного положительного заряда называется электрическим напряжением на участке цепи В том случае, когда сторонние силы отсутствуют, электрическое напряжение совпадает с разностью потенциалов электрического поля. Поясним определение напряжения и знака ЭДС на простом примере. Пусть на участке цепи, по которому протекает электрический ток, имеются источник сторонних сил и резистор (рис. 399).рис. 399 Для определенности будем считать, что φo > φ1, то есть электрический ток направлен от точки 0 к точке 1. При подключении источника, как показано на рис. 399 а, Сторонние силы источника совершают положительную работу, поэтому соотношение (2) в этом случае может быть записано в виде При обратном включении источника (рис. 399 б) внутри него заряды движутся против сторонних сил, поэтому работа последних отрицательна. Фактически силы внешнего электрического поля преодолевают сторонние силы. Следовательно, в этом случае рассматриваемое соотношение (2) имеет вид Для протекания электрического тока по участку цепи, обладающему электрическим сопротивлением, необходимо совершать работу, по преодолению сил сопротивления. Для единичного положительного заряда эта работа, согласно закону Ома, равна произведению IR = U которое, естественно совпадает с напряжением на данном участке. Заряженные частицы (как электроны, так и ионы) внутри источника движутся в некоторой окружающей среде, поэтому со стороны среду на них также действуют тормозящие силы, которые также необходимо преодолевать. Заряженные частицы преодолевают силы сопротивления благодаря действию сторонних сил (если ток в источнике направлен от «плюса» к «минусу») либо благодаря электростатическим силам (если ток направлен от «минуса» к «плюсу»). Очевидно, что работа по преодолению этих сил не зависит от направления движения, так как силы сопротивления всегда направлены в сторону, противоположную скорости движения частиц. Так как силы сопротивления пропорциональны средней скорости движения частиц, то работа по их преодолению пропорциональна скорости движения, следовательно, силе тока силе. Таким образом, мы можем ввести еще характеристику источника − его внутренне сопротивление r, аналогично обычному электрическому сопротивлению. Работа по преодолению сил сопротивления при перемещении единичного положительного заряда между полюсами источника равна A/q = Ir. Еще раз подчеркнем, эта работа не зависит от направления тока в источнике. 1Название этой физической величины неудачно − так электродвижущая сила является работой, а не силой в обычном механическом понимании. Но этот термин настолько устоялся, что изменять его не «в наших силах». К слову, сила тока то же не является механической силой! Не говоря уж о таких понятиях «сила духа», «сила воли», «божественная сила» и т.д.2Напомним, за направление движения электрического тока принято направление движения положительных зарядов.fizportal.ru |