Мы создаем общение. Что убивает человека напряжение или ток. Что опаснее сила тока или напряжениеМы создаем общение. Что убивает человека напряжение или ток
Заблуждения об электричествеЗаблуждения об электричествеНесмотря на то, что электричество весьма прочно вошло в нашу жизнь, наши знания о нём очень скудны, неточны и противоречивы. Есть масса явлений, которые учёные совершенно не в состоянии объяснить и стараются их просто не замечать и не вспоминать о них. Мы так привыкли к электричеству, что даже не задумываемся над тем, насколько универсальна и удобна для жизни эта форма энергии. Но мы замечаем, как нам плохо без него, когда по тем или иным причинам подача энергии прекращается. Неумелое обращение с домашней техникой может создать экстремальную ситуацию не только в отдельно взятой квартире, но и в целом доме. Миф №1. Может ли ток от автомобильного аккумулятора убить человека? Есть точки на теле человека чувствительные к электрическому току, даже 12вольт: виски, сонная артерия, около того места где пульс на руке проверяют. Безопасным считается ток, длительное прохождение которого через организм человека не причиняет ему вреда и не вызывает никаких ощущений, его величина не превышает 50 мкА. Минимально ощутимый человеком переменный ток составляет около 1 мА. Не отпускающим называется ток такой силы, при которой человек уже неспособен усилием воли оторвать руки от токоведущей части. Для переменного тока это около 10-15 мА, для постоянного — 50 мА.
Теоретически автомобильный аккумулятор убить человека не может. Практически - может быть. Сила тока опасная для жизни около 120 мА (0. 12А). Сопротивление тела человека несколько кОм. При таком напряжении и сопротивлении даже в 1 кОм, сила тока будет 6В / 1000 Ом = 0, 006 А. Это на два порядка меньше опасной величины. Да ещё про внутренне сопротивление аккумулятора не надо забывать. Миф №2. Опасно ли купание в грозу? При растекании электрического заряда, есть такое понятие как шаговое напряжение и купальщик, непосредственно под него и попадет. При падении провода, в 10 000 Вольт на сухую землю, безопасным считается расстояние в 10 метров. В молнии миллионы вольт, так что расстояние, будет побольше! Тем более, что молния скорей всего ударит в торчащий из воды объект, такой как голова купальщика. Если стоять покалено в водоеме во время грозы шанс на поражение молнией как от прямого попадания так и от напряжения шага такой же как и на суше, если стоять по шею то шанс на прямое попадание становится такой же как и в любую другую точку воды. Но есть одна неприятность - попадая в зону растекания вас может ударить током, но не убить, а только оглушить. На суше вы просто упадете, а в водоеме утоните, тем более после близкого попадания молнии вас никто вытаскивать не пойдет.
Миф №3. Чем больше напряжение электрического тока, тем он опаснее для человека. С детского сада нас учат: в электрической розетке ток высокого напряжения и, засунув туда палец или что-нибудь железное, мы рискуем навсегда покинуть этот мир. Поэтому у современного человека вырабатывается стойкое убеждение о том, что чем выше напряжение электрического тока, тем более он опасен для человека. С одной стороны, это верно, а с другой — нет, потому что необходимо учитывать не только напряжение, но и силу тока. Электрический ток, текущий в любых проводниках или средах, характеризуется двумя основными характеристиками: напряжением (разностью потенциалов) и силой тока. Эти две величины — сила тока и напряжение — взаимосвязаны, и в любом источнике тока или проводнике есть и ток, и напряжение. Тесную связь между ними в начале XIX века установил немецкий физик Георг Ом — сейчас она известна нам как закон Ома. Закон гласит, что сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению проводника.
Именно из-за закона Ома и нельзя говорить о том, что при повышении напряжения электрический ток становится более опасным для человека. Да, часто это именно так и бывает, но далеко не всегда — мы сталкиваемся со случаями, когда даже напряжение в 10 000 вольт не наносит никакого вреда. Интересно, что в розетке, к которой ничего не подключено, никакого тока нет — есть только напряжение. Это естественно вытекает из закона Ома — пока два проводника не соединены, между ними бесконечно большое сопротивление, а значит, бесконечно малый ток. Но ток потечет сразу же, как проводники соединятся друг с другом или через электрический прибор. И чем меньше сопротивление, тем больше будет ток, а напряжение будет оставаться неизменным.
Сопротивление человеческого тела может меняться от 200-300 до 15 000-20 000 и более ом (все зависит от влажности, температуры окружающей среды, даже от эмоционального состояния), поэтому при контакте с током напряжением 220 вольт через разные части тела может пробегать ток силой от тысячных до десятых долей ампера.
Установлено, что человек начинает чувствовать воздействие тока силой от 0,001 ампер, токи в 0,01-0,05 ампер уже являются опасными, а ток выше 0,05 ампер может привести к смерти. Что касается напряжений, то опасность представляют величины от 40 вольт. Однако при некоторых условиях и 10-15 вольт могут стать смертельными, поэтому, например, в лабораториях или учебных классах используют ток напряжением 12 вольт. Миф №4. Можно ли спастись от шаровой молнии? Есть природные явления, связанные с электричеством, которые до сих пор не поддаются точному физическому объяснению. Одним из таких явлений является шаровая молния. С ней ежегодно имеют дело тысячи людей по всему миру, но при этом по-настоящему хорошо изучить шаровую молнию, а уж тем более воспроизвести ее в лабораторных условиях до сих пор не получалось. Точнее, попыток было много, и даже определенные результаты были получены, но называть всплывающий на несколько мгновений из воды огненный шар настоящей шаровой молнией язык не поворачивается. Мало того, лабораторный огненный шар, который получали с помощью специально изогнутого металлического стержня, опущенного в таз с водой, с настоящей шаровой молнией отличает не только время «жизни», но и поведение. По мнению, некоторых людей, чтобы спастись от удара шаровой молнии, необходимо снять с себя во время грозы все металлические предметы (украшения, амулеты), и отойти подальше от воды. Однако эти люди забывают, что человек сам состоит на 70-80% из воды, а потому шаровой молнии представляется отличным проводником. При этом шаровая молния может образоваться и в домашних условиях. Многочисленные очевидцы рассказывали о том, как шарики небольшого размера вылетали из розеток. При этом шаровая молния могла так же спокойно исчезнуть, а могла и привести к трагическим последствиям. Некоторые люди думают, что при виде шаровой молнии не нужно двигаться. В этом уже есть логика. По крайней мере, вы не будете вызывать течений воздуха, которые могут потянуть за собой электрическую гостью. Но часто бывает и так, что шаровая молния летит даже против ветра, потому фокус с неподвижностью тоже может не всегда сработать. Так как же спастись от шаровой молнии, если вы увидели ее неподалеку. К сожалению, ни один физик мира сегодня не в состоянии ответить на этот вопрос. Многие «знатоки» могут предлагать своим варианты спасения, но все они будут меркнуть по сравнению с возможностями самой шаровой молнии. Шаровая молния – это тот случай, когда даже передний край науки не в состоянии дать точных объяснений ее природы. Миф №5. Электромонтаж – это легко. Владельцы квартир в новостройках и те, кто покупает квартиры на вторичном рынке, повсеместно, по всей России страдают от одних и тех же заблуждений. Одно из самых массовых заблуждений воплощается в жизнь примерно так. Раз в квартире есть какая-то проводка то всё нормально, переделывать ничего не нужно, можно делать косметический ремонт и всё. А как поклеим обои, то позовём электрика и он нам поменяет несколько розеток. Если розеток не хватает, то вполне выручат тройники и удлинители, мы всё равно привыкли так жить. Что тут неправильного, что опасного? Диагностику существующей проводки не проводил никто, состояние электросети неизвестно. Возможно, линии проложены алюминием, а он уже повсеместно запрещён в квартирной электропроводке. Проводка заведомо не соответствует требованиям новых жильцов квартиры, не будет она отвечать и требованиям по мощности электроприборов, надёжности и безопасности. Прямые опасности: электротравмы, возгорание электропроводки, выход из строя проводки. Т.е. самое массовое заблуждение – вообще не трогать проводку или вспомнить о ней в самый неподходящий момент.
