Eng Ru
Отправить письмо

тепловая энергия теплоносителя. Что такое тепловая энергия


Тепловая энергия

Энергия – способность тела совершать работу. Выделяют следующие ее виды: электрическую, механическую, гравитационную, ядерную, химическую, электромагнитную, тепловую и другие.

Первая – энергия электронов, движущихся по цепи. Зачастую она используется для получения механической при помощи электродвигателей.

Вторая проявляется при движении, взаимодействии отдельных частиц и тел. Это энергия деформации при растяжении, сгибании, закручивании и сжатии упругих тел.

Химическая энергия возникает в результате химических реакций между веществами. Она может выделяться в виде тепловой (к примеру, при горении), а также преобразовываться в электрическую (в аккумуляторах и гальванических элементах).

Электромагнитная проявляется в результате движения магнитного и электрического полей в виде инфракрасных и рентгеновских лучей, радиоволн и т.п. Ядерная содержится в радиоактивных веществах и высвобождается в результате деления тяжелых ядер или синтеза легких. Гравитационная – энергия, которая обусловлена тяготением массивных тел (сила тяжести).

Тепловая энергия возникает в связи с хаотичным движением молекул, атомов и других частиц. Она может выделяться в результате механического воздействия (трения), химической реакции (горения) или ядерной (деление ядра). Чаще всего тепловая энергия возникает в результате сжигания различных видов топлива. Ее используют для отопления, выпаривания, нагревания и других технологических процессов.

Тепловая энергия – это одна из форм энергии, возникающая в результате механических колебаний структурных элементов какого-либо вещества. Параметром, позволяющим определить возможность использования его в качестве источника энергии, является энергетический потенциал. Выражаться он может в киловатт (тепловых)-часах или в джоулях.

Источники тепловой энергии подразделяют на:

  • первичные. Энергетическим потенциалом вещества обладают вследствие природных процессов. К таким источникам можно отнести океаны, моря, ископаемые горючие вещества и др. Первичные источники подразделяются на неисчерпаемые, возобновляющиеся и невозобновляющиеся. К первым относятся термальные воды и вещества, которые могут быть использованы для получения термоядерной энергии и т.п. Ко вторым относят энергию солнца, ветра, водных ресурсов. Третьи включают газ, нефть, торф, уголь и т.д.;
  • вторичные. Это вещества, энергетический потенциал которых напрямую зависит от деятельности людей. Например, это нагретые вентиляционные выбросы, городские отходы, горячие отработанные теплоносители промышленных производств (пар, вода, газ) и т.п.

Тепловая энергия в настоящее время производится при помощи сжигания ископаемого топлива. В качестве основных источников выступают неочищенная нефть, уголь, природный газ. За счет природных ископаемых обеспечивается 90% общего энергопотребления. Однако с каждым днем все больше увеличивается использование атомной энергии.

Возобновляемые источники почти не используются. Это связано со сложностью технологии их преобразования в тепловую энергию, а также низким энергетическим потенциалом некоторых из них.

Тепловая энергия возникает в результате взаимодействия фотонов инфракрасного диапазона с внешними электронами. Последние поглощают фотоны и перемещаются на дальние от ядра орбиты. Таким образом, объем вещества увеличивается. Через фотоны инфракрасного диапазона происходит передача тепловой энергии. В частности фотоны при соударениях молекул и атомов между собой перескакивают из зоны повышенной концентрации носителей тепловой энергии в те зоны, где она понижена.

Тепловая энергия может быть выражена в формуле: ΔQ = c.m.ΔT. С – обозначает удельную теплоемкость вещества, m –массу тела, а ΔT является разностью температур.

fb.ru

Что такое тепловая энергия и теплоноситель?

