Eng Ru
Отправить письмо

Энциклопедия по машиностроению XXL. Дизель генератор постоянного тока


Генератор постоянного тока. Принцип работы, применение.

Современные условия развития производственной сферы предполагают использование большого количества электроэнергии в различных ее видах. Как правило, мы слышим о широком распространении и востребованности переменного тока, однако, во многих сферах используется и постоянный.

Для его получения используется особый вид энергогенерирующего оборудования – генератор постоянного тока. Данное устройство строится на принципе преобразования механической энергии в электрическую.

Как и другим источникам энергии, генератору постоянного тока свойственны такие основные характеристики, как:

  • Номинальное напряжение;
  • Номинальный ток;
  • Мощность;
  • Частота вращения.

В частности, показатели мощности таких установок могут очень существенно колебаться и находятся в диапазоне от нескольких КВт до 10 МВт.

Устройства данного типа, в свою очередь, подразделяются на 2 основные группы в зависимости от способа возбуждения:

  • Генераторы с независимым возбуждением;
  • Генераторы с самовозбуждением.

В первом случае обмотка возбуждения питается от посторонних источников энергии в виде вспомогательных генераторов или аккумуляторов. Также при небольших мощностях в качестве источника питания используется магнитоэлектрический принцип.

Во втором случае обмотка питается от энергии, вырабатываемой самим генератором.

Устройство генератора постоянного тока

Принципом, на котором основывается работа генератора постоянного тока, является электромагнитная индукция и устройство самой установки включает в себя несколько основных узлов.

  • Неподвижная индуктирующая часть;
  • Вращающаяся индуктируемая часть – якорь.

Неподвижная часть включает главные и дополнительные полюса, а также станину. Полюса представляют собой стальные сердечники с размещенными на них катушками с обмоткой возбуждения, как правило, из медного провода.

Вращающийся якорь включает стальной сердечник с медной обмоткой и коллектор.

Впоследствии при работе установки постоянный ток проводится через обмотку возбуждения и происходит образование магнитного потока полюсов.

Обе части генератора объединяются в одну цепь при помощи специальных неподвижных щеток из графита или графитного сплава.

Применение генераторов постоянного тока в жизни

Во многих сферах промышленности широко используются источники постоянного тока, что обусловлено особенностями технологического процесса и на сегодня является безальтернативным вариантом.

В частности, востребованы генераторы постоянного тока в электролизной промышленности, металлургии. Кроме того, часто такие установки применяют на судах, тепловозах, трамваях и в других направлениях транспортной сфере.

В металлургии установки постоянного тока необходимы для использования в работе прокатных станов.

www.brizmotors.ru

Дизельный генератор тепловоза

Дизельные генераторы

Дизель-генератор для тепловозов представляют собой дизель вместе с тяговым генератором, который вырабатывает электроэнергию и передает тяговым электродвигателям. Дизель-генератор тепловоза работает по генераторной характеристике. В большинстве случаев мощность таких устройств зависит от частоты вращения коленчатого вала.

Минимальная мощность, которая соответствует первой позиции рукоятки контроллера — 150—200 кВт, что способствует плавному троганию поезда с места. Автоматическое регулирование дизель-генератора осуществляется объединённым регулятором дизеля, который поддерживает заданную при помощи рукоятки контроллера частоту вращения, а также нагрузку способом воздействия на подачу топлива и возбуждения тягового генератора.С целью обеспечения надёжной и бесперебойной работы тягового генератора нужна достаточная равномерность вращения вала ДГ тепловоза. Число цилиндров дизеля для выравнивания вращающего момента должно быть не менее шести. Пуск дизель-генератора тепловоза производится от аккумуляторных батарей, а для многосекционных тепловозов — от тягового генератора.

На тепловозах, в которых установлены синхронные генераторы, пуск дизеля осуществляется при помощи стартера, который во время пуска, получая питание от аккумуляторной батареи, начинает работать в режиме электрического двигателя постоянного тока с поочередным возбуждением и через задний редуктор вращает вал дизельного генератора.

После пуска дизеля стартер, работая в генераторном режиме, питает цепи управления тепловоза, привода тормозного компрессора, освещения, электродвигателя, электродвигателя вентилятора кузова, зарядки аккумуляторной батареи, топливоподкачивающего и отопительно-вентиляционного и агрегатов. Стартер-генератор и возбудитель находятся на корпусе тягового генератора. С задним редуктором дизеля они соединены упругими муфтами.

Дизельная генераторная установка тепловоза используется и для привода агрегатов вспомогательного оборудования. К ним относятся вентилятор охлаждающего устройства тепловоза, тормозной компрессор, охлаждения тяговых двигателей, вспомогательный генератор возбудитель и другие. Поэтому тяговый генератор не всю эффективную мощность, развиваемую дизелем, передаёт тяговым электродвигателям. К примеру, на тепловозе 2ТЭ10В(М) мощностью 2210 кВт тяговым электродвигателям передается мощность 1800 кВт.