Большинство заказчиков вообще не задумываются, кому же отдать электромонтажные работы. У них эти работы делают те, кто за них взялся сам. Вот пришли к человеку наниматься на работу штукатуры-отделочники – вот они и берут себе все объёмы работ: стяжка, штукатурка, сантехника, электрика. Это может быть один мастер-«универсал». Что может «универсал»? Всё может, но понемногу. Зачастую не понимает что делает. Взять на себя электромонтажные работы могут гастарбайтеры любых национальностей, штукатуры, плиточники, плотники, прорабы «комплексного ремонта». Только, внимание, это будут плохие специалисты. Есть устойчивое заблуждение у тех, кто подключает варочные поверхности и духовые шкафы сам или же с помощью штукатуров, чутко и бездумно руководя их безграмотными действиями. Итак, в чём их типичная ошибка?
- Проложить от щита до кухни один кабель 3*6 и подключать к нему и варочную и духовой шкаф защитив всё это автоматом на 40 ампер. - Проложить два кабеля 3*4 и подключать к одному варочную поверхность, а ко второму духовой шкаф. Защита на обе линии 25 ампер. Вариант похожий на тот, что выше, только линии обе сделаны кабелем в 2,5 квадрата. Номиналы защит те же самые. - Подключать толстый кабель пробуют через розетку, рассчитанную на жилы 2,5 квадрата и ток в 16 ампер. Теперь правильный ответ! Варочная поверхность имеет мощность 7-8 кВт, духовой шкаф имеет мощность 2,8-3,6 кВт. Для варочной поверхности (при однофазном подключении) требуется кабель 3*6 и защита в виде автомата на 32 ампера (и это буква закона!), для духового шкафа требуется выделенная линия кабелем 3*2,5 и качественная розетка на 16 ампер. Варочная поверхность подключается либо через специальный силовой разъём на 32 или более ампер либо же через клеммник, духовой шкаф подключается вилкой в розетку. Миф №6. Смерть от фена упавшего в ванну? Ввиду того, что в ванной комнате наблюдается повышенная влажность, то стены и пол в ванной комнате по этой причине могут быть токоведущими. Поэтому в таких помещениях по правилам электробезпасности разрешается только наличие напряжения 42 Вольт. Те, кто проводит в ванную проводку напряжением 220 Вольт нарушают правила электробезопасности. За это можно заплатить своей жизнью. Известны реальные факты смерти человека от случайно упавшего в ванну с водой фена, подключенного в сеть 220В. Поражение электрическим током в этом случае может наступить от одновременного прикосновения человека, находящегося в ванне с водой, к токоведущему проводу (фену упавшему в эту воду) и вентилю смесителя или металлическому шлангу душа и даже влажной, и поэтому токоведущей стене. Автомат может сразу не сработать, а в случае если ванна не заземлена, то не сработает совсем, так как короткого замыкания нет, потому, что сопротивление тела человека принято считать 1000 Ом. Даже если человек чудом выскочит из ванны, то когда он встанет ногами на влажный пол, то опять попадет под напряжение. Из этой ситуации крайне трудно выбраться живым.
Однако, летальный исход не всегда обязательный. Некоторые люди утверждают, что при попадании фена в ванную человек чаще всего остается жив. Причиной этого служит то, что электрический ток пройдет по пути с наименьшим сопротивлением, то есть по самой краткой линии, которая соединяет фазовый провод с землей или с нулем.
russian-mifs.ru Удар током. Мифы. / Интересное / Мы создаем общениеТак как в повседневной жизни с постоянным током мы встречаем редко, и то крайне слабой силы, то будем говорить именно о токе переменном. Миф №1 — электричество притягивает Популярный миф среди домохозяек и даже среди некоторых дипломированных инженеров и работников производств. Якобы, если прикоснуться к оголенным проводам или неисправным приборам под напряжением, то электрический ток непременно вас притянет и убьет. Если насчет вероятности «убьет» сомнений особых нет, то вот насчет «притянет» можно с уверенностью сказать, что это лишь миф. Электричество не притягивает! Данное заблуждение сложилось по причине особенности функционирования мышц тела человека и животных, которые управляются электрическими импульсами нервной системы. Под действием электричества мышцы сокращаются, и если, к примеру, вы схватились руками за оголенные провода, то самостоятельно разжать ладони уже вряд ли удастся. Ваши мышцы не будут подчиняться электроимпульсам мозга, так как на них воздействует более сильный источник. Такая «беспомощность» внешне дает ложное впечатление о том, будто электричество притянуло человека. Разумеется, проверять находится ли под током провод, нужно только с помощью специальных приборов, индикаторов и вольтметров. Но, если их нет под рукой и, по какой-либо немыслимой причине, вы все же вы решили проверить провод касанием, то действуйте тыльной стороной ладони, в таком случае сокращения мышц руки не помешают вам мгновенно удалиться от источника тока и вы не получите существенных повреждений. Миф №2 — чем больше напряжение (кол-во Вольт), тем больше вероятность, что вас убьет от удара током. Это заблуждение является более распространенным, чем первое. И не только среди домохозяек, но даже среди инженеров-электриков. Да, при определенных условиях, убить могут и 220 вольт от домашней розетки, а вот 90 000 вольт от электрошокера «каракурт» почему-то не убивают, хотя неплохо укладывают на пол. Что же тогда получается, высокое напряжение здесь вовсе не причем? Так что же тогда убивает человека? Как показывает практика, убивает именно сила тока, а не напряжение. Для начала давайте разберем стандартную схему заземления через тело человека, или, как мы любим это называть, «удар током». Вот она, родимая. Прошу заметить, что данная картинка является лишь схематической иллюстрацией того, как происходит заземление через тело человека. И так, перед нами три линии (трехфазный переменный ток) и человек, демонстрирующий случаи трех вероятных сценариев развития событий. Одно из главных правил, которое следует запомнить — электричество всегда ищет самый короткий путь, чтобы уйти в землю. Сценарий А — на данном примере, можно с уверенностью сказать, что испытуемого ждет удар током, так как человек заземлил одну из фаз через свое тело. Электричество прошло через руку, тело, ноги и добралось до «земли». Сценарий Б — удара током не будет. Ведь человека от «земли» отделяет изолятор, определенной высоты (Т), значит, эта схема безопасна. Сценарий В — плевать, что человек стоите на изоляторе, его ждет удар током, так как он соединил две фазы (Ф1 и Ф2) через свое тело. Делаем вывод, что главная задача, для того, кто хочет избежать удара током, это не при каких условиях не оказаться на пути электричества к земле. При всех других вариантах событий благоприятный исход не гарантирован. Тут следует добавить одну поправку про напряжение. Не зря я упомянул высоту Т (толщину) изолятора. Если напряжение будет сравнительно большим, то