Для того, чтобы ответить на вопрос «Что такое тепловая энергия?» необходимо разобраться, чем отличается горячая вода от холодной, что влияет на температуру воды? Она отличается разным количеством содержащейся в ней теплоты. Эту теплоту, или по-другому тепловую энергию, нельзя увидеть или потрогать, можно только почувствовать. Любая вода с температурой больше 0°С содержит какое-то количество теплоты. Чем выше температура воды (пара или конденсата) тем больше в ней содержится теплоты. Измеряется теплота в Калориях, в Джоулях, в Мвт/ч (Мегаватт в час), не в градусах °С. Так как тарифы утверждаются в рублях за Гигакалорию, то за единицу измерения берется Гкал. Таким образом, горячая вода состоит из самой воды и содержащейся в ней теплоэнергии или теплоты (Гкал). Вода насыщена гигакалориями. Чем больше Гкал в воде, тем она горячее. В системах отопления теплоноситель (горячая вода) приходит в систему отопления с одной температурой, а выходит с другой. То есть пришел с одним количеством теплоты, а вышел с другим. Какую-то часть теплоты теплоноситель отдает в окружающую среду через радиаторы отопления. За эту часть, которая не вернулась в систему, и которая измеряется в Гкал, необходимо заплатить. При горячем водоснабжении мы потребляем всю воду и, соответственно, все 100% Гкал в ней, ничего обратно в систему не возвращаем.

Что такое теплоноситель?

Вся горячая вода, которая бежит по трубам в систему отопления или в систему горячего водоснабжения, а также пар и конденсат (та же горячая вода), это и есть теплоноситель. Слово теплоноситель состоит из двух слов — тепло и несёт. При расчетах, теплоснабжающие компании разбивают теплоноситель на Гкал и сетевую воду. Тариф на сетевую воду учитывает только саму воду, и не учитывает Гкал в ней. Тариф на горячую воду учитывает и воду, и Гкал в ней. К теплоносителю, в зависимости от целей (для отопления или для ГВС), предъявляются разные требования по температуре и по санитарным нормам. У теплоносителя для целей горячего водоснабжения есть минимально допустимая температура, которую должна обеспечить теплоснабжающая организация, а также повышенные требования к качеству. Для целей горячего водоснабжения берется питьевая вода, нагревается и отпускается в сеть. Температура теплоносителя для целей отопления зависит от температуры наружного воздуха (т.е. от погоды). Чем холоднее на улице, тем сильнее происходит нагрев.

Выводы:

1. При оплате за тепло заплатить нужно будет как за Гкал, так и за сетевую воду. При оплате за ГВС также, если не установлен отдельный тариф на горячую воду.

2. Теплоноситель — тепло несёт, горячая вода, он же сетевая вода + Гкал в ней.

3. Сетевая вода — вода без Гкал.

4. Под теплоносителем и сетевой водой может подразумеваться одно и то же.

 

 

 

 

 

 

www.jkh.cap.ru

Тепловая энергия единицы измерения и применение

Тепловая энергия — это система измерения теплоты, которая была изобретена и используется еще два столетия назад. Основным правилом работы с данной величиной было то, что тепловая энергия сохраняется и не может просто исчезнуть, но может перейти в другой вид энергии.

Существует несколько общепринятых единиц измерения тепловой энергии. В основном их используют в промышленных отраслях, таких как энергетика. Внизу описаны самые распространенные из них:

  • Калория — единица измерения, не входящая в общую систему, но часто использующаяся для сравнения с другими параметрами. В основном исчисления производят в килокал, Мегакал, Гигакал;
  • Тонна пара — одна из специфичных и самых редко используемых величин, с помощью которых измеряют количество энергии тепла в особо больших объемах. Одна единица «тонны пара» равняется количеству пара, который можно получить из 1 тонны воды;
  • Джоуль — распространенная единица измерения из СИ, использующаяся для общего обозначения количества энергии в разных ее видах. Основными величинами являются кДж, МДж, ГДж;
  • кВт на час (Квт х ч) — основная единица измерения электрической энергии, используемая в частности странами СНГ.Тепловая энергия единицы измерения

Любая единица измерения, входящая в систему СИ, имеет предназначение в определении суммарного количества того или иного вида энергии, такого как выделения тепла или электроэнергия. Время проведения измерения и количество не влияют на эти величины, почему можно их использовать как для потребляемой, так и для уже потребленной энергии. Кроме того, любая передача и прием, а также потери тоже исчисляются в таких величинах.