Существуют и тяговые генераторы постоянного тока (серия ГП), которые предназначены для использования на тепловозах, обладающих электропередачей постоянного тока. Такие генераторы осуществляют питание тяговых электродвигателей. Помимо этого генераторы на короткое время применяются и в качестве пусковых электродвигателей с целью запуска дизелей, которые питаются от аккумуляторной батареи.

Дизельный генератор тепловоза выпускается в защищенном исполнении, он оснащен самовентиляцией либо принудительной вентиляцией. Все типоразмеры генераторов такого типа имеют одинаковую конструкцию, и друг от друга отличаются такими параметрами, как габаритные размеры, технические данные и специфика исполнения в зависимости от предназначения.

Тяговые агрегаты обеспечивают преобразование механической энергии дизеля в электрическую, а также питание тяговых электродвигателей, цепей возбуждения генераторов, электродвигателей приводов вспомогательных механизмов тепловозов.

dieselco.ru

Тяговый генератор — WiKi

У этого термина существуют и другие значения, см. Генератор.

Тяговый генератор — элемент электрической тяговой передачи тепловоза, преобразующий механическую энергию дизеля тепловоза в электрическую энергию, поступающую к тяговым электродвигателям. Тяговый генератор постоянного тока также используется для пуска дизеля от аккумуляторной батареи.

Внешняя характеристика генератора

Внешней характеристикой генератора называется зависимость напряжения на его зажимах от тока нагрузки при неизменной частоте вращения якоря и заданных условиях возбуждения. Для полного использования мощности дизеля идеальная внешняя характеристика генератора должна иметь гиперболическую форму, ограниченную с одной стороны максимальным напряжением на выходе генератора и максимальным током генератора — с другой. Для получения характеристики близкой к идеальной, в тяговых генераторах используется независимое возбуждение с автоматической системой регулирования тока возбуждения. На вход системы возбуждения подаются сигналы, соответствующие напряжению тягового генератора и току нагрузки, напряжение, вырабатываемое системой, подаётся на обмотку возбуждения генератора. При движении тепловоза с поездом по лёгкому профилю пути или резервом для экономии топлива мощность дизеля уменьшается путём ступенчатого снижения частоты его вращения рукояткой контроллера машиниста. Для того чтобы система возбуждения при частичных нагрузках обеспечивала постоянство мощности генератора на уровнях, соответствующих экономичным режимам работы дизеля, на вход системы возбуждения дополнительно вводят сигнал, соответствующий частоте вращения коленчатого вала.

Генератор постоянного тока

Тяговый генератор постоянного тока состоит из магнитной системы, якоря, щёткодержателя со щётками и вспомогательных устройств (см. Двухмашинный агрегат). Магнитная система генератора предназначена для создания внутри него мощного магнитного поля. Она состоит из станины генератора (его корпуса), главных и добавочных полюсов. Станина изготовлена из низкоуглеродистой стали, обладающей высокой магнитной проницаемостью. Генераторы большой мощности для уменьшения размера и массы выполняются многополюсными. Сердечники главных полюсов изготавливаются из листов электротехнической стали. На каждом главном полюсе размещены катушки пусковой обмотки и обмотки возбуждения. Пусковая обмотка обеспечивает возбуждение генератора при его работе в режиме электродвигателя для запуска дизеля. Магнитное поле вращающегося якоря искажает магнитное поле обмоток возбуждения, величина этого воздействия, называемого реакцией якоря, зависит от величины тока в якоре. В результате физическая нейтраль генератора смещается относительно щёток и между щётками и коллектором возникает сильное искрение. Для ослабления реакции якоря между главными полюсами устанавливаются добавочные. Магнитное поле добавочных полюсов направлено навстречу поля якоря и нейтрализует его действие.

Якорь генератора для снижения его массы выполняется полым. Сердечник якоря набирается из пластин электротехнической стали, в пазы сердечника укладывается обмотка якоря. Поскольку при работе генератора на якорь действуют значительные центробежные силы, в пазах сердечника обмотка укрепляется клиньями из изоляционного материала, участки обмотки, выходящие из пазов сердечника, стягиваются бандажами из стальной проволоки или стеклоткани.

Коллектор генератора состоит из нескольких сотен медных пластин, изолированных друг от друга миканитовыми прокладками. Поверхность коллектора, по которой скользят щетки, изготавливается строго цилиндрическая и тщательно шлифуется, рабочая поверхность щёток притирается к поверхности коллектора. Щётки вставляются в латунные щёткодержатели, которые прижимают их к коллектору пружинами. Электрический ток от щёток отводится по гибким медным шунтам. Для охлаждения тяговых генераторов используется самовентиляция или устанавливаются дополнительные вентиляторы.

При создании тяговых генераторов постоянного тока большой мощности возникает ряд принципиальных трудностей. С увеличением мощности генератора возрастают его размеры, в то же время для надёжной работы коллекторно-щёточного узла линейная скорость поверхности коллектора не должна превышать 60—70 м/с, что ограничивает его диаметр. Для предотвращения недопустимого искрения и возникновения кругового огня напряжение между соседними пластинами коллектора не должно превышать 30—35 В, что ограничивает длину витков обмотки якоря.

Генератор переменного тока

Статор тягового генератора переменного тока состоит из стальной станины, в которую установлен сердечник из листов электротехнической стали. В пазы сердечника уложена обмотка из медного изолированного провода. Для уменьшения пульсации выпрямленного напряжения обмотка статора выполняется многофазной. Магнитная система ротора генератора — многополюсная, сердечники полюсов набраны из листовой стали и закреплены на стальном корпусе ротора. Катушки полюсов соединяются последовательно, начало и конец обмотки возбуждения присоединены к контактным кольцам, по которым скользят графитовые щётки, закреплённые в латунных щёткодержателях. Кроме того, в пазах полюсных башмаков уложены стержни, соединённые между собой в демпферную обмотку, улучшающую работу генератора в переходных режимах.

Масса тягового генератора переменного тока примерно на 30 % меньше массы генератора постоянного тока такой же мощности, а межремонтный интервал увеличен в 1,5 — 2 раза. Недостатком тягового генератора переменного тока является невозможность работы в двигательном режиме для пуска дизеля. Однако масса генератора переменного тока и стартерного двигателя остаётся меньше массы генератора постоянного тока, а стартерный двигатель при работе дизеля используется в качестве вспомогательного генератора постоянного тока.

Литература

Е. Я. Гаккель, К. И. Рудая, И. Ф. Пушкарев, А. В. Лапин, В. В. Стрекопытов, М. А. Никулин. Электрические машины и электрооборудование тепловозов. Учебник для вузов ж. д. трансп / Под ред. Е. Я Гаккель. — 3-е изд., перераб. и доп. — М.: Транспорт, 1981. — 256 с.

ru-wiki.org

Генератор постоянного тока: устройство, применение :: SYL.ru

В данной статье рассмотрим генератор постоянного тока и его применение в различных сферах. Генератор - это, проще говоря, "создатель" энергии, которая применяется впоследствии в приборах, предназначенных для преобразования этой энергии в конечном счете с пользой для человека. А какая польза для нас может быть от этого генератора? И где, собственно, его применяют, и для чего?

Польза от генератора

Его основное применение может быть на заводах, фабриках, в строительстве объектов. Также на электростанциях и даже на судах применяется постоянный ток. Генератор постоянного тока является востребованным, и его применение возрастает, только потому, что его мощность, в отличие от переменного типа, больше при одинаковых габаритных размерах. А самое главное - это высокая надежность его простой схемы, позволяющей работать намного дольше и значительно увеличивающей срок службы.

Устройство

Видов указанного прибора существует огромное количество, но принцип всегда один и тот же. Вот как раз и следует рассмотреть принцип действия генератора постоянного тока. Сначала мы его сравним с генератором переменного типа, чтобы понять, чем же они различаются. Генератор постоянного тока имеет ротор с конструкцией барабанного типа. А крепление индуктора находится в статоре, который неподвижен и сделан из чугуна или стали. Правда, из стали отливается в редких случаях, потому что данный сплав предназначен для металлургических заводов узкого профиля. Внутри статора есть специальные крепления, на которые наматываются провода из сплава меди, от которых мы получаем магнитное поле. В принципе отличий немного, но для получения постоянного тока, без выпрямителей, данный вид намного эффективнее, чем устройство переменного типа. Генератор постоянного тока имеет наиболее распространенную модель, называемую коллекторной, которая, в отличие от переменного типа, имеет  раздельные кольца. К ним присоединяются концы обмотки якоря генератора. Эти раздельные кольца имеют изоляцию между собой и находятся на общем цилиндре, то есть вращаются на общей оси, а также на них прижимаются щетки из сплава на основе меди и графита. И собственно, с этих щеток выводится постоянный ток во внешнюю цепь.

Сварочный генератор

Главным образом постоянный ток применяется в сварочных аппаратах. Сварочный генератор постоянного тока чаще всего используют в местах, где отсутствует электрический переменный ток. 

Существуют данные устройства и переменного тока. Но как показывает практика, их меньше используют в связи с меньшей универсальностью для питания сварочной дуги. В качестве топлива для сварочного постоянного генератора может служить дизель либо бензин. Бензиновые бывают более компактные и поэтому их удобно использовать в домашнем хозяйстве или на приусадебном участке.

www.syl.ru

Генераторы постоянного тока | Генератор постоянного тока

Эти генераторы используются, как правило, на гусеничных машинах. Рассмотрим устройство генератора постоянного тока, применяемого на гусеничном транспортере-тягаче.

Генератор имеет вращающийся в магнитном поле якорь 27, который представляет собой пластинчатый стальной сердечник. В пазы сердечника уложены петли изолированных проводов, концы которых соединены с изолированными друг от друга и от корпуса пластинами коллектора 7. К крышке 6 прикреплена траверса 22, в щеткодержателях которой размещены четыре сдвоенные щетки. Угольные щетки снимают ток с пластин коллектора в моменты достижения наибольшей ЭДС, индуцируемой в каждой петле обмотки якоря.

При работе генератор нагревается от циркулирующего по его обмоткам тока, поэтому в торце сердечника якоря имеются вентиляционные каналы 10 для охлаждающего воздуха. Поток воздуха обеспечивается вентиляторами 2 и 18, установленными с противоположных сторон, и внутренним вентилятором 12, размещенным на шлицах вала 17 якоря.

Для создания магнитного потока в генераторах применяются не постоянные магниты, а электромагниты.

Генератор постоянного тока

Рис. Схема генератора постоянного тока:1, 15 — кожухи наружных вентиляторов; 2, 18 — вентиляторы; 3, 14 — шарикоподшипники; 4 — гайка; 5 — крепежные элементы кожуха; 6, 13 — крышки; 7 — коллектор; 8 — выводной зажим; 9 — обмотка возбуждения; 10 — вентиляционный канал; 11 — корпус; 12 — внутренний вентилятор; 16 — шпонка; 17 — вал якоря; 19, 24 — болты; 20 — бонка; 21 — якорь; 22 — траверса; 23 — защитная лента

Известно, что ЭДС, возникающая в проводнике, помещенном в магнитном поле, зависит от числа магнитных силовых линий, которые он пересекает в единицу времени. Следовательно, ЭДС генератора зависит от магнитного потока, создаваемого полюсами, и частоты вращения якоря. Чем быстрее вращается якорь, тем большее число магнитных силовых линий пересекают проводники обмотки за одно и то же время. Обмотка возбуждения 9 фактически является обмоткой полюсов, по которой проходит ток, создающий магнитное поле между этими полюсами.

ustroistvo-avtomobilya.ru

Тяговые генераторы постоянного тока - Энциклопедия по машиностроению XXL

Секционная мощность тепловозов, работающих на железных дорогах СССР за послевоенные годы, увеличилась с 736 до 2210 кВт, но для ряда направлений уже сейчас требуется большая мощность. Создание более мощных тепловозов с электрической передачей постоянного тока вызывает много затруднений, главное из которых — неудовлетворительная коммутация тяговых генераторов постоянного тока. Практически тяговые генераторы постоянного тока при частоте вращения 1000 об/мин и номинальной мощности 2000 кВт с устойчивой коммутацией нельзя разместить в отведенные габаритные размеры для них на тепловозе. Поэтому применяют передачу переменно-постоянного тока, в которой вместо генератора постоянного тока устанавливается синхронный генератор и выпрямительная установка. Тяговые синхронные генераторы сокращают затраты меди и высоколегированной электротехнической стали, практически снимают ограничение по частоте вращения. Синхронные генераторы более надежны в работе и требуют меньшего ухода в эксплуатации из-за отсутствия щеточно-коллекторного аппарата. Синхронные генераторы на тепловозах не применялись, так как не было надежных малогабаритных выпрямительных установок.  [c.5] ТЯГОВЫЕ ГЕНЕРАТОРЫ ПОСТОЯННОГО ТОКА  [c.40]

Порядок разборки тягового генератора постоянного тока следующий генератор отсоединяют от поддизельной рамы, продувают сжатым воздухом в специальной камере, наружную поверхность станины обтирают ветошью, смоченной в керосине. После этого с вала якоря снимают муфту и вентиляционный патрубок. От подшипникового щита отсоединяют токопроводящие шины, в щеткодержателях поднимают или совсем вынимают щетки. Так как генератор имеет только один подшипник, то для выемки якоря используют специальную Г-образную скобу 4 (рис. 5.8). Скоба одним концом крепится к фланцу 5 вала болтами, а другим поддерживается подъемным краном. Между скобой 4 и станиной 3 генератора помещают деревянную прокладку 2, и кран освобождают. После этого отжимными болтами выпрессовывают подшипниковый щит и якорь вынимают. Разборку и предварительный осмотр генератора ведут на подставке /. После разборки каждый узел продувают в камере, очищают волосяными щетками и передают на специализированные рабочие участки для дополнительного осмотра и необходимого ремонта.  [c.103]

СИСТЕМЫ РЕГУЛИРОВАНИЯ НАПРЯЖЕНИЯ ТЯГОВЫХ ГЕНЕРАТОРОВ ПОСТОЯННОГО ТОКА  [c.185]

Критерий выполнимости тяговых генераторов постоянного тока. Перед локомотивостроением поставлена задача повышения мощности тепловозов и увеличения их скоростей. Увеличение объема перевозок предъявляет повышенные требования к тепловозам в отношении надежности и уменьшения расходов на содержание и ремонт. Повышение мощности тепловозов требует уменьшения массы локомотива на единицу мощности, и наша промышленность сделала в этом направлении очень многое. Достаточно сказать, что с начала выпуска первых послевоенных тепловозов масса на единицу мощности снижена почти в 3 раза. Снижение массы достигнуто путем усовершенствования конструкции тепловоза в целом и его отдельных агрегатов. Немалую роль сыграло снижение массы электрических машин, которое обусловлено улучшением конструкции, повышение.м электрических и магнитных нагрузок и увеличением частоты вращения якоря.  [c.274]