и толщина изолятора должна быть больше, чтобы не произошло заземление. Так как, высокое напряжение позволяет электрическому току совершать «пробои» — иными словами, проходить через те материалы, через которые обычно он этого сделать не может… через воздух, изолятор и так далее. К примеру, при напряжении в 100 000 Вольт, 1 см трансформаторного масла (изолятора и диэлектрика) пробивается вполне свободно. То есть, в этом плане напряжение опасно тем, что поведение электричества становиться более динамичным, пробиваются резиновые перчатки, которые ранее при 220 вольт служили вам отличным изолятором. Пробивается расстояние через воздух, пробивается ваша резиновая подошва на обуви и так далее. А теперь, когда даже детям понятно, что такое заземление через тело человека, думаю, самое время приступить к пояснению — почему все таки не напряжение виновно в смертельности удара, а именно, сила тока или нагрузка в цепи. По своей природе, удельное сопротивление человеческого тела довольно высоко, в следствии чего, при пропускании электрического тока через его ткани, они разогреваются, сгорают, в общем нарушается их работа. Также, при пропускании электрического тока через тело человека, нарушается работа периферической нервной системы отвечающей за дыхание, сердцебиение и прочие жизненноважные функции организма, что и становится причиной смерти. Высокая сила тока способна точно также нагревать и сжигать не только органическую ткань, но и проводку. А сила тока зависит от мощности электроприборов включенных в цепь (сеть) и рассчитывается по формуле Р = U*I (где P — мощность (ватт), U — напряжение (вольт), I — сила тока (ампер)). К примеру, если ваш чайник 3500 ватт подключен в цепь питанием 220 вольт, он вызовет прирост силы тока в цепи 3500/220 = 15.9 Ампер. Это такая нагрузка на цепь. Ну, а если вы к этому еще и подключили все свои электроприборы в один сокет (розетку), то за ней сила тока будет суммироваться от каждого электроприбора. Стандартная схема подключения в любом офисе и удивленное лицо местных обитателей, вопрошающее — почему это сетевики не выдерживают?! Китайские наверное! К слову, это самая распространенная причина пожаров, особенно в тех квартирах, где замена проводки не проводилась с советских времен. А ведь сегодня электроприборов куда больше, и они куда мощнее. Но, как правило, люди решают такие проблемы заменой автоматов предохранителей на более мощные (с большим ампиражом), а вот проводку оставляют такой же хиленькой. Пожар у таких хозяев лишь вопрос времени. Подведем итог — подобно тому, как сила тока палит проводку, она также сжигает и ткани человека. А вероятность смертельного исхода прямопропорциональна силе тока в цепи. Миф №3 — электрованна. Этот миф заслуживает особого сюжета в программе «Разрушители легенд», ведь своей популярностью он обязан голливудскими боевиками, как излюбленное средство расправы над неверными мужьями, любовниками… достаточно лишь бросить электрофен в ванну заполненную водой, в которой нежится ваша жертва, и его гибель гарантированна. Ну, во-первых, в данном мифе нарушается схема А, и правило «стоять на пути тока», «по пути меньшего сопротивления». Сама вода является очень плохим проводником, если только не насыщена ионами солей. Так как электричество из фена или миксера проходит частично сквозь воду, в которой растворены соли, далее через корпус ванны и в землю (пол)… максимум что случится, это короткое замыкание (Ф1-0) внутри самого фена, как электроприбора. Вероятность того, что через тело жертвы пойдет электричество крайне мала. Во-вторых, в любом жилом помещении есть автомат защиты (EKF), который сработает (вырубит питание) в случае короткого замыкания и увеличении сила тока в цепи. Жертва даже не успеет испугаться, не то что погибнуть. Самое главное, о чем хотел предупредить читателей, так это смотрите за своими детьми. Если вы живете в квартире, не бросайте отвертки, гвозди, и прочие металлические продолговатые предметы на полу. Ребенок может их подобрать и сунуть в розетку (попадет в 0, то ничего страшного, но попав в фазу получит удар током). Если вы живете в сельской местности, где над вашими домами проходят линии электропередач, старайтесь не оставлять рядом длинные пруты арматуры. Ребенок оставшийся без присмотра, может попытаться достать прутом линии, стоя на земле, как на схеме А, а это уже гарантированная смерть. Электричество куда опаснее оружия в руках незнающего человека. Будьте здоровы и осторожны! Тесла uposter.ru Заблуждение → Чем больше напряжение электрического тока, тем он опаснее для человека21 Дек 2011 С детского сада нас учат: в электрической розетке ток высокого напряжения и, засунув туда палец или что-нибудь железное, мы рискуем навсегда покинуть этот мир. Поэтому у современного человека вырабатывается стойкое убеждение о том, что чем выше напряжение электрического тока, тем более он опасен для человека. С одной стороны, это верно, а с другой — нет, потому что необходимо учитывать не только напряжение, но и силу тока.Электрический ток, текущий в любых проводниках или средах, характеризуется двумя основными характеристиками: напряжением (разностью потенциалов) и силой тока. Необходимо заметить, что у тока гораздо больше параметров, но именно его сила и напряжение имеют важное практическое значение, так что чаще всего говорят именно о них.Сила тока — это количество заряда (или пропорциональное количество электронов), прошедшее через поперечное сечение проводника за определенное время. Как известно, сила тока измеряется в амперах — эта единица измерения названа в честь французского ученого Андре-Мари Ампера, изучавшего электрические явления в начале XIX века. Напряжение тока — это разность электрических потенциалов, заставляющая электроны двигаться по проводнику. Вообще, определение понятия «напряжение» гораздо сложнее, но в общем случае напряжение показывает, какую по величине работу может совершить электрическое поле при переносе электрического заряда. Эта единица названа в честь итальянского ученого Алессандро Вольта, фактически заложившего на рубеже XVIII-XIX веков основу науки об электричестве. Эти две величины — сила тока и напряжение — взаимосвязаны, и в любом источнике тока или проводнике есть и ток, и напряжение. Тесную связь между ними в начале XIX века установил немецкий физик Георг Ом — сейчас она известна нам как закон Ома. Закон гласит, что сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению проводника. Именно из-за закона Ома и нельзя говорить о том, что при повышении напряжения электрический ток становится более опасным для человека. Да, часто это именно так и бывает, но далеко не всегда — мы сталкиваемся со случаями, когда даже напряжение в 10 000 вольт не наносит никакого вреда, о чем будет сказано дальше. Интересно, что в розетке, к которой ничего не подключено, никакого тока нет — есть только напряжение. Это естественно вытекает из закона Ома — пока два проводника не соединены, между ними бесконечно большое сопротивление, а значит, бесконечно малый ток. Но ток потечет сразу же, как проводники соединятся друг с другом или через электрический прибор. И чем меньше сопротивление, тем больше будет ток, а напряжение будет оставаться неизменным. Сопротивление человеческого тела может меняться от 200-300 до 15 000-20 000 и более ом (все зависит от влажности, температуры окружающей среды, даже от эмоционального состояния), поэтому при контакте с током напряжением 220 вольт через разные части тела может пробегать ток силой от тысячных до десятых долей ампера. Установлено, что человек начинает чувствовать воздействие тока силой от 0,001 ампер, токи в 0,01-0,05 ампер уже являются опасными, а ток выше 0,05 ампер может привести к смерти. Что касается напряжений, то опасность представляют величины от 40 вольт. Однако при некоторых условиях и 10-15 вольт могут стать смертельными, поэтому, например, в лабораториях или учебных классах используют ток напряжением 12 вольт. Как говорилось выше, иногда высокие напряжения оказываются совершенно безопасными для человека. Нетрудно догадаться, что это может случиться при очень малых токах и больших сопротивлениях. Например, известные всем пьезокристаллы (применяющиеся в зажигалках или в устройствах поджига в газовых плитах) могут создавать напряжение в десятки тысяч вольт, однако их действие на человека сводится лишь к кратковременному уколу. Все дело в том, что через искру при высоком напряжении протекает ток в миллионные доли ампера, а связано это с кратковременностью процесса — искра «живет» считанные доли секунды. Подводя итог, можно сказать, что не всегда корректно говорить о том, что при повышении напряжения ток становится более опасным для человека. В некоторых условиях опасным может стать напряжение 10-15 вольт; и, напротив, токи напряжением 10 000 вольт могут не наносить абсолютно никакого вреда, потому что всегда необходимо учитывать не только напряжение, но и силу электрического тока. interesnik.com xn----7sbeb3bupph.xn--p1ai Что убивает, сила тока или напряжение? Что убивает сила тока или напряжениеЧто убивает, сила тока или напряжение?Ярослав русский:рубрика - Образование10.07.2018 17:29:27Вот в бытовой сети у нас 220 при 10 амперах. Напряжение это не убьёт, а сила тока убьёт. Но если взять автомобильный акб, с пусковым током 750 ампер, взять за выводы, то.. ничего не будет. Даже аккум не посадишь. Так скажите мне, что убивает то? Или это зависимые факторы? виктор носков: Опасно напряжение ! сергей маликов: Убивает не ток или напряжение, а его действие виде паралича мышц и их ожога, те его мощности, а для этого он должен быть не меньше определённого напряжения и источник должен выдавать при этом напряжении определённый ток, Вот домашняя статика по напряжению достигает сотни киловольт, но ток разряда маленький и максимум что будет,, это просто мышцы дернуься Станигост Абакумов: Напряжение, это разница в силах тока, в двух точках. Если напряжение слишком большое, то это убивает. На какой-бы провод не села птичка, как-бы там не било током, расстояние между лаками слишком маленькое, напряжение слишком маленькое, птичка все равно выживет. Айрат Саттаров: Убивает остановка сердца и (или) паралич дыхания при прохождении тока. Игорь Елкин: Будешь изучать в институте науку, называется "Охрана труда". Там сказано, что убивает только сила тока, который проходит через тело x x: Много слов, а смысла НОЛЬ. Закон Ома убивает. Прочти про него. СЕМЕН: ...и тут Остапа понесло... хорошая тема. Сергей Некрасов: Убивает, если ты касаешься земли) lex emeliyanov: Нагрузка убивает. А нагрузка это ток. Андрей Н.: Никаких Ампер в розетке и в аккумуляторе нет! То, что там написано на них - всего лишь максимально возможные токи. Убивает ток, который проходит через тело. Но этот ток тем больше, чем выше напряжение. Безопасным сейчас считают напряжение 42 В. Но оно ещё зависит от частоты и класса опасности помещения. Андрей Винк: Ток в цепи зависит от сопротивления нагрузки. Сопротивление человеческого тела условно принимают за 1000 Ом. Реально оно может сильно изменяться в обе стороны в зависимости от кучи факторов, но расчеты ведут именно исходя из этой цифры. Суем пальцы в розетк: U = 220 в R = 1000 Ом I = U/R = 0.22А = 220мА Смертельный ток. Берем в руки аккумулятор: U = 12в R = 1000 Ом I = 12/1000 = 0.012А = 12мА — даже не почувствуешь руками. А в реальности еще меньше, сопротивление кожи сухих рук достаточно высоко. Андрей Б: Напряжение и ток взаимосвязанные величины. Сергей Сидоренко : Убивает ток, который проходит через... Ты с какой целью интересуешься? Bolshoy: Убивает ток, котрый зависит от напряжения и сопротивления тела (закон Ома). Написать cвой ответ Похожие вопросы: популярные за несколько часов: xn----7sbajhqr6bajln.xn--p1ai Как сила тока может быть большой при напряжении 2 вольта?<ток большого напряжения помощью с убивает> Человек, провода и источник напряжения вместе образуют замкнутую электрическую цепь, через которую течет ток. Какой силы должен быть ток, чтобы привести к смерти человека? Это зависит от личных физиологических особенностей человека, от частоты тока и от того, через какую часть тела течет ток (наиболее опасный путь тот, который проходит через сердце). Одного убьет 50 мА, а второму и 100 мА будет недостаточно. Однако считается, что токи, начиная с 0,05 А (=50 мА), уже смертельно опасны для среднестатистического человека. Что это значит? Это значит, что если все условия сложились так, что через человека прошел ток 0,05 А и выше, то человек с высокой вероятностью погибнет. Какие это условия? Как это связано с напряжением? Может ли человека убить батарейка 2 В ? Ответ таков. Человек, как и любой другой токопроводящий элемент электрической цепи, обладает электрическим сопротивлением. Величина сопротивления даже у одного и того же человека не постоянна и может меняться от 10 кОм до 100 кОм. Помимо прочего, она также зависит от величины приложенного к человеку напряжения: чем выше напряжение, тем (увы) меньше сопротивление. Самый высокий вклад в сопротивление вносит кожа. Если кожа сухая, сопротивление выше. Если кожа мокрая или повреждена (и электрод дотрагивается до этого места), сопротивление ниже. В расчетах цепей защиты сопротивление тела человека принято принимать равным 1 кОм (для наихудшего случая - сильно уставший, больной, мокрый просоленный человек без кожи - шутка!). Но при напряжении 2 В можно взять и 5 кОм. Ну а дальше все просто. Какое напряжение нужно приложить к человеку, обладающему сопротивлением 1 кОм, чтобы через него прошел смертельный ток 0,05 А? Ответ дает закон Ома: U = I*R = 0,05* 1000 = 50 В. К человеку покрепче, которому для поездки к праотцам нужно 0,1 А, требуется приложить: 0,1*1000 = 100 В. Если сопротивление человека выше, например 2000 Ом, то уже нужно 0,1*2000 = 200 В. Ну и так далее - множество комбинаций различных факторов определяют исход прямого знакомства любознательного человека с электричеством. А что же батарейка в 2 В? Она может убить? Да! При определенных обстоятельствах может (например, если будет выброшена вами из окна автомобиля и удачно столкнется со встречным мотоциклистом - шутка!) Как! - воскликните вы - Ведь даже если взять сопротивление человека 1000 Ом (хотя при напряжении в 2 В сопротивление будет намного выше), то ток через тело человека не превысит (снова закон Ома): I = U/R = 2/1000 = 0,002 А = 2 мА, что заведомо ниже установленного нами порога в 50 мА! Действительно, просто замкнув батарейку двумя пальцами, вы не достигнете желаемого эффекта. И даже замкнув электроды языком вы по-прежнему ничего, кроме приятного зуда, не почувствуете. И даже...впрочем, это не важно. Величина электрического сопротивления вашего тела, как вы ни ухищряйтесь, по-прежнему будет велика и не позволит вам так просто уйти из этого мира, не закрыв ипотеку (шутка!) И тут вам на помощь приходит прибор под названием инвертор, по другому - повышающий преобразователь напряжения постоянного тока в напряжение переменного тока. Он питается чисто от вашей батарейки, ни к какому другому источнику не подключен и внутри себя тоже их не имеет. Все по честному! Что нам нужно, чтобы убиться? Как мы уже выше подсчитали, нам нужно сильно устать, угрохать свой иммунитет думами о смысле жизни, намокнуть и поглубже воткнуть в ткани головы и грудины электроды с напряжением от 50 В. Значит, нам нужен инвертор, превращающий 2 В постоянного тока в 50 В переменного. Промышленность не выпускает? Соберем сами - было бы желание. Итак, цепь выглядит следующим образом. Батарейка, проводочки, кнопка, свежесобранный инвертор и вы. Нажимаем на кнопочку - и привет, апостол Петр! Давайте-ка для проверки этой технической чудо-идеи подсчитаем, какую мощность теоретически отдаст в ваше бренное тело инвертор. P = U*I = 50 * 0,05 = 2,5 Вт. Да-да, всего 2,5 Вт нужно, чтобы устроить вам свидание с вашим прадедушкой. Это намного экономичнее, чем обкладывать вас вязанками хвороста, хотя, конечно, и не так эффектно (да и попахивает черной магией!) А какой ток в таком случае должна отдать инвертору ваша батарейка? Пусть у вас идеальный инвертор с коэффициентом полезного действия 100%. По закону сохранения энергии (ну и по законам Кирхгоффа заодно), инвертор должен получить от батарейки столько же, сколько отдает вам, то есть 2,5 Вт. Значит, ток батарейки будет: I = P/U = 2,5 Вт / 2 В = 1,25 А. Сможет батарейка отдать такой ток? Свежая, литиевая, японская...да запросто, ей что, жалко что ли для хорошего человека! А вот вам домашнее задание. Из старого ненужного предмета бытовой техники (радиоприемник Океан 209 прекрасный кандидат) выковыряйте понижающий трансформатор, полностью его отсоедините от всех других устройств, привинтите на дощечку (так он будет более безобидно выглядеть и не упадет вам на ногу) и сделайте такой фокус. Возьмитесь пальцами одной руки (лучше правой) за оба вывода первичной обмотки (той, которая раньше подсоединялась к сетевому шнуру), а к выводам вторичной обмотки подсоедините (с помощью проводочков, например) обычную пальчиковую батарею 1,25 В. В тот момент, когда вы замкнете выводы вторичной обмотки на батарейку, ваше мнение о возможностях махонькой батарейки значительно поменяется. Позже, когда к вам вернется возможность говорить, вы даже сможете повторить этот фокус на младшей сестре (дети, они ведь такие доверчивые...), на папе (родители обычно не боятся ничего, что не подключено к розетке, а зря...) и на однокласснике (только выбирайте не очень крупного и сильного). Удачного вам познавания мира без потерь! vorum.ru Убивает сила тока или напряжение???Убивает ток, который проходит через тело человека.Он зависит от сопротивления тела и напряжения на концах источника.Смертельность воздействия сильно зависит от участка через которые протекает ток.Например большой ток от пальца одной руки до пальца этой же руки может их обуглить, а человек останется жив. С другой сторны, небольшой ток проходящий через сердечную мышцу (от правой до левой руки, от левой руки до правой ноги) может остановить этот орган со смертельным исходом.Сопротивление тела тоже очень переменная величина. У пьяного - меньше, у работяг с мозолями - больше. Начинаешь волноваться - потоотделение сильно уменьшает сопротивление.Да и разные люди разным сопротивлением обладают. Когда-то на Тесле работяга работал с аномально большим сопротивлением своего тела. Так он с 220 В - без проблем работал. Как мы с автоаккумулятором.Формально 0,1 ампера считается смертельным. Сила. Читай ОБЖ за школьный курс. не всегда убивает! Конечно сила тока, даже 1 ампер может погубить человека, к примеру в америке применяют шоккер, он обладает 0 силой тока, зато имеет 500 000 вольт напряжения, что позваляет обезвредить преступника, не убив его! Именно сила тока. Хватае 20 милиампер Сочетание.. . напряжение обеспечивает проникание, при этом должна быть достаточная сила.. . А вообще, были случае летальных исходов от обычной 9в. батарейки - после пробы "на язык"... видимо, при определенных условиях и минимальный вольтаж, с минимальным амперажем может порешить. ну вообщето убивает непосредственно ток, силы тут непричем) Амперы убивают а не вольты. Убивает ток. Смертельной (зависит от человека) считается сила тока в 150 мА. На электрическом стуле напряжение доходит да 2 кВ, а сила тока до 8 А. Сила тока 0.01- опасно, 0.1-смертельно Убивает ПОТОК ЭЛЕКТРОНОВ. А вообще: НЕ ВЛЕЗАЙ-НЕ УБЬЕТ!!! Убивает не сила, а проходящий по человеку ток. Особенно подвержены риску "сердечники". Они часто потеют, поэтому проводимость у них хорошая. А напряжение есть напряжение. Я 15 лет проработал телемастером и меня трясло не раз 25 000 - 27 000 вольт. И до сих пор живой. A ne vse li ravno, kogda ybet.Posdno bydet pit borwomi... Вообще-то из школьной программы все должны помнить, что сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению. Здесь уместнее говорить о времени, в течении которого человек находится под напряжением. Иногда и не очень большие значения тока и напряжения могут привести к необратимым последствиям. все вместе) без достаточного напряжения не будет достаточного тока. Не сила, а сам ток. Возникающий в жертве из-за приложенной к нему разности потенциалов (напряжения) . И сила этого тока определяется величиной этого напряжения и сопротивлением жертвы. При большом сопротивлении ток будет слабым и не убьёт. убивает закон Ома I=U*R м R-сопротивление тела человека U-приложеное напряжение к телу I-соответственно ток через тело человека из всего выше перечисленного ясно что сопротивление тела человека непостоянно и может колебатсо в больших пределах (принято его считат равним 1000 ОМ) а дальше все зависит только от тока, если не ошибаюсь ток удержания 25 мА а болевой порог начинаетсо от 2 мА science.ques.ru xn----7sbeb3bupph.xn--p1ai Что такое сила тока и напряжение. Сила тока и напряжениеЧто такое сила тока и напряжение — Александр КрыловМеня всегда интересовала тема электрического тока и электронных микросхем. И я никак не мог понять электрический ток. Ну, то есть я не мог понять, что значит вот это выражение «сила тока» или «напряжение». Что вообще значит разность потенциалов, и почему что-то куда-то от этого течёт. Искал разные аналогии, пытался читать чужие объяснения, но лишь недавно накопилось что-то в голове. Решил поделиться. Начну с основного. То, что называют в школе «силой тока» — это вообще не «сила» тока. То, что там происходит — это скорость тока. Потому что определение звучит примерно так: количество заряда, проходящего через сечение проводника в единицу времени. Если перевести на нормальный язык: вот идёт 20 зарядов, переходят некоторую точку в проводе (или в чём-либо ещё). И эту точку они проходят за секунду. Вот и получается «сила тока» — 20 зарядов в секунду. С какого перепуга это сила? Это куда ближе к скорости. И вот есть единица измерения «ампер». И она означает кулон за секунду. То есть какое-то количество зарядов, которое вместе равно одному кулону, проходит через точку проводника за секунду. Этих зарядов в 1 кулоне — туча: 6,24*10^18. Если с нулями написать — 6 240 000 000 000 000 000 зарядов электрона составляют 1 кулон. То есть есть туча электронов, которые и переносят этот заряд. На каждый электрон приходится по одному заряду. И вот как только я осознал, что ампер — это количество зарядов, сразу стали понятны все эти параллельные и перпендикулярные соединения. Течёт себе по проводу 1 кулон зарядов, притёк он такой к развилке параллельного соединения — дальше по одной развилке потекла половина заряда и по другой — тоже половина (если там одинаковые лампочки, например). Потом они после этой развилки вместе слились — и снова бац — один кулон этих частиц с зарядом. Вот и получается, что количество зарядов гуляет по цепи одинаковое количество. И поэтому то, что называют силой тока — это количество зарядов. То есть термин «сила тока» — очень хреновый термин. Количество зарядов за секунду — куда длинней звучит, но при этом куда проще. Дальше переходим к напряжению. И его тоже я понять не мог. Естественно. Мне же его объясняли так же, как и силу тока. То есть хреново. Что такое напряжение? Напряжение — это энергия, которая высвобождается, когда единичный заряд «сползает» от высокого потенциала к низкому. Чтобы у этого заряда был заряд, его туда нужно «затолкать». Работа (или энергия), которая затрачивается на то, чтобы этот заряд туда «загнать» в идеальном мире равна той энергии, которая высвободится. Поэтому её тоже можно назвать напряжением ) То есть вот есть у нас провод длиной 10 метров. Слева избыток заряда, справа — недостаток. Задача — обеспечить равновесие. Напряжение — это энергия, которая высвободится, пока заряды будут бежать от одного конца к другому. По этой причине напряжение можно представить как цикл энергичных пинков под задницу зарядам. 😆 И они такие побежали. А кто не побежит? ) Напряжение измеряется в джоулях на кулон. Или — что то же самое — в вольтах. Иными словами, кулон (количество зарядов) получает пинок в 1 джоуль и бежит из точки А в точку Б. И если он добежал до точки Б, говорят, что между точками А и Б — разница потенциалов была равна 1 вольт. Теперь лучше всего сделать паузу, выпить кофейку или чайку и посмотреть вот это гениальное видео, в котором автор Михаил Майоров очень наглядно показал электрический ток в аналогии с током воды. Очень рекомендую: всего 18 минут, а очень круто показано. Собственно, после просмотра этого видео у меня в голове появилось хоть какое-то соображение, что к чему ) А следующим весомым шагом стала книга «Искусство схемотехники» (The Art of Electronics) авторов П. Хоровиц и У. Хилл (Paul Horowitz, Winfield Hill). Конкретно по данному вопросу нужно читать страницу 9 их шикарной книги ) Очень рекомендую. В сети найти можно, а если ищется с трудом — то она есть вот тут: http://nnm-club.me/forum/viewtopic.php?t=754538 aleksandr-krylov.ru СИЛА ТОКА И НАПРЯЖЕНИЕЭЛЕКТРИЧЕСКИЙ ТОК Повернём выключатель. Над столом загорается электрическая лампочка. Второй поворот выключателя — и лампочка гаснет. Задумывались ли вы когда-нибудь над тем, почему это происходит? Многие, вероятно, скажут, что тут и думать-то нечего. Почти каждый видел разобранный выключатель и знает, Так, часто говорят: «включить ток», «выключить ток». Но что это значит? Мы знаем, что электрический ток в металле — это упорядоченное движение свободных электронов. Но свободные электроны в нити лампы имеются и тогда, когда электрическая цепь разорвана, когда лампочка «выключена». Ведь свободные электроны имеются в любом куске металла. Значит, отсутствие тока в лампочке при таком положении выключателя, как это изображено на рисунке 13, вызвано не тем, что в её нити нет электронов, а тем, что движение электронов здесь неупорядоченное, хаотическое. А не упорядочено движение потому, что в нити лампочки нет электрического поля. Когда мы вкручиваем лампочку в патрон при разомкнутом выключателе, то при этом один конец нити лампочки соединяется с одним из проводов, протянутых в нашу квартиру от электростанции, а второй конец нити присоединяется к проводу, идущему к выключателю, где цепь разорвана (рис. 13). В течение очень малого времени, значительно меньшего, чем секунда, через нить идёт «мгновенный» электрический ток, но затем электрическое поле заряда, накопляющегося на конце провода в месте обрыва цепи, уравновешивает внешнее поле (поле, созданное генератором). Электрическое поле в лампе и в подводящих к ней проводах исчезает, а поэтому исчезает и ток. Значит, в «выключенной» лампочке нет тока потому, что в нити её нет электрического поля. Как только мы поворачиваем выключатель, заряд с места, где прежде был обрыв цепи, уходит по второму проводу в генератор, стоящий на электростанции. В лампочке и в подводящих к ней проводах появляется электрическое поле, которое приводит электроны в упорядоченное движение. Так возникает электрический ток. Таким образом, поворачивая выключатель, мы «включаем», по сути дела, не ток, а поле. Итак, причиной создания и поддержания электрического тока служит электрическое поле. Ясно, что величина тока, или, как обычно говорят, сила тока, должна зависеть от величины поля. Чтобы понять, как зависит ток от поля, надо уметь характеризовать ток и поле количественно. Сила тока—это одно из многих неудачных названий в учении об электричестве, данных ещё тогда, когда ясного понимания того, что такое ток, не было. Это вовсе не с и л а в обычном понимании этого слова, а количество электричества, протекающее через поперечное сечение провода за одну секунду. Её можно было бы выражать просто числом электронов, пролетающих через сечение проводника в секунду. Но заряд электрона — слишком малая величина для измерения токов, применяемых в технике. Например, через сечение нити лампочки карманного фонаря проходит в секунду около 2 ООО ООО ООО ООО ООО ООО электронов. В качестве единицы электрического заряда принят заряд, которым обладают 6 250 000 000 000 000 000 электронов. Этот заряд называется кулоном. За единицу силы тока принят такой ток, при котором за секунду через сечение проводника проходит заряд в один кулон. Эта единица силы тока называется ампером, а приборы для измерения силы тока — амперметрами. Чтобы найти количественную зависимость тока от поля, надо уметь измерять не только силу тока, но и величину поля. Поле правильнее всего было бы характеризовать силой, действующей на какой-нибудь определённый электрический заряд, например на один электрон или на один кулон. Ведь именно существование этих сил и характерно для поля. Но, не говоря уже о трудности измерения сил внутри провода, это неудобно ещё и по другой причине. Ведь в разных точках проводника поле может быть неодинаковым. Значит, чтобы знать, каково поле в проводнике, надо было бы измерить силы в разных точках его, то-есть для каждого куска провода проводить множество труднейших измерений. Поэтому величину поля в проводнике принято характеризовать не силой, которая действует в нём на электрические заряды, а той работой, которую эта сила совершает, перемещая один кулон электричества от одного конца проводника до другого. Эта работа поля при перемещении им единичного заряда по проводнику называется напряжением, или разностью потенциалов поля на концах проводника. Единицу напряжения называют вольтом, а приборы, измеряющие напряжение, — вольтметрами. О силе тока и о напряжении слышал каждый, кто имеет дело с электрическими приборами. Теперь должно быть ясно, почему электрический ток характеризуют не одной, а двумя величинами. Только одна из них — сила тока — относится непосредственно к току, напряжением же измеряется величина электрического поля, создающего ток. Ток создаётся полем. Значит, сила тока в проводнике зависит от напряжения поля на концах его. На рисунке 12 мы видим амперметр и вольтметр, включённые в цепь электрической дуги. Амперметр включён непосредственно в цепь: ток, идущий через дугу, проходит и через амперметр. Мы видим, что он равен пяти амперам. Вольтметр присоединён к зажимам дуги. Он показывает, что напряжение поля между углями в электрической дуге 55 вольт. Амперметр всегда включается непосредственно в цепь. При этом ток, идущий в цепи, идёт и через амперметр и измеряется им. Вольтметр не включается в цепь. Его присоединяют к концам какого-либо участка цепи, чтобы измерить напряжение поля между ними. Требования к качеству, области применения и правилам эксплуатации электрооборудования, предъявляемые современными отечественными и мировыми стандартами и техническими регламентами, определяют необходимость регулярного обслуживания... Мы живём в замечательное время, которое навсегда войдёт в историю неразрывно связанным с именем Иосифа Виссарионовича Сталина. Под руководством коммунистической партии и её вождя товарища Сталина советские люди построили социализм … Кроме токов, текущих всё время: в одном направлении, в технике широко применяются также так называемые переменные токи. Направление переменного тока в цепи изменяется обычно много раз за секунду. Рассмотрим здесь … msd.com.ua Сила тока и напряжениене ток, а поле. Итак, причиной создания и поддержания электрического тока служит электрическое поле. Ясно, что величина тока, или, как обычно говорят, сила тока, должна зависеть от величины поля. Чтобы понять, как зависит ток от поля, надо уметь характеризовать ток и поле количественно. Сила тока—это одно из многих неудачных названий в учении об электричестве, данных ещё тогда, когда ясного понимания того, что такое ток, не было. Это вовсе не с и л а в обычном понимании этого слова, а количество электричества, протекающее через поперечное сечение провода за одну секунду. Её можно было бы выражать просто числом электронов, пролетающих через сечение проводника в секунду. Но заряд электрона — слишком малая величина для измерения токов, применяемых в технике. Например, через сечение нити лампочки карманного фонаря проходит в секунду около 2 000 000 000 000 000 000 электронов. В качестве единицы электрического заряда принят заряд, которым обладают 6 250 000 000 000 000 000 электронов. Этот заряд называется кулоном. За единицу силы тока принят такой ток, при котором за секунду через сечение проводника проходит заряд в один кулон. Эта единица силы тока называется ампером, а приборы для измерения силы тока — амперметрами. Чтобы найти количественную зависимость тока от поля, надо уметь измерять не только силу тока, но и величину поля. Поле правильнее всего было бы характеризовать силой, действующей на какой-нибудь определённый электрический заряд, например на один электрон или на один кулон. Ведь именно существование этих сил и характерно для поля. Но, не говоря уже о трудности измерения сил внутри провода, это неудобно ещё и по другой причине. Ведь в разных точках проводника поле может быть неодинаковым. Значит, чтобы знать, каково поле в проводнике, надо было бы измерить силы в разных точках его, то-есть для каждого куска провода проводить множество труднейших измерений. Поэтому величину поля в проводнике принято характеризовать не силой, которая действует в нём на электрические заряды, а той работой, которую эта сила совершает, перемещая один кулон электричества от одного конца проводника до другого. Эта работа поля при перемещении им единичного заряда по проводнику называется напряжением, или разностью потенциалов поля на концах проводника. Единицу напряжения называют вольтом, а приборы, измеряющие напряжение, — вольтметрами. О силе тока и о напряжении слышал каждый, кто имеет дело с электрическими приборами. Теперь должно быть ясно, почему электрический ток характеризуют не одной, а двумя величинами. Только одна из них — сила тока — относится непосредственно к току, напряжением же измеряется величина электрического поля, создающего ток. Ток создаётся полем. Значит, сила тока в проводнике зависит от Страница 2 of 3« First«...23»www.hep.by Сила тока и напряжениеПовернём выключатель. Над столом загорается электрическая лампочка. Второй поворот выключателя — и лампочка гаснет. Задумывались ли вы когда-нибудь над тем, почему это происходит? Многие, вероятно, скажут, что тут и думать-то нечего. Почти каждый видел разобранный выключатель и знает, Рис. 14. Цепь замкнута; через лампочку идёт ток. Рис. 13. При таком положении выключателя электрическая цепь разорвана.
что при одном его положении цепь разорвана (рис. 13), а при другом — замкнута (рис. 14). Когда цепь разорвана, через лампочку ток не идёт. Поворачивая выключатель, мы замыкаем цепь, включаем ток, и лампа вспыхивает. Так, часто говорят: «включить ток», «выключить ток». Но что это значит? Мы знаем, что электрический ток в металле — это упорядоченное движение свободных электронов. Но свободные электроны в нити лампы имеются и тогда, когда электрическая цепь разорвана, когда лампочка «выключена». Ведь свободные электроны имеются в любом куске металла. Значит, отсутствие тока в лампочке при таком положении выключателя, как это изображено на рисунке 13, вызвано не тем, что в её нити нет электронов, а тем, что движение электронов здесь неупорядоченное, хаотическое. А не упорядочено движение потому, что в нити лампочки нет электрического поля. Когда мы вкручиваем лампочку в патрон при разомкнутом выключателе, то при этом один конец нити лампочки соединяется с одним из проводов, протянутых в нашу квартиру от электростанции, а второй конец нити присоединяется к проводу, идущему к выключателю, где цепь разорвана (рис. 13). В течение очень малого времени, значительно меньшего, чем секунда, через нить идёт «мгновенный» электрический ток, но затем электрическое поле заряда, накопляющегося на конце провода в месте обрыва цепи, уравновешивает внешнее поле (поле, созданное генератором). Электрическое поле в лампе и в подводящих к ней проводах исчезает, а поэтому исчезает и ток. Значит, в «выключенной» лампочке нет тока потому, что в нити её нет электрического поля. Как только мы поворачиваем выключатель, заряд с места, где прежде был обрыв цепи, уходит по второму проводу в генератор, стоящий на электростанции. В лампочке и в подводящих к ней проводах появляется электрическое поле, которое приводит электроны в упорядоченное движение. Так возникает электрический ток. Таким образом, поворачивая выключатель, мы «включаем», по сути дела, Страница 1 of 312...»Last »www.hep.by Чем больше напряжение электрического тока, тем он опаснее для человекаС детского сада нас учат: в электрической розетке ток высокого напряжения и, засунув туда палец или что-нибудь железное, мы рискуем навсегда покинуть этот мир. Поэтому у современного человека вырабатывается стойкое убеждение о том, что чем выше напряжение электрического тока, тем более он опасен для человека. С одной стороны, это верно, а с другой — нет, потому что необходимо учитывать не только напряжение, но и силу тока. Электрический ток, текущий в любых проводниках или средах, характеризуется двумя основными характеристиками: напряжением (разностью потенциалов) и силой тока. Необходимо заметить, что у тока гораздо больше параметров, но именно его сила и напряжение имеют важное практическое значение, так что чаще всего говорят именно о них.Сила тока — это количество заряда (или пропорциональное количество электронов), прошедшее через поперечное сечение проводника за определенное время. Как известно, сила тока измеряется в амперах — эта единица измерения названа в честь французского ученого Андре-Мари Ампера, изучавшего электрические явления в начале XIX века. Напряжение тока — это разность электрических потенциалов, заставляющая электроны двигаться по проводнику. Вообще, определение понятия «напряжение» гораздо сложнее, но в общем случае напряжение показывает, какую по величине работу может совершить электрическое поле при переносе электрического заряда. Эта единица названа в честь итальянского ученого Алессандро Вольта, фактически заложившего на рубеже XVIII-XIX веков основу науки об электричестве. Эти две величины — сила тока и напряжение — взаимосвязаны, и в любом источнике тока или проводнике есть и ток, и напряжение. Тесную связь между ними в начале XIX века установил немецкий физик Георг Ом — сейчас она известна нам как закон Ома. Закон гласит, что сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению проводника. Именно из-за закона Ома и нельзя говорить о том, что при повышении напряжения электрический ток становится более опасным для человека. Да, часто это именно так и бывает, но далеко не всегда — мы сталкиваемся со случаями, когда даже напряжение в 10 000 вольт не наносит никакого вреда, о чем будет сказано дальше. Интересно, что в розетке, к которой ничего не подключено, никакого тока нет — есть только напряжение. Это естественно вытекает из закона Ома — пока два проводника не соединены, между ними бесконечно большое сопротивление, а значит, бесконечно малый ток. Но ток потечет сразу же, как проводники соединятся друг с другом или через электрический прибор. И чем меньше сопротивление, тем больше будет ток, а напряжение будет оставаться неизменным. Сопротивление человеческого тела может меняться от 200-300 до 15 000-20 000 и более ом (все зависит от влажности, температуры окружающей среды, даже от эмоционального состояния), поэтому при контакте с током напряжением 220 вольт через разные части тела может пробегать ток силой от тысячных до десятых долей ампера. Установлено, что человек начинает чувствовать воздействие тока силой от 0,001 ампер, токи в 0,01-0,05 ампер уже являются опасными, а ток выше 0,05 ампер может привести к смерти. Что касается напряжений, то опасность представляют величины от 40 вольт. Однако при некоторых условиях и 10-15 вольт могут стать смертельными, поэтому, например, в лабораториях или учебных классах используют ток напряжением 12 вольт. Как говорилось выше, иногда высокие напряжения оказываются совершенно безопасными для человека. Нетрудно догадаться, что это может случиться при очень малых токах и больших сопротивлениях. Например, известные всем пьезокристаллы (применяющиеся в зажигалках или в устройствах поджига в газовых плитах) могут создавать напряжение в десятки тысяч вольт, однако их действие на человека сводится лишь к кратковременному уколу. Все дело в том, что через искру при высоком напряжении протекает ток в миллионные доли ампера, а связано это с кратковременностью процесса — искра «живет» считанные доли секунды. Подводя итог, можно сказать, что не всегда корректно говорить о том, что при повышении напряжения ток становится более опасным для человека. В некоторых условиях опасным может стать напряжение 10-15 вольт; и, напротив, токи напряжением 10 000 вольт могут не наносить абсолютно никакого вреда, потому что всегда необходимо учитывать не только напряжение, но и силу электрического тока. zablugdeniyam-net.ru xn----7sbeb3bupph.xn--p1ai |