Где применяют единицы измерения тепловой энергии

  1. Подсчет выработанной энергии пара в котельных за один сезон или год.
  2. Определение необходимого количества тепла для проведения нагрева определенного количества воды с конкретным температурным режимом.
  3. Полный подсчет количества тепловой энергии, которая служит для обеспечения нагревания горячей воды, отопительных сооружений и вентиляции помещений.
  4. В некоторых вариантах величину тепловой энергии используют для измерения объема природного газа. В таком случае учитывается способность определенного количества вещества производить тепло при сжигании.
  5. В катальнях зачастую используют данную величину для определения показателя используемой электроэнергии в отопительных сезонах.Применение единиц измерения тепловой энергии

Единицы измерения энергии, переведенные в тепловую

Для наглядного примера ниже приведены сравнения различных популярных показателей СИ с тепловой энергией:

  • 1 ГДж равен 0,24 Гкал, что в электрическом эквиваленте равняется 3400 миллионов кВт на час. В эквиваленте тепловой энергии 1 ГДж = 0,44 тонны пара;
  • В то же время 1 Гкал = 4,1868 ГДж = 16000 млн. кВт на час = 1,9 тонн пара;
  • 1 тонна пара равняется 2,3 ГДж = 0,6 Гкал = 8200 кВт на час.

В данном примере приводимая величина пара принята за испарение воды при достижении 100°С.

Чтобы провести расчеты количества тепла, используется следующий принцип: для получения данных о количестве тепла его используют в нагревании жидкости, после чего масса воды умножается на пророщенную температуру. Если в СИ масса жидкости измеряется килограммами, а температурные перепады в градусах Цельсия, то результатом таких расчетов будет количество теплоты в килокалориях.

Если есть необходимость в передаче тепловой энергии от одного физического тела другому, и вы хотите узнать возможные потери, то стоит массу получаемого тепла вещества умножить на температуру повышения, а после узнать произведение получаемого значения на «удельную теплоемкость» вещества.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

madenergy.ru

Что такое тепловая энергия? | INHOUSE

3 вида передачи тепла

Различные строительные технологии и материалы имеют свои преимущества и недостатки. Так, например, дом, построенный из классического кирпича у многих ассоциируется с надежностью. Но что, если мы будем рассматривать его с точки зрения энергоэффективности? В данном случае кирпич не будет занимать лидирующие позиции.

Для того, чтобы решить проблему теплоэффективности зданий начали применять различного вида и качества утеплители. Начиная от теплоизоляционной пены, которую можно просто нанести на определенные участки стены уже существующего дома, заканчивая полноценными энергоэффективными стеновыми модулями. Очевидно, что попытки утеплить уже существующий дом принесут некоторые результаты, но будут не достаточно эффективны, в том числе и с финансовой точки зрения. Поэтому появились дешевые решения в виде панелей, изначально снабженных утеплителем. Это либо сэндвич-панели, представляющие собой вспененный утеплитель (пенопласт), вклеенный между плитами ЦСП, либо волокнистый утеплитель (например, минвата), вложенный в каркас деревянной стены.

Сип-панели

Совсем недавно идея использования стеновой панели была доработана. В результате чего, энергоэффективные дома начали возводиться из полноценных герметичных стеновых модулей. Утеплитель с рекордно низким показателем теплопроводности выращивается внутри модулей непосредственно в заводских условиях.

стеновые модули

Преимуществом использования стеновых модулей как составляющей единицы энергоэффективного здания, является их способность наилучшим образом блокировать передачу тепловой энергии от внешней к внутренней поверхности, и наоборот. Для того чтобы научиться различать строительные материалы по их теплофизическим свойствам, а так же понять, почему энергоэффективные стеновые модули лучше сэндвич-панелей справляются со своей задачей, разберем все возможные механизмы распространения тепла.

Тепловая энергия может передаваться посредством только трех механизмов: конвекции, теплопроводности и теплового излучения.