Коробки соединительные 165 Кратность тока нагрузки усилителя 192 Критерий выполнимости тяговых генераторов постоянного тока 274 Коэффициент мощности 32  [c.298]

Секционная мощность тепловозов за послевоенные годы увеличилась с 736 до 2210 кВт, но для ряда направлений железных дорог уже сейчас требуется большая мощность. Создание более мощных тепловозов с электрической передачей постоянного тока вызывает, много затруднений, главным из которых является неудовлетворительная коммутация тяговых генераторов постоянного тока.  [c.5]

Практически тяговые генераторы постоянного тока при частоте вращения 1000 об/мин и номинальной мощности 2000 кВт не могут обеспечить удовлетворительную коммутацию, поэтому применяют передачу переменно-постоянного тока, в которой вместо генератора постоянного тока устанавливается синхронный генератор и выпрямительная установка. Тяговые синхронные генераторы сокращают затраты меди и высоколегированной электротехнической стали, практически снимают ограничение по частоте вращения, уменьшают стоимость и трудоемкость изготовления. Изготовление опытного тягового синхронного генератора ГС-501 оказалось дешевле, чем серийного тягового генератора постоянного тока ГП-ЗП, при примерно одинаковой мощности.  [c.5]

Критерий выполнимости тяговых генераторов постоянного тока.  [c.261]

Электропередача состоит из тягового генератора постоянного тока, якорь которого механически соединен с коленчатым валом дизеля, шести тяговых электродвигателей последовательного возбуждения, соединенных с движущимися осями через зубчатую передачу, возбудителя и вспомогательного генератора и комплекта электроаппаратуры для управления электропередачей и защиты от аварийных режимов.  [c.100]

При пуске дизеля тяговый генератор постоянного тока работает в режиме электродвигателя, потребляет электрическую энергию от батареи и приводит во вращение коленчатый вал. На тепловозах с передачей переменно-постоянного тока для пуска дизеля устанавливают стартерный электродвигатель.  [c.105]

Тяговые генераторы постоянного тока  [c.242]

Тяговые генераторы постоянного тока предназначены для пуска дизеля и получения ЭДС в режимах тяги тепловоза. Во время пуска дизеля тяговый генератор работает в режиме электродвигателя с последовательным возбуждением. В табл. 10.7 представлены основные типы генераторов постоянного тока, применяемых на тепловозах.  [c.242]

Каково назначение и устройство основных сборочных единиц тяговых генераторов постоянного тока  [c.252]

Вместе с тяговым генератором постоянного тока дизель образует силовую установку тепловоза, энергия которой используется для получения силы тяги. Основными частями дизеля являются остов, шатунно-кривошип-ный и газораспределительный механизмы, топливная, масляная, водяная и газовая системы.  [c.38]

В тепловозах обычно применяются генераторы постоянного тока и сериесные тяговые двигатели. Такая система наиболее просто и надёжно обеспечивает большую пусковую силу тяги, плавное регулирование скорости и автоматизацию управления.  [c.574]

С дизелем соединён генератор постоянного тока на напряжение 600 в, который питает четыре тяговых мотора.  [c.604]

Большая часть мощности турбины расходуется на привод компрессора, а меньшая часть через зубчатую передачу И отдаётся генератору постоянного тока 12 для привода тяговых моторов.  [c.628]

В гидромеханических передачах вслед за двигателем устанавливают гидротрансформатор (вместо муфты сцепления), автоматически изменяющий скорость движения трактора в зависимости от внешней нагрузки. В гусеничных тракторах с электромеханической трансмиссией движение ведущим звездочкам гусениц сообщается тяговым электродвигателем постоянного тока, питаемым от приводимого двигателем трактора генератора, через бортовые фрикционы и редукторы. Система привода дизель-генера-тор-электродвигатель упрощает кинематическую схему передачи и обеспечивает бесступенчатое регулирование скорости передвижения в широких пределах. Гидромеханическая и электрическая силовые передачи наиболее полно отвечают режиму работы тракторов с прицепным и навесным оборудованием строительных машин.  [c.119]

Одно из существенных преимуществ электрической тяги перед другими видами тяги с автономными локомотивами — это возможность применения рекуперативного торможения, при котором тяговые электродвигатели во время движения поезда по спуску или при замедлении работают как генераторы постоянного тока и вырабатываемую электро-  [c.5]

Другой способ регулирования тяговых двигателей — изменение магнитного потока возбуждения. Из выражения (2) следует, что при развитии определенной силы тяги Р с уменьшением магнитного потока Ф увеличивается ток нагрузки двигателя /, т. е. при ослаблении возбуждения тягового электродвигателя ток нагрузки двигателя, а значит, и генератора возрастает. При легких условиях движения система может быть введена в режим работы генератора на гиперболической части его характеристики. Ослабление возбуждения широко применяется во всех видах тягового электропривода постоянного тока (рис. 23). Преимущественное, повсеместное применение имеет ослабление возбуждения путем ответвления части тока /щ в некоторый резистор с сопротивлением Гщ (рис. 23, а). Для ослабления возбуждения необходимы выводы от катушек возбуждения. Это усложняет устройство двигателя и коммуникаций проводов тем более, что в современном тяговом электроприводе целесообразно применять не одну, а несколько ступеней ослабления возбуждения.  [c.20]

Тяговые генераторы предназначены для преобразования механической энергии дизеля в электрическую, которая передается тяговым электродвигателям. Кроме того, в момент пуска дизеля генераторы постоянного тока работают в режиме электродвигателя с последовательным возбуждением, приводящего в движение коленчатый вал дизеля.  [c.25]

Машина постоянная Сд позволяет определить приведенный объем якоря машины D l, а при определенных сочетаниях основных размеров D и I каждый из этих размеров в отдельности. Например, для тепловозных генераторов постоянного тока D/1 i 1,8 2,2 для тяговых двигателей постоянного тока D /l = 1,1 1,2 для машин переменного тока D // = 0,7 0,75. При уточнении размеров необходимо руководствоваться соображениями рационального использования материалов.  [c.52]

Примечания. 1. Все тяговые генераторы постоянного тока с не ависимым возбуждением.  [c.41]

Тяговые электродвигатели /—6 тепловоза ТЭМ2 (рис. 10.1 см. вкладку), соединенные в две параллельные группы, получают питание от тягового генератора постоянного тока Г через главные контакты поездных контакторов П1 и П2. Схема тепловоза предусматривает две ступени ослабления возбуждения тяговых электродвигателей. Обеспечивается это подключением параллельно их обмоткам возбуждения С1 — С2 через контакты контакторов ослабления возбуждения ШI— Ш4 резисторов СШI и СШ4. Коэффициент  [c.208]

У тепловозов с тяговыми генераторами постоянного тока, как, например, 2ТЭ10Л, при аварийном режиме напряжение Г почти не меняется. Напряжение СВ при аварийном режиме уменьшается за счет введения в цепь возбуждения добавочного резистора САВ. Для плавного разгона тепловоза на первых трех позициях контроллера в цепи обмотки возбуждения СВ включен резистор R, шунтируемый на 4-й позиции контроллера контактами контактора КАВ.  [c.259]

Тяговый генератор постоянного тока преобразует механическую энергию дизеля в электрическую, кроме того, он испольэуется для пуска дизеля. В этом случае генератор работает в качестве электродвигателя с питанием от аккумуляторной батареи.  [c.118]

Сущность электрической передачи. Современная электрическая передача состоит из тягового генератора постоянного тока, вал которого механически соединён с валом дизеля, тяговых электродвигателей последовательного зозбуждения, соединённых зубчатой передачей с движущими осями тепловоза, и комплекта вспомогательных электрических мапшн и аппаратов.  [c.497]

Пуск дизеля осуществляется от щелочной аккумуляторной батареи, ркс-положенной в четырех отсеках (ящиках) внутри кузова тепловоза. Аккумуляторная батарея состоит из 46 элементов. От аккумуляторной батареи питается радиостанция 42 РТМ-А2-ЧМ, установленная в кабине машиниста, и система локомотивной сигнализации (АЛСН), а также при неработающем дизель-генераторе — цепи управления и освещения. Выработанный тяговым генератором постоянный ток подается на шесть тяговых электродвигателей ЭД-118А или ЭД-118Б, которые через одноступенчатые тяговые редукторы с упругими ведомыми зубчатыми колесами приводят во вращение колесные пары тепловоза. Необходимый диапазон использования постоянной мощности дизеля по скорости тепловоза достигается ослаблением возбужде-  [c.3]

Рассмотрим устройство тягового генератора постоянного тока на примере генератора ГП311Б (рис. 10.7). Станина 6(см. рис. 10.7)  [c.244]

С появлением более мощных дизелей возникла необходимость применения тяговых генераторов большей мощности. Однако тяговые генераторы постоянного тока, рассчитанные на большую мощность, выходили за рамки допустимых значений по габаритам и массе. В этой связи на тепловозах с передачей переменнопостоянного тока нашли применение генераторы переменного тока (табл. 10.8), которые в сочетании с выпрямительной установкой заменили тяговые генераторы постоянного тока.  [c.248]

Обмотки якорей высокоиспользо-ванных тяговых генераторов постоянного тока выполняют многоходовыми, ступенчатыми с полным числом уравнительных соединений для устойчивой работы их при больших нагрузках, а обмотки статоров синхронных генераторов — волновыми одновитковыми, иногда совмещенными в одних пазах сердечников с вспомогательными обмотками. В обмотках применяют провода с усиленной ВИТКОВОЙ изоляцией. Корпусную изоляцию выполняют из тепло- и влагостойких материалов классов Р и Н, устойчивых также к загрязнениям, парам топлива и масла и продуктам сгорания, дизеля. В пазах сердечников изоляцию обмоток дополнительно усиливают гильзой из плен-костеклоткани. Для перспективных предельно используемых машин применяют наиболее прогрессивную полиамидную изоляцию класса Н. Лобовые части обмоток якорей крепят бандажами из специальной высокопрочной бандажной стеклоленты, наложенной с натяжением до 400 МПа  [c.204]

Тяговые генераторы предназначены для преобразования механической энергии дизеля тепловоза в электрическую и питания ею тяговых электродвигателей непосредственно или через выпрямительную установку. Тяговые генераторы постоянного тока используются (кратковременно) также для пуска дизеля, работая в режиме электродвигателя с питанием от аккумуляторной батареи. Основные технические данные тяговых генераторов, эксплуатируемых на железных дорогах страны и осваиваемых промышленностью новых серий тепловозов, приведены в табл. 8.1. В зависимости от рода тока, мощности, габаритов, системы вентиляции и способа монтажа конструкция тяговых генераторов имеет ряд существенных особенностей. Наиболее распространенными и типичными по конструкции являются ГП311Б — генераторы постоянного тока и ГС501А — синхронные.  [c.206]

Силовая установка тепловоза представляет собой дизель-гене-ратор, СОСТОЯ1ЦИЙ из дизеля Г1Д1М и тягового генератора постоянного тока ГП-300БУ2, якорь которого жестко соединен с коленчатым валом дизеля.  [c.18]

В зависимости от вида тяговых двигателей различаются комбинированные системы одно-фазно постоянного тока и однофазно-трёхфазного тока. В первой из них однофазный ток сети преобразуется на самом электроподвижном составе в постоянный при помощи мотор-генераторов, состоящих из однофазного синхронного двигателя и одного или двух генераторов постоянного тока на общем валу. Система отличается хорошими тяговыми свойствами и высокой эксплоатационной надёжностью, однако широкого распространения не получила из-за высокой стоимости электровозов и исключительно большого веса на единицу мощности. Принципиально система вполне пригодна и для однофазного тока нормальной частоты, но практически на дорогах США использована при частоте 25 гц.  [c.416]

В автоэлектротележках движение от коленчатого вала двигателя внутреннего сгорания передается генератору постоянного тока, питающему тяговый двигатель п двигатель подъема платформы. Приводными являются передние колеса, а поворотными— передние и задние.  [c.377]

На секции тепловоза 2ТЭЮЛ установлен дизель типа 1 ОД 100 (двухтактный, десятицилиндровый, с вертикальным расположением цилиндров, развивающий мощность 3 000 л. с. при 980 об1мин коленчатого вала). Электрическая передача осуществляется при помощи главного генератора постоянного тока, двухмашинного агрегата и шести тяговых электродвигателей, приводящих во вращение через  [c.88]

Электрическая передача на переменно-постоянном токе свободна от указанных выше ограничений. Она состоит из синхронного тягового генератора, полупроводниковой выпрямительной установки, которая переменный ток выпрямляет в постоянный, и тяговых двигателей постоянного тока. Синхронный генератор не имеет коллектора и может быть очень большой мощности при высокой скорости вращения. Например, турбогенератор до 500 тыс. кет имеет скорость вращения вала 3000 об/мин. Прц тех же параметрах синхронный генератор легче машины постоянного тока, надежнее и долговечнее ее. Поэтому в нашей стране начали серийно выпускать мощные тепловозы с электрической передачей на переменно-постоянном токе 2ТЭ116 (рис. 123). Электрическую передачу на переменно-постоянном токе имеют и тепловозы ТЭ109, ТЭП70.  [c.225]

На тепловозе ТЭ109 применен впервые тяговый генератор переменного тока. Это продиктовано практической необходимостью, так как по габаритам и коммутационным условиям мощность генератора постоянного тока ограничена. Этим тепловозом и тепловозом ТЭ116 начат переход к передаче на переменном токе, которая необходима для дальнейшего повышения надежности тепловоза и возможности выполнения его любой мощности.  [c.5]

mash-xxl.info

Тяговый генератор - это... Что такое Тяговый генератор?

Тяговый генератор — элемент электрической тяговой передачи тепловоза, преобразующий механическую энергию дизеля тепловоза в электрическую энергию, поступающую к тяговым электродвигателям. Тяговый генератор постоянного тока также используется для пуска дизеля от аккумуляторной батареи.

Внешняя характеристика генератора

Внешней характеристикой генератора называется зависимость напряжения на его зажимах от тока нагрузки при неизменной частоте вращения якоря и заданных условиях возбуждения. Для полного использования мощности дизеля идеальная внешняя характеристика генератора должна иметь гиперболическую форму, ограниченную с одной стороны максимальным напряжением на выходе генератора и максимальным током генератора — с другой. Для получения характеристики близкой к идеальной, в тяговых генераторах используется независимое возбуждение с автоматической системой регулирования тока возбуждения. На вход системы возбуждения подаются сигналы, соответствующие напряжению тягового генератора и току нагрузки, напряжение, вырабатываемое системой, подаётся на обмотку возбуждения генератора. При движении тепловоза с поездом по лёгкому профилю пути или резервом для экономии топлива мощность дизеля уменьшается путём ступенчатого снижения частоты его вращения рукояткой контроллера машиниста. Для того чтобы система возбуждения при частичных нагрузках обеспечивала постоянство мощности генератора на уровнях, соответствующих экономичным режимам работы дизеля, на вход системы возбуждения дополнительно вводят сигнал, соответствующий частоте вращения коленчатого вала.

Генератор постоянного тока

Тяговый генератор постоянного тока состоит из магнитной системы, якоря, щёткодержателя со щётками и вспомогательных устройств. Магнитная система генератора предназначена для создания внутри него мощного магнитного поля. Она состоит из станины генератора (его корпуса), главных и добавочных полюсов. Станина изготовлена из низкоуглеродистой стали, обладающей высокой магнитной проницаемостью. Генераторы большой мощности для уменьшения размера и массы выполняются многополюсными. Сердечники главных полюсов изготавливаются из листов электротехнической стали. На каждом главном полюсе размещены катушки пусковой обмотки и обмотки возбуждения. Пусковая обмотка обеспечивает возбуждение генератора при его работе в режиме электродвигателя для запуска дизеля. Магнитное поле вращающегося якоря искажает магнитное поле обмоток возбуждения, величина этого воздействия, называемого реакцией якоря, зависит от величины тока в якоре. В результате физическая нейтраль генератора смещается относительно щёток и между щётками и коллектором возникает сильное искрение. Для ослабления реакции якоря между главными полюсами устанавливаются добавочные. Магнитное поле добавочных полюсов направлено навстречу поля якоря и нейтрализует его действие.

Якорь генератора для снижения его массы выполняется полым. Сердечник якоря набирается из пластин электротехнической стали, в пазы сердечника укладывается обмотка якоря. Поскольку при работе генератора на якорь действуют значительные центробежные силы, в пазах сердечника обмотка укрепляется клиньями из изоляционного материала, участки обмотки, выходящие из пазов сердечника, стягиваются бандажами из стальной проволоки или стеклоткани.

Коллектор генератора состоит из нескольких сотен медных пластин, изолированных друг от друга миканитовыми прокладками. Поверхность коллектора, по которой скользят щетки, изготавливается строго цилиндрическая и тщательно шлифуется, рабочая поверхность щёток притирается к поверхности коллектора. Щётки вставляются в латунные щёткодержатели, которые прижимают их к коллектору пружинами. Электрический ток от щёток отводится по гибким медным шунтам. Для охлаждения тяговых генераторов используется самовентиляция или устанавливаются дополнительные вентиляторы.

При создании тяговых генераторов постоянного тока большой мощности возникает ряд принципиальных трудностей. С увеличением мощности генератора возрастают его размеры, в то же время для надёжной работы коллекторно-щёточного узла линейная скорость поверхности коллектора не должна превышать 60—70 м/с, что ограничивает его диаметр. Для предотвращения недопустимого искрения и возникновения кругового огня напряжение между соседними пластинами коллектора не должно превышать 30—35 В, что ограничивает длину витков обмотки якоря.

Генератор переменного тока

Статор тягового генератора переменного тока состоит из стальной станины, в которую установлен сердечник из листов электротехнической стали. В пазы сердечника уложена обмотка из медного изолированного провода. Для уменьшения пульсации выпрямленного напряжения обмотка статора выполняется многофазной. Магнитная система ротора генератора — многополюсная, сердечники полюсов набраны из листовой стали и закреплены на стальном корпусе ротора. Катушки полюсов соединяются последовательно, начало и конец обмотки возбуждения присоединены к контактным кольцам, по которым скользят графитовые щётки, закреплённые в латунных щёткодержателях. Кроме того, в пазах полюсных башмаков уложены стержни, соединённые между собой в демпферную обмотку, улучшающую работу генератора в переходных режимах.

Масса тягового генератора переменного тока примерно на 30 % меньше массы генератора постоянного тока такой же мощности, а межремонтный интервал увеличен в 1,5 — 2 раза. Недостатком тягового генератора переменного тока является невозможность работы в двигательном режиме для пуска дизеля. Однако масса генератора переменного тока и стартерного двигателя остаётся меньше массы генератора постоянного тока, а стартерный двигатель при работе дизеля используется в качестве вспомогательного генератора постоянного тока.

Литература

Е. Я. Гаккель, К. И. Рудая, И. Ф. Пушкарев, А. В. Лапин, В. В. Стрекопытов, М. А. Никулин. Электрические машины и электрооборудование тепловозов. Учебник для вузов ж. д. трансп / Под ред. Е. Я Гаккель. — 3-е изд., перераб. и доп. — М.: Транспорт, 1981. — 256 с.

dic.academic.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта