Содержание
Контуры заземления – что это и как правильно выполнить
Если вы читаете эту статью значит уже знаете, что вам нужен контур заземления. Но возможно не до конца представляете, что он собой представляет, как работает и как его сделать правильно раз и навсегда, можно ли «сэкономить» и ут.д. Начнем с небольшого блока теории.
Что такое заземление и зачем оно нужно в частном доме
Мы разбираем конструкцию и схемы контуров заземления для электросетей с глухозаземленной нейтралью. Это значит, что на стороне подстанции нейтральный провод заземлен, то есть присоединен к заземляющему контуру.
Заземление – это подключение корпусов электроприборов к заземлителю. Заземлитель же – это один или несколько проводников, которые находятся в земле, в непосредственном контакте с грунтом. На рисунке изображено два контура заземления один возле подстанции, второй возле производственного помещения или частного дома где нужна защита.
Сопротивление контура заземления очень низкое (не больше 4 Ом по правилам). Это значит, что если на корпусе электроприбора окажется напряжение, например, произойдет пробой обмотки электродвигателя, то по корпусу оборудования через заземляющий проводник и контур пойдет очень большой ток. По сути пробой на заземленный корпус вызовет короткое замыкание. А ток короткого замыкания спровоцирует срабатывание автомата защиты или перегорание предохранителя.
Похожим образом работает и контур заземления подстанции. Например, при обрыве и падении фазного провода на землю возникнет короткое замыкание между фазой и заземлением, и сработает защита на подстанции.
Даже если случится так, что защита не сработает, например, произошел пробой в конце обмотки и ток утечки оказался недостаточным для срабатывания защиты, то сопротивление контура заземления намного ниже чем сопротивление человеческого тела. И если человек прикоснется к заземленному оборудованию, то или почувствует слабый удар электрическим током или не почувствует его вовсе. Электрический ток идет по пути наименьшего сопротивления, а меньшее сопротивление у контура заземления.
Если для промышленности все понятно, то зачем контур заземления в частном доме, какие тут моторы и где тут опасность? Корпуса большинства электроприборов вообще пластиковые.
И это хороший вопрос. Неужели требования что к электросети нельзя подключить новый дом без контура заземления – это просто бюрократическая фикция.
На самом деле нет. Раньше в частных домах из электроприборов были только свет да утюг, ну еще радиоприемник с телевизором. Сейчас количество и качество бытовых приборов изменилось кардинально, и пробой на корпус во многих из них может стать смертельным. Вот некоторые из них:
- Бойлер – под напряжением окажется не только корпус, но и вся водопроводная система. Можно получить поражение электрическим током просто открыв воду на кухне.
- В меньшей степени, но все же это относится и к скважинному насосу.
- Автоматические стиральные машинки представляют похожий тип опасности с выходом через воду в любую точку, любой санузел в доме.
- Нагревательные приборы — масляные нагреватели и электроконвекторы опасны прикосновением к корпусу.
- Микроволновки, электродуховки и холодильники – также не нужно сбрасывать со счетов.
- Все приборы с импульсными блоками питания: компьютеры, современные телевизоры те же стиральные машины. Конденсаторы в этих блоках питания соединены с заземляющим выводом PE, а он в свою очередь с корпусом прибора. И на корпус того же домашнего ПК может попасть напряжение в 100-110В. Чаще всего мы этого не замечаем из-за того, что стоим на сухом полу в обуви на резиновой подошве, да и большой ток через конденсаторы и такую паразитную наводку не пройдет, но все же есть реальный риск получить удар электрическим током от незаземлённого ПК с импульсным блоком питания.
Поэтому крайне не рекомендуем делать контур заземления формально лишь бы сдать. Кроме этого настоятельно рекомендуем подключать все розетки в доме не через обычные автоматические выключатели, а через дифференциальные автоматы или комбинацию автоматического выключателя и дифференциального реле. Дифференциальная защита кроме стандартных функций защиты от к.з. и перегрузки реагирует на токи утечки. Заземляющий контур и дифференциальная защита не заменяют, а прекрасно дополняют друг друга. Ведь заземление не защитит, если ребенок сунет гвоздь в розетку, а дифавтомат успеет сработать до того, как будет причинен существенный вред здоровью.
Расчет контура заземления
Размер и глубина зависят от типа грунта. Меньше всего проблем будет если у вас:
- торфяные грунты
- суглинки
- влажные глинистые почвы.
Хуже если это песок тогда нужно больше проводников и забивать их нужно на большую глубину. Совсем не получится устроить контур заземления в скальных или горных грунтах.
В идеале нужно иметь геологические карты местности тогда получится сделать расчет контура заземления. Но на практике просто делают стандартный контур по общим рекомендациям, замеряют сопротивление, и, если оно недостаточно низкое, добавляют еще один или несколько электродов.
На иллюстрации ниже обычная схема контура заземления, которая сработает в 90% случаев.
Это равносторонний треугольник со стороной 1,5-3 метра, но, если площадь участка не позволяет сделать треугольник можно закопать и соединить вертикальные проводники в ряд, но так выше вероятность, что будет нужно больше вертикальных заземлителей.
Материалом для контура заземления может быть медь, оцинкованная и черная сталь. Форма и размеры не особо регламентируется, но важным является сечение и толщина элементов заземления. Вот рекомендации для черной стали:
Толщина и сечения заземляющего контура рассчитываются так, чтобы не только дать нужное сопротивление, но и обеспечить долговечность. Ведь сталь неизбежно будет ржаветь, и чтобы контур заземления прослужил как минимум 30-40 лет должен быть хороший запас по толщине и сечению стали.
Монтаж контура заземления — из чего и как сделать
Мы разберем монтаж контура заземления из классического стального проката на сварном соединении. Конечно можно купить набор специальных штырей-электродов, с наконечником которые можно завинчивать в землю перфоратором. Они состоят из нескольких секций (прутов круглого сечения) и по мере погружения добавляется следующая.
Но, во-первых, цена таких комплектов для заземления неоправданно высока. Во-вторых, муфты для соединения наборных электродов резьбовые и со временем электрических контакт сильно ухудшится. А старая добрая сварка — это монолитное соединение и прослужит столько же сколько и весь заземляющий контур.
ВАЖНО! Не нужно и даже запрещено красить элементы, из которых собирается контур заземления. Железо должно быть «голым» чтобы ничего не мешало контакту с грунтом.
А вот сварные швы нужно прокрасить нитрокраской или чем-то подобным, поскольку они наиболее подвержены коррозии, и контур может выйти из строя через 5-6 лет только потому что проржавели сварные швы.
Также обязательно нужно покрасить черной краской (это важно, краска по нормативам должна быть именно черной, даже если это ваш частный дом) полосу которая выходит из-под земли и соединяется с проводником
По сути монтаж контура заземления сводится к несложным хотя и трудоемким операциям:
- Выкопать траншею глубиной 0,4-0,7 метра, в форме треугольника или прямую если не площадь не позволяет выкопать треугольник.
Место для монтажа контура заземления нужно выбирать как можно ближе к вводному щитку. Ведь именно с заземляющей шиной вводного щитка нужно будет соединить контур заземления, и чтобы не тянуть стальную полосу или заземляющий проводник через весь дом, нужно максимально сократить это расстояние. Размер стороны треугольника в среднем 2-3 метра.
- В углах треугольника нужно сделать углубления. Идеально подойдет мотобрур с удлиненным валом для бура. Глубина «шахты» должна быть не менее 2 метров. Если этого не сделать, забить 3-х метровую трубу или угольник в грунт будет трудно, а в случае глинистого грунта и вовсе невозможно. Легче пойдет в песчаный грунт, но скорей всего электродов понадобится больше.
- Забить вертикальные части заземляющего контура. По мере погружения засыпать и утрамбовывать грунт в пробуренную нишу, чтобы контакт электрода с грунтом был плотным на всю глубину. Забивать нужно так, чтобы выше уровня дна траншеи осталось около 20 см уголка или трубы.
- Соединить вместе забитые электроды заземление полосой или круглым проводником. Соединить с помощью сварки. Учтите, что полосу легче согнуть и проложить в нужном направлении. Конец полосы вывести к фундаменту в той же части нужно проделать в стене отверстие для заземляющего проводника. Или провести его по поверхности, если вводно распределительный щит находится снаружи здания.
- Закрепить вывод стальной полосы к фундаменту. К концу стальной полосы (шины) приварить болт или шпильку. Можно сделать отверстие и прикрутить шину или кабельный наконечник заземляющего провода болтом, но в таком варианте больше переходных сопротивлений и добиться нужного сопротивления будет сложнее. В крайнем случае делайте два отверстия рядом и прижимайте стальную шину к медной двумя болтами. Но если заземляющий проводник у вас из провода, то нужно приварить болт, а на конец провода запрессовать кабельный наконечник. Сечение заземлящего провода который идет к вводному щитку должно быть:
- не меньше 10 мм2 – для медных шин и проводов;
- не меньше 16 мм2 – для алюминиевых шин и проводов;
- если внутрь здания уходит стальная полоса или круглый проводник, то его сечение должно быть не меньше 75 мм2.
7. Проверка. Прежде чем вызывать электролабораторию можно предварительно проверить контур обычным мультиметром, причем в режиме вольтметра. Для этого нужно замерить напряжение между фазой и нулем, а потом между фазой и шиной заземления. Оно должно быть практически одинаковым, например, 221 и 216 Вольт, соответственно. Если прибор показывает, что напряжение между фазой и заземляющим контуром значительно ниже, например, 220 и 180 Вольт, нужно добавить еще один вертикальных проводник и приварить его к существующим. После этого повторить измерения. Разница уменьшится. Если удалось получить разницу в пределах 10 Вольт, скорей всего сопротивление контура заземления находится в пределах нормативных 4 Ом, и можно вызывать специалистов местного РЭС для проверки и выдачи заключения на подключение дома к электросети.
Надеемся материал этой статьи был для вас полезен. До следующих публикаций.
Контур заземления — требования, виды и монтаж
Система подачи электроэнергии соединяется через распределительный щит с внутренней проводкой помещений. В процессе эксплуатации вполне возможно возникновение неисправностей и аварийных ситуаций, приводящих к токовым утечкам. В связи с этим в каждом доме выполняются защитные мероприятия, среди которых важную роль играет контур заземления, устанавливаемый отдельно или совместно с устройствами защитного отключения. Данные системы монтируются в соответствии с ПУЭ, защищая людей и оборудование от поражающего действия электротока.
Содержание
Общие сведения о заземляющем контуре
Стандартный контур заземления представляет собой комплекс металлических конструкций, размещенных в земле, на определенных расстояниях между собой и незначительном удалении от защищаемого объекта.
Данная схема выполняет следующие функции:
- Защищают людей от поражения электротоком, а приборы и оборудование – от перепадов напряжения.
- За счет сопротивления не дают энергии бесконтрольно растекаться в окружающей среде.
- Обеспечивают защиту от последствий ударов молнии.
Если требуется сделать наружный контур заземления в этом случае большинство конструкций изготавливается из стальных труб, уголков, гладких прутков и других профильных материалов. Длина каждого элемента не превышает 3 метров. Они забиваются кувалдой в твердый грунт, засыпаются землей и утрамбовываются. Нежелательно использовать бетон, поскольку в дальнейшем ремонт таких конструкций будет невозможен.
Забитые электроды соединяются между собой тонкой стальной полосой, толщиной не менее 4 мм. Крепления осуществляются сваркой или болтовыми соединениями. Далее конструкция соединяется специальным заземляющим кабелем со всеми приборами, находящимися в доме, в первую очередь с высоким потреблением нагрузки. Для повышения качества работы системы нередко на объекте дополнительно устраивается внутренний контур заземления.
Данные для расчетов конструкции можно получить путем проведения необходимых исследований. В соответствии с типом и характером грунта определяется глубина залегания электродов, их количество и другие параметры. Выбирается наиболее подходящий материал для изготовления конструктивных элементов. Идеальными вариантами под контур заземляемого объекта считаются глинистые грунты, суглинки и черноземы.
Запрещается устанавливать заземление в каменистых или скальных грунтах, поскольку они являются проводниками тока и обладают низким сопротивлением.
Требования ПУЭ к контуру заземления
Прежде чем проектировать и на практике осуществлять устройство контура заземления, следует внимательно изучить требования ПУЭ по данному вопросу. Это позволит избежать ошибок, качественно выполнить соединения и подключения, соблюдая все нормативы и стандарты. Изучив нормативную документацию, вполне возможно самостоятельно изготовить внешний контур заземления, при наличии теоретических знаний и практических навыков.
В соответствии с ПУЭ, каждый выход из здания должен иметь повторный контур заземления. Для этих целей рекомендуется воспользоваться естественными заземлителями из числа расположенных рядом металлических и железобетонных конструкций. Большая часть их поверхности должна контактировать с грунтом. Если контур заземления дома соединяется с конструкциями, расположенными в условиях агрессивной среды, они должны быть защищены специальным покрытием.
Правилами определяются и те элементы, которые не могут служить контуром заземления. В первую очередь, это изделия из железобетона, находящиеся под напряжением, трубопроводы для транспортировки горючих веществ, трубы канализации и отопления. Если без естественных заземлителей никак не обойтись, необходимо выполнить предварительные расчеты и решить, как правильно сделать выбор той или иной конструкции, после чего выбирается наиболее оптимальная схема подключения.
При возведении новых зданий применяются искусственные заземляющие контуры, монтируемые в процессе строительства. Данный способ заземления используется чаще всего, поскольку на местах не всегда имеется возможность воспользоваться естественными факторами. Следует учитывать и сопротивление грунтов, непосредственно влияющее на работоспособность систем, в том числе и на контур заземления ТП.
Если почва постоянно влажная, то ее сопротивление всегда будет ниже допустимого уровня. Эти и другие параметры нужно брать во внимание при расчетах и разработке конструкции заземляющего контура.
Типы и конструкции заземления
В частных домах требования ПУЭ допускают использование различных типов заземлений. В конструкцию обычного контура входят вертикальные электроды и одна горизонтальная перемычка. Все элементы должны быть одного размера и с круглым сечением в разрезе. Обычно они изготавливаются из толстой арматуры, труб или стальных прутьев.
Классической фигурой является контур заземления с конфигурацией треугольник, состоящий из арматурных прутьев в количестве 3 штук, размером 2 метра и более. Чем больше расстояние между прутками, тем эффективнее будет работать система. Минимальная дистанция составляет 1,5 м.
После того как электроды забиты в грунт, они соединяются между собой. На каждую сторону устанавливается отдельная полоса, закрепляемая на одной и той же высоте. Это и есть медные или стальные горизонтальные заземлители устанавливаемые на верхнюю часть штырей.
Место для установки контура в частном доме выбирается там, куда люди заходят очень редко. Предпочтение отдается северной стороне, которая плохо освещается и способствует сохранению в почве большого количества влаги. Расстояние от контура до стены дома должно быть не менее 1 метра.
В другом варианте заземление имеет конструкцию глубинного типа. В нем практически отсутствуют минусы, характерные для обычного способа, поскольку используется модульно-штыревая система. Весь комплект для сборки, сделанный на заводе, в техническом плане подтверждается сертификатом. Основным преимуществом данных систем является их соответствие нормативам, они отличаются повышенным сроком службы – от 30 лет и выше.
Электрический заряд стабильно растекается, независимо от погодных условий. Глубина залегания электродов достигает 30 метров, обеспечивая качество и надежность заземления, а вся собранная схема не требует постоянных проверок.
Инструменты и материалы
Для расчета материалов проводятся необходимые измерения, после чего составляется подробная схема контура с привязкой к конкретному зданию.
Затем нужно подготовить инструменты. Обязательно понадобится лопата, кувалда, набор гаечных ключей, перфоратор, болгарка с отрезными кругами, сварочный аппарат с электродами, измерительные приборы для замеров тока, напряжения и сопротивления.
Перечень материалов состоит из следующих наименований:
- Стальные уголки для электродов с полками 50х50 или 60х60 мм, длиной от 2 метров и выше. Технические требования ПУЭ допускают использование вместо них стальных труб в качестве заземлителя, диаметром не ниже 32 мм. Средняя толщина стенок составляет 3-4 мм и более.
- Материалы для горизонтальных заземлителей в количестве 3 металлических полос. Длина соответствует размеру стороны треугольника, толщина – 4-6 мм, ширина – от 4 до 6 см.
- Соединительная полоса из нержавеющей стали, соединяющая заземляющий контур с крыльцом здания. Размеры сечения составляют 40х4 или 50х5 мм.
- Медный токопровод, сечением не менее 6-7 мм2.
- Набор болтов М8, М10.
Технические характеристики проводников выбираются по специальным таблицам. Их размеры должны быть не меньше указанных, все отклонения допускаются только в большую сторону.
Монтажные работы
После того как было определено место установки заземляющего контура, составлен чертеж, выполнены все расчеты и подготовительные работы, можно приступать к непосредственному монтажу конструкций и решать, как сделать контур заземления в данных условиях.
Вначале нужно выкопать траншею глубиной от 70 до 100 см. В вершинах треугольника с помощью кувалды забиваются уголки, обеспечивающие первоначальное сопротивление системы. Средняя глубина забивки составляет 2-3 м. Если грунт слишком твердый и электроды в него входят плохо, необходимо использовать специальный бур, высверлить отверстия и уже в них вставить заземлители.
Перед монтажом концы металлических электродов рекомендуется заострить, чтобы они легче входили в грунт. Штыри не нужно забивать полностью в землю, над ее поверхностью должно оставаться примерно 30 см для крепления. Далее горизонтальные и вертикальные части свариваются между собой, и вся конструкция подключается к металлической полосе, которая, в свою очередь, соединяется с заземляющим проводником.
Затем этот заземлительный провод соединяется с шиной, установленной в распределительном щитке. В местах соединений производится обработка антикоррозийными составами.
Проверка заземляющего контура
После решения, как сделать контур заземления, следует проверить работоспособность полученной конструкции. Проверка начинается с мест соединений. С этой целью выполняется простукивание молотком сварных швов, а болтовые соединения проверяются гаечными ключами.
Для замеров сопротивления привлекаются квалифицированные специалисты, которые составляют акт по итогам проверки. В системе ТТ этот показатель должен быть низким, а в системе TN-C-S, наоборот, с более высоким значением.
Если нет возможностей для официальной проверки, она легко делается своими силами. В этом случае следует выяснить, смогут ли бытовые приборы нормально работать при токе, максимальном для установленного автоматического выключателя. С этой целью используется специальная схема, когда берется переносная розетка, от которой один провод подключается к фазе, а второй – к заземляющему контуру.
Что такое контур заземления?
Опубликовано
Контур заземления — это то, что происходит, когда два отдельных устройства (A и B) подключаются к земле разными путями, а затем также соединяются друг с другом другим путем, образуя петлю. Когда создается контур заземления, ток может течь в непредвиденных направлениях. Ток может течь на землю через собственный путь заземления устройства или он может сначала течь к другому устройству, прежде чем уйти на землю из-за разницы электрических потенциалов между устройствами. Этот непреднамеренный ток приводит к тому, что системный шум или помехи передаются на близлежащие устройства.
Влияние контуров заземления
Контуры заземления очень заметны на звуковом оборудовании, поскольку они могут вызывать гудящие или жужжащие звуки, которые, как правило, нежелательны для аудиосигнала.
Одним из примеров возникновения контура заземления является простая установка портативного компьютера и динамика с питанием от сети переменного тока. Когда динамик используется ноутбуком, подключенным через аудиокабель, когда и ноутбук, и динамик подключены к сети переменного тока, динамик может издавать жужжащий звук. Эту проблему можно решить, отключив зарядное устройство ноутбука от сети, что разорвет контур заземления. Этот сценарий может произойти или не произойти в зависимости от заземления дома или учреждения.
Другими эффектами контуров заземления являются помехи при передаче данных, радиочастотные помехи и шум источника питания.
Решения для контуров заземления
Если вы столкнетесь с контуром заземления на своих устройствах, не беспокойтесь. Заземляющие контуры легко устранить, как только вы их поймете.
1. Используйте одну вилку переменного тока
Большинство проблем с контуром заземления можно устранить, просто подключив устройства к одному источнику переменного тока с одинаковым заземлением. Тем самым вы уменьшите разницу электрических потенциалов между заземлениями устройств.
2. Подъем земли
Один из самых простых способов устранения контура заземления — перерезать путь заземления от одного устройства к другому. Тем самым он разрывает петлю, образовавшуюся в земле. В настоящее время большинство аудиоустройств имеют переключатель заземления, так что можно легко отключить заземление от одного устройства. Если переключатели заземления недоступны, вы можете просто сломать или отсоединить заземляющий экран на одном конце кабелей, используемых между устройствами.
3. Трансформатор аудиоизоляции
Это устройство вставляется вдоль аудиотракта. Он содержит трансформатор, который изолирует аудиоземлю и сигнал между источником и выходом. Обычно используется трансформатор 1:1, но можно использовать и другие трансформаторы для повышения уровня выходного сигнала.
4. Силовой развязывающий трансформатор
Вы также можете устранить контур заземления, изолировав прямое подключение устройства к земле переменного тока с помощью силового развязывающего трансформатора. Он похож на аудиоизолирующий трансформатор, но изоляция вставляется со стороны питания, а не со стороны аудиовыхода.
ССЫЛКИ:
- Класс CEDIA EST016 (2008 г.). Понимание, поиск и устранение контуров заземления .
- Аналоговые устройства (2011 г.). Разрыв контуров заземления с функциональной изоляцией для уменьшения ошибок передачи данных .
Общие сведения о контурах заземления — рекомендации по применению
Контуры заземления могут создавать серьезные неудобства в системах сбора данных HVAC, поскольку их трудно обнаружить. В большинстве случаев они не причиняют вреда, но могут вызвать непредсказуемые проблемы спустя годы после установки!
Что такое контур заземления?
Заземляющая петля образуется, когда имеется более одного токопроводящего пути между «заземляющими» клеммами на двух или более единицах оборудования. Проводящая петля образует большую рамочную антенну, которая легко улавливает токи помех. Чем больше петля, тем больше помех; если вы используете стальной каркас здания в качестве земли, то петля может быть такой же большой, как и все здание. Сопротивление в заземляющих проводах превращает токи помех в колебания напряжения в системе заземления. Земля больше не стабильна; поэтому сигналы, которые вы пытаетесь измерить и которые относятся к этой земле, также нестабильны и неточны.
Наземные символы
Мифология заземления
Универсальная концепция, которой учат в технических школах и инженерных колледжах, состоит в том, что «земля» всегда имеет нулевое напряжение, может бесконечно поглощать электрический ток и безвредно рассеивать его мгновенно. Однако идеальное основание является лабораторной абстракцией и не существует в реальном мире.
Настоящие земли являются проводниками, поэтому между всеми точками заземления существует определенное сопротивление электрическому току. Это сопротивление может меняться в зависимости от влажности, температуры, подключенного оборудования и многих других переменных. Сопротивление всегда может позволить электрическому напряжению существовать на нем. Большие токи, протекающие через заземление, вызовут падение напряжения в заземляющих проводниках, и для их рассеивания потребуется время.
Департамент сельскохозяйственной инженерии Мичиганского государственного университета измерил сопротивление заземления на входах в систему электроснабжения и обнаружил, что значения сопротивления земли могут различаться до 2 вольт. Фактически, Национальный электрический кодекс (NEC) допускает изменение заземления на величину до 2,5 % от напряжения ответвленной цепи или 3 вольта RMS для цепи 120 В переменного тока (см. «Ссылки» ниже для получения дополнительной информации об исследовании штата Мичиган и NEC код).
Понимание того, что идеального заземления в реальном мире не существует, является первым шагом к устранению помех контура заземления, когда они возникают. Если вы помните, что каждое заземление в здании имеет разный и произвольный «нулевой» потенциал, то вы сможете разработать подходящие системы заземления.
Если земля такая плохая, то зачем вообще земля?
Площадка нужна по двум причинам: безопасность и безопасность.
В статье 250 NEC указано, что изолированные вторичные обмотки понижающих распределительных трансформаторов должны быть заземлены на входе в здание. Земля представляет собой медный стержень, вбитый в землю не менее чем на 8 футов. NEC требует, чтобы каркас из конструкционной стали, водопроводные трубы и другие крупные металлические объекты были соединены с площадкой входа в здание. Если изоляция провода повреждена или провод непреднамеренно отсоединился и коснется металлического предмета, от силового распределительного трансформатора на землю потекут большие токи короткого замыкания. Эти чрезмерные токи размыкают предохранители и автоматические выключатели, не позволяя оборудованию находиться под более высоким потенциалом, чем ближайшая раковина или строительная конструкция. Если заземление в распределительном щите по какой-либо причине отключается, то заземление входа питания в здание на трансформаторе обеспечивает протекание чрезмерного тока короткого замыкания, размыкание предохранителей и автоматических выключателей. Защита здания от пожара и защиты находящихся в нем людей от поражения электрическим током является основной функцией системы заземления распределения электроэнергии.
Вторая проблема безопасности — поддерживать оборудование в пределах нормального диапазона рабочего напряжения. Большинство современных контроллеров с прямым цифровым управлением (DDC) будут работать без заземления где бы то ни было. Единственная загвоздка в том, что незаземленное оборудование может накапливать большие статические заряды из-за утечки изоляции. Первый человек, который подойдет и прикоснется к оборудованию, получит очень неприятный шок. Если статический заряд становится достаточно высоким, он разряжается на ближайший проводник с более низким потенциалом. Мгновенные разрядные токи могут достигать нескольких тысяч ампер и разрушать электронные компоненты системы. Заземление системы позволяет рассеять заряды без повреждений.
Помехи сигналам от контуров заземления
Контуры заземления позволяют электрическим и магнитным помехам создавать источники шумового напряжения. Эти источники напряжения добавляются к измеряемому сигналу и неотличимы от правильного сигнала. Контроллер, не зная, что он считывает неправильное значение, выполняет неправильное управляющее действие. Это может привести к некомфортным условиям для жильцов. Это также может привести к колебаниям механического оборудования, что приведет к преждевременному износу оборудования.
Помехи сигналам из-за магнитной индукции
Основными источниками этих проблем с шумом являются магнитная индукция и дисбаланс грунта.
Любая петля из проводящего материала образует одновитковый трансформатор, если присутствует магнитное поле, а магнитные поля возможны везде, где используется переменное напряжение. Магнитные поля создаются переменным напряжением, текущим по проводу, двигателями или флуоресцентными лампами. В цепях очень низкого уровня болтающиеся провода, движущиеся в магнитном поле земли, могут даже вызвать проблемы. Магнитное поле вызывает протекание тока в петле из проводящего материала, а сопротивление петли создает напряжение из этого протекающего тока.
Чем интенсивнее магнитные поля или чем выше частота магнитных полей, тем больше течет ток. Закон Ома гласит, что ток, умноженный на сопротивление, равен напряжению. Таким образом, чем больше ток, тем больше источник шума напряжения.
На левом рисунке ниже показан контур заземления под воздействием магнитного поля. Магнитное поле вызывает протекание электрического тока в контуре заземления. Сопротивление контура преобразует поток тока в источник напряжения между входом заземления контроллера и клеммой заземления датчика, как показано на правом рисунке ниже.
Контур заземления в магнитном поле (вверху слева) и напряжение датчика и напряжение контура заземления (вверху справа)
Помехи сигналам из-за дисбаланса заземления
Электрические нагрузки могут различаться в разных зданиях, что приводит к возникновению различных токов в системе заземления. Если в системе заземления протекает большой ток, а датчик помещен в цепь с заземлением, которая также имеет контур заземления, то к сигналу будет добавлена разница напряжений между двумя точками заземления.
На рисунке внизу слева показан источник тока короткого замыкания, подающий ток в систему заземления. Если, как в исследовании штата Мичиган, напряжение в системе заземления составляет два вольта, то к сигналу датчика добавляется напряжение неисправности в два вольта, как показано на рисунке ниже справа.
Дисбаланс заземления (слева) и напряжение датчика и напряжение контура заземления
Закрытие
Контур заземления может сделать самую лучшую систему управления неэффективной. Если вы считаете, что контуры заземления могут быть причиной проблемы с вашей системой HVAC/R, позвоните своему представителю BAPI или загрузите Примечание по применению BAPI: Избегайте контуров заземления с нашего веб-сайта www.bapihvac.com
Ссылки
ANSI/NFPA 70 , Национальный электротехнический кодекс 2002 г. – Национальная ассоциация противопожарной защиты
Стратегии строительства для минимизации паразитного напряжения на молочных фермах, Университет штата Мичиган
Генри Отт, Методы шумоподавления в электронных системах, 2-е издание, Wiley and Sons, NY, NY, 1988
Университет штата Мичиган. Исследование и код NEC
Департамент сельскохозяйственной инженерии Мичиганского государственного университета измерил сопротивление заземления на входах в систему электроснабжения и обнаружил:
«Если заземляющий стержень панели обслуживания вбит на 8 футов во влажную землю, которая не является настоящим песком, сопротивление между этим заземляющий стержень и земля могут быть всего 20 Ом. Предположим, что когда в здании используется электроэнергия, одна десятая ампера тока нейтрали течет на землю через заземляющий стержень. Основной электрический закон, называемый законом Ома, гласит, что ток, умноженный на сопротивление, равен напряжению. Умножение тока заземляющего стержня (0,1 ампера) на сопротивление заземляющего стержня (20 Ом) дает 2 вольта.
Добавить комментарий