Тепловая конвекция возникает, когда горячие молекулы перемещаются из одного места в другое. Тенденция горячего воздуха подниматься вверх является двигателем естественной тепловой конвекции. Теплопроводность – это передача тепловой энергии от одной молекулы к другой. Каждая молекула может не менять своего положения в пространстве, но энергия, тем не менее будет передаваться. Горячая (обладающая большей энергией) молекула может передать часть своей энергии соседней молекуле, если последняя менее нагреты (обладает меньшей энергией). Грубо говоря, чем плотнее материал, тем больше молекул находятся в контакте друг с другом, а значит и больше возможностей для теплопроводности. Тепловое излучение (или энергия излучения) является формой электромагнитного излучения, тесно связанным с видимым светом. Инфракрасное электромагнитное излучение, но оно распространяется точно также, как распространяется видимый свет: через вакуум, через атмосферу, через воду и через некоторые твердые вещества, в том числе те, которые являются непрозрачными для видимого света. Таким образом Солнце назревает Землю через 150 млн километров вакуума, где нет ни процесса конфекции, ни теплопроводности. При температуре выше абсолютного нуля (-273 С) любая материя излучает некоторую энергию. Эти три механизма зачастую работают вместе. Например, воздух в печи нагревается за счет теплопроводности и излучения, распространяется по зданию за счет конвекции и нагревает более холодные объекты за счет теплопроводности и теплового излучения.

виды передачи тепла

Теперь давайте рассмотрим стеновые панели и модули.

Внутри стеновых модулей и панелей находится утеплитель, который по своей природе представляет собой вспененное светлое вещество. Отсюда следуют два вывода. “Вспененный” – значит, мало молекул в контакте – низкая теплопроводность, “светлое” – значит, является хорошим отражателем для теплового излучения. За счет отражения энергия излучения не накапливается, не хранится и не передается. Но панель “сэндвич” по своей конструкции не является герметичной, за счет чего происходит просачивание воды и воздуха через панель, а значит не происходит блокировки процесса конвекции. Таким образом, за счет конвекции происходит рассеивание тепла. А вот через полностью герметичный стеновый модуль вода и воздух пройти не могут, почему и снижается возможность конвекции. Чем герметичнее модуль, тем меньше значимость вышеперечисленных процессов.

Это означает, что Солнечное тепло остается снаружи здания, когда летом вы пытаетесь охладить помещение. Зимой же все накопленное в доме тепло остается внутри, а не выходит наружу.

inhouse.ru

Тепловая энергия – Определение количества тепловой энергии, потери энергии на хаотическое тепловое движение. Выработка тепловой энергии, расход тепловой энергии. Понятия «свободная энергия» и «теплота»

20 11 2016      greenman       Пока нет комментариев  

Тепловая энергияСистема измерения теплоты два века назад базировалась на представлении о том, что тепловая энергия сохраняется, никуда не пропадает, а только переходит из одного места в другое. Мы до сих пор пользуемся следующими правилами:

Для измерения количества тепла заставим его нагревать воду и умножим массу воды на приращение температуры. Если масса взята в кг, а разность А (температур) — в градусах Цельсия, то произведение их будет теплотой в Кал, или ккал.

При передаче тепловой энергии какому-то другому веществу, то сначала массу нужно помножить на повышение температуры, как и для воды, а результат затем помножить на «удельную теплоемкость» вещества.

Чтобы измерить тепловую энергию, выделяемую определенным количеством топлива, необходим специальный прибор для сжигания образца и передачи образовавшегося тепла без заметных потерь воде. Подобным испытаниям были подвергнуты почти все виды топлива. Взвешенный образец, как правило, вместе со сжатым кислородом помещался в толстую металлическую бомбу, которая погружалась в сосуд с водой. Затем с помощью электричества образец сжигали и измеряли возрастание температуры воды. Вместе с водой нагревалась и бомба со всем ее содержимым; это необходимо было учитывать.

Тепловая энергия и молекулы

Любая удачная попытка передать энергию газу нагревает его, увеличивая давление (объем). В кинетической теории мы связывали это с увеличением кинетическая энергия хаотически движущихся молекул. Тепловая энергия газа — это просто кинетическая энергия в молекулярном масштабе. То же самое можно сказать как о жидких, так и о твердых телах с той лишь оговоркой, что необходимо учитывать кинетическую энергию вращения молекул и энергию их колебаний.

Представьте себе пулю, которая с огромной скоростью ударяется о препятствие и вследствие трения застревает в нем. В этом случае кинетическая энергия пули передается молекулам окружающего воздуха и дерева, сообщая им дополнительное движение. Огромная кинетическая энергия исчезает, а вместо нее появляется тепловая энергия. Если считать, что теплота — это «обобществленная» кинетическая энергия, то богатство, состоящее в огромном количестве упорядоченной кинетической энергии, распределяется среди всех хаотически движущихся молекул — «достойных» и «недостойных». Когда свинцовая пуля попадает в стенку, большая часть ее богатого запаса кинетической энергии превращается в энергию колебаний отдельных атомов свинца и стенки; энергия обученной армии вырождается в беспорядочную толчею толпы.

 

При любых обсуждениях вопросов, связанных с использованием энергии, необходимо отличать тепловую энергию (энергию хаотического движения) от энергии упорядоченного движения, известной в технике как свободная энергия. Так, кинетическая энергия летящей пули представляет собой энергию упорядоченного движения — она вся заключена в пуле. Мы называем ее свободной энергией, поскольку ее целиком можно превратить в потенциальную энергию; для этого надо просто выстрелить вертикально вверх! Энергия деформации также упорядочена, и мы называем ее тоже свободной энергией, ведь пружина может затратить ее на поднятие груза. Химическая энергия практически вся свободна, как и электрическая энергия и энергия высокотемпературного излучения. Любая из этих форм энергии позволяет использовать всю энергию. Хаотическая тепловая энергия имеет один существенный недостаток. На какие бы хитрости мы ни шли, в механическую энергию способна превратиться лишь часть тепловой.

Это происходит из-за того, что даже в лучшей из мыслимых машин для превращения теплоты в механическую энергию некоторая доля теплоты передается холодильнику. Иначе машина но сможет повторить рабочий цикл. Мы не в силах полностью упорядочить случайное движение молекул, превратив его энергию в свободную. Некий хаос всегда останется. Мысленный эксперимент с идеальной тепловой машиной говорит, что максимальная доля тепла, которую можно использовать, составляет (Т1—Т2)/Т1, где Т1 — абсолютная температура «нагревателя», или котла, а T2 — абсолютная температура холодильника машины (о смысле абсолютной температуры см. гл. 27). Так, пар под высоким давлением с температурой 500° К (227° С), превращающийся в воду с температурой 300° К (27° С), может дать к. п. д. не больше (500—300)/500, или 40% • Такая паровая машина должна выбрасывать, помимо реальных потерь, 60% своего тепла.

Отсюда вполне очевидным становится вывод, что тепловая энергия и тепловые машины являются наиболее узким местом в современной энергетике. Все машины занимаются непрерывным производством тепловой энергии, и ее выбросом в окружающую среду. Причем, если проблемы эффективного преобразования световой солнечной энергии в электрическую энергию вполне возможно решить, усовершенствуя полупроводниковые и нано технологии, то проблему малого кпд тепловой машины решить нельзя.

Максимальный к. п. д. равен (Т1—Т2)/Т1, или 1-(Т2/Т1). Так что чем выше Т1 (или чем меньше Т2), тем ближе к. п. д. к единице. Чтобы уменьшить затраты, силовые установки стараются делать с возможно большей температурой Т1 нагревателя, или котла. Серьезные ограничения возникают из-за масла, которое начинает гореть, и металла, который начинает плавиться. Температуру же Т2, при постоянном подводе тепла нельзя надолго сделать ниже температуры окружающей среды. Практически у нас нет способа непосредственно использовать химическую или атомную энергию. Мы должны сначала превращать ее в тепловую энергию, а уж после этого нам не избежать больших тепловых потерь.

Как это ни парадоксально, но такие же рассуждения, основанные на мысленных экспериментах, говорят, что когда возникает другая потребность — получить теплоту из свободной энергии, т. е. когда мы хотим обогревать квартиру электричеством, мы можем достичь высокой эффективности (к. п. д.).

Используя свободную энергию, мы с помощью небольшой машины можем «перекачивать» тепловую энергию с холодной улицы в теплую комнату. В сущности, такой тепловой помпой для потребления тепловой энергии может служить вывернутый наизнанку холодильник, морозильное отделение которого помещено вне комнаты.

Используя солнечный свет, уголь пли гидроресурсы для получения полезной работы вроде питания электроламп, привода токарного станка или перекачивания воды на вершину холма и т. д., мы вновь и вновь приходим к тепловой энергии как к почти неизбежному побочному (вследствие трения) и наиболее вероятному конечному продукту. Когда свет лампы поглощается стенами, станок режет металл или вода стекает назад в океан, полученная первоначально из топлива энергия, в конце концов, целиком превращается в теплоту. А если мы и вначале имели дело с теплотой, то на конечном этапе будет более низкая температура. Она практически не пригодна для дальнейшего использования. Можно, конечно, придумать и другой конец — позволить свету излучаться в межзвездное пространство, станку закручивать пружину, а воду оставить па вершине холма, но, как правило, конечный продукт все-таки тепловая энергия. (Вся энергия от сгорания бензина во всех автомобилях мира за прошлый год, перешла, в конечном счете, в нагревание воздуха и земли — такой вот получается источник тепловой энергии).

Просто о сложном – Тепловая энергия

  • Галерея изображений, картинки, фотографии.
  • Определение количества тепловой энергии, потери энергии – основы, возможности, перспективы, развитие.
  • Интересные факты, полезная информация.
  • Зеленые новости – Определение количества тепловой энергии, потери энергии.
  • Ссылки на материалы и источники – Тепловая энергия.

greensource.ru

Тепловая энергия | Virtual Laboratory Wiki

Файл:Hot metalwork.jpg

Теплова́я эне́ргия — форма энергии, связаная с движением атомов, молекул или других частиц из которых состоит тело. По сути тепловая энергия — это энергия механических колебаний структурных элементов вещества (будь то атомы, молекулы или заряженые частицы). Тепловая энергия тела также называется внутренней энергией.

Тепловая энергия может выделяться благодаря химическим реакциям (горение), ядерным реакциям (ядерный синтез), механическим взаимодействиям (трение). Тепло может передаваться между телами с помощью теплопроводности, конвекции или излучения.

Теплолечение Править

Для теплолечения используют нагретые парафин, озокерит; водные или электрические грелки, электролампы, соль, песок, а так же синюю лампу, Соллюкс. Их тепло действует на ткани и универсально усиливает микроциркуляцию, обмен в тканях, обладает рассасывающим и противо-воспалительным действием. Тепло усиливает проницаемость кожи для лечебных веществ.

При сочетании с теплом лечебных грязей, лекарств, бишофита обеспечивается синергизм лечебных эффектов.

Теплолечение в сочетании с бишофитом: - улучшает кровообращение и микроциркуляцию в тканях - стимулирует трофические и регенеративные процессы - оказывает взаимно потенцирующее противовоспалительное, спазмолитическое, рассасывающее, аналгезирующее действие

Показания к теплолечению с бишофитом

Нозология и Методика

Остеоартроз, остеохондроз, артриты, бурситы, эпикондилиты, пяточная шпора, состояния после травм опорно-двигательного аппарата :

Наносится бишофит или бишофит-гель с легким массажем; парафин или озокерит при температуре 55-65ºС наносятся на зону воздействия, сверху – теплое укрытие на 20-30мин, через день или ежедневно, курс лечения 5-12 процедур ежедневно или через день. Соллюкс используется для тепловой ИК-светотерапии после нанесения бишофита 10-20 минут. Особенно показан при плече-плопаточном периартрите и остеохондрозе. Тепловая «стоун-терапия» - после нанесения бишофита накладываются разогретые до 45-50 ºС. базальтовые камни и тепло укрываются на 15-30 минут.

При домашнем назначении: легко втирается бишофит, наносится грелка или другой теплоноситель температурой 45-50ºС на 20-30 минут ежедневно или через день, желательно вечером. После прогреваний не охлаждать и не нагружать физически зону воздействия.

Согревающие компрессы: участок тела согреть 2-3 минуты любым источником тепла, нанести бишофит (можно добавить спирт или водку), сверху закрыть водонепроницаемой пленкой (пищевым пакетом) и согревающим слоем ткани. Компресс оставить на 1-2 часа, после легко протереть кожу салфеткой.

Эта страница использует содержимое раздела Википедии на русском языке. Оригинальная статья находится по адресу: Тепловая энергия. Список первоначальных авторов статьи можно посмотреть в истории правок. Эта статья так же, как и статья, размещённая в Википедии, доступна на условиях CC-BY-SA .

ru.vlab.wikia.com

тепловая энергия теплоносителя - это... Что такое тепловая энергия теплоносителя?

 тепловая энергия теплоносителя

3.1 тепловая энергия теплоносителя: Энергия теплоносителя, представляющая собой его энтальпию, связанную с температурой, давлением и массой теплоносителя.

Словарь-справочник терминов нормативно-технической документации. academic.ru. 2015.

  • тепловая энергия
  • тепловая энергия, отпущенная теплоснабжающей организацией

Смотреть что такое "тепловая энергия теплоносителя" в других словарях:

  • Тепловая энергия теплоносителя — Тепловая энергия теплоносителя: энергия теплоносителя, представляющая собой его энтальпию, связанную с температурой, давлением и массой теплоносителя... Источник: ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ. МЕТРОЛОГИЧЕСКОЕ ОБЕСПЕЧЕНИЕ …   Официальная терминология

  • тепловая энергия — тепловая энергия: Энергетический ресурс, при потреблении которого изменяются термодинамические параметры теплоносителей (температура, давление). [Федеральный закон от 27 июля 2010 г. № title= О теплоснабжении «О теплоснабжении» [2], статья 2,… …   Словарь-справочник терминов нормативно-технической документации

  • Тепловая энергия, полученная абонентом — Тепловая энергия, полученная абонентом: разность тепловых энергий теплоносителя: тепловой энергии теплоносителя, поступившей к абоненту, и тепловой энергии теплоносителя, возвращенной абонентом... Источник: ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ… …   Официальная терминология

  • тепловая энергия, отпущенная теплоснабжающей организацией — 3.1.2 тепловая энергия, отпущенная теплоснабжающей организацией: Разность тепловых энергий теплоносителя: тепловой энергии теплоносителя, отпущенной теплоснабжающей организацией, и тепловой энергии теплоносителя, возвращенной теплоснабжающей… …   Словарь-справочник терминов нормативно-технической документации

  • тепловая энергия, полученная абонентом — 3.1.1 тепловая энергия, полученная абонентом: Разность тепловых энергий теплоносителя: тепловой энергии теплоносителя, поступившей к абоненту, и тепловой энергии теплоносителя, возвращенной абонентом. Источник …   Словарь-справочник терминов нормативно-технической документации

  • количество теплоты (тепловая энергия) — 3.6 количество теплоты (тепловая энергия): Изменение внутренней энергии теплоносителя, происходящее при теплопередаче в теплообменных контурах (без массопереноса и совершения работы). Источник: ГОСТ Р 51649 2000: Теплосчетчики для водяных систем… …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ Р 8.642-2008: Государственная система обеспечения единства измерений. Метрологическое обеспечение измерительных систем узлов учета тепловой энергии. Основные положения — Терминология ГОСТ Р 8.642 2008: Государственная система обеспечения единства измерений. Метрологическое обеспечение измерительных систем узлов учета тепловой энергии. Основные положения оригинал документа: 3.5 измерительная система узла учета… …   Словарь-справочник терминов нормативно-технической документации

  • ВВЭР-1000 — Монтаж корпуса реактора ВВЭР 1000 на Балаковской АЭС Тип реактора водо водяной …   Википедия

  • Методика определения фактических потерь тепловой энергии через тепловую изоляцию трубопроводов водяных тепловых сетей систем централизованного теплоснабжения — Терминология Методика определения фактических потерь тепловой энергии через тепловую изоляцию трубопроводов водяных тепловых сетей систем централизованного теплоснабжения: Водяная система теплоснабжения система теплоснабжения, в которой… …   Словарь-справочник терминов нормативно-технической документации

  • Ядерная энергетика —         отрасль энергетики (См. Энергетика), использующая ядерную энергию (См. Ядерная энергия) (атомную энергию) в целях электрификации и теплофикации; область науки и техники, разрабатывающая и использующая на практике методы и средства… …   Большая советская энциклопедия

normative_reference_dictionary.academic.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта