Содержание
Ток, напряжение, сопротивление. Закон Ома.
Продолжаем публикацию материалов новой рубрики «Основы электроники«, и в сегодняшней статье речь пойдет о фундаментальных понятиях, без которых не проходит обсуждение ни одного электронного устройства или схемы. Как вы уже догадались, я имею ввиду ток, напряжение и сопротивление. Кроме того, мы не обойдем стороной закон Ома (как же иначе), который определяет взаимосвязь этих величин, но не буду забегать вперед, давайте двигаться постепенно, и начнем с понятия напряжения.
Напряжение.
По определению напряжение — это энергия (или работа), которая затрачивается на перемещение единичного положительного заряда из точки с низким потенциалом в точку с высоким потенциалом (т. е. первая точка имеет более отрицательный потенциал по сравнению со второй). Из курса физики мы помним, что потенциал электростатического поля — это скалярная величина, равная отношению потенциальной энергии заряда в поле к величине этого заряда. Давайте рассмотрим небольшой пример:
В пространстве действует постоянное электрическое поле, напряженность которого равна E. Рассмотрим две точки, расположенные на расстоянии d друг от друга. Так вот напряжение между двумя точками представляет из себя ни что иное, как разность потенциалов в этих точках:
U = \phi_1\medspace-\medspace \phi_2
В то же время не забываем про связь напряженности электростатического поля и разности потенциалов между двумя точками:
\phi_1\medspace-\medspace \phi_2 = Ed
И в итоге получаем формулу, связывающую напряжение и напряженность:
U = Ed
В электронике, при рассмотрении различных схем, напряжение все-таки принято считать как разность потенциалов между точками. Соответственно, становится понятно, что напряжение в цепи — это понятие, связанное с двумя точками цепи. То есть говорить, к примеру, «напряжение в резисторе» — не совсем корректно. А если говорят о напряжении в какой-то точке, то подразумевают разность потенциалов между этой точкой и «землей». Вот так плавно мы вышли к еще одному повсеместно используемому понятию, а именно к понятию «земля». Так вот «землей» в электрических цепях чаще всего принято считать точку нулевого потенциала (то есть потенциал этой точки равен 0).
Еще пару слов скажем о единицах, которые помогают охарактеризовать величину напряжения. Единицей измерения является Вольт (В). Классическое количественное определение величины в 1 Вольт звучит так: для перемещения заряда величиной 1 Кулон между точками, имеющими разность потенциалов 1 Вольт, необходимо совершить работу, равную 1 Джоулю. С этим вроде бы все понятно и можно двигаться дальше.
А на очереди у нас еще одно основополагающее понятие, а именно — ток.
Ток, сила тока в цепи.
Проанализируем, что будет происходить если под действие электрического поля попадут заряженные частицы, например, электроны. Рассмотрим проводник, к которому приложено определенное напряжение:
Из направления напряженности электрического поля (E) мы можем сделать вывод о том, что \phi_1 > \phi_2 (вектор напряженности всегда направлен в сторону уменьшения потенциала). На каждый электрон начинает действовать сила:
F = Ee
где e − это заряд электрона.
И поскольку электрон является отрицательно заряженной частицей, то вектор силы будет направлен в сторону противоположную направлению вектора напряженности поля. Таким образом, под действием силы частицы наряду с хаотичным движением приобретают и направленное (вектор скорости V на рисунке). В результате и возникает электрический ток.
В итоге получаем, что ток — это упорядоченное движение заряженных частиц под воздействием электрического поля.
Важным нюансом является то, что принято считать, что ток протекает от точки с более положительным потенциалом к точке с более отрицательным потенциалом, несмотря на то, что электрон перемещается в противоположном направлении.
Носителями заряда могут выступать не только электроны. Например, в электролитах и ионизированных газах протекание тока в первую очередь связано с перемещением ионов, которые являются положительно заряженными частицами. Соответственно, направление вектора силы, действующей на них (а заодно и вектора скорости) будет совпадать с направлением вектора E. И в этом случае противоречия не возникнет, ведь ток будет протекать именно в том направлении, в котором движутся частицы.
Для того, чтобы оценить ток в цепи, существует такая величина как сила тока. Итак, сила тока (I) — это величина, которая характеризует скорость перемещения электрического заряда в точке. Единицей измерения силы тока является Ампер. Сила тока в проводнике равна 1 Амперу, если за 1 секунду через поперечное сечение проводника проходит заряд 1 Кулон.
Мы уже рассмотрели понятия силы тока и напряжения, теперь разберемся, каким образом эти величины могут бы связаны. И для этого нам предстоит понять, что же из себя представляет сопротивление проводника.
Сопротивление проводника/цепи.
Термин «сопротивление» уже фактически говорит сам за себя ) Итак, сопротивление — физическая величина, характеризующая свойства проводника препятствовать (сопротивляться) прохождению электрического тока.
Рассмотрим медный проводник длиной l с площадью поперечного сечения, равной S:
Сопротивление проводника зависит от нескольких факторов:
- удельного сопротивления проводника \rho
- длины проводника l
- площади поперечного сечения проводника S
Удельное сопротивление — это табличная величина. Формула, с помощью которой можно вычислить сопротивление данного проводника выглядит следующим образом:
R = \rho\medspace \frac{l}{S}
Для нашего случая \rho будет равно 0,0175 (Ом * кв. мм / м) — удельное сопротивление меди. Пусть длина проводника составляет 0.5 м, а площадь поперечного сечения равна 0.2 кв. мм. Тогда:
R =0,0175 \cdot \frac{0.5}{0.2} = 0.04375\medspace Ом
И, как вы уже поняли из примера, единицей измерения сопротивления является Ом. Рассмотрим взаимосвязь напряжения, силы тока и сопротивления цепи.
Закон Ома.
И тут на помощь нам приходит основополагающий закон — закон Ома:
Сила тока в цепи прямо пропорциональна напряжению и обратно пропорциональна сопротивлению рассматриваемого участка цепи.
Рассмотрим простейшую электрическую цепь:
Как следует из закона Ома напряжение и сила тока этой в цепи связаны следующим образом:
I = \frac{U}{R}
Пусть напряжение составляет 10 В, а сопротивление цепи равно 200 Ом. Тогда сила тока в цепи вычисляется следующим образом:
I = \frac{10}{200} = 0.05 = 50\medspaceмА
Как видите, все довольно несложно и абсолютно логично. Пожалуй на этом мы и закончим сегодняшнюю статью, спасибо за внимание и до скорых встреч 🤝
1. По какой формуле можно вычислить силу тока в цепи?1) P = A/t2) I = q/t3) m = Q/λ4) U = A/q2. К
2. К источнику тока подключены последовательно соединенные лампа и реостат. Где следует включить в этой цепи амперметр, чтобы измерить силу тока в реостате?
1) Между лампой и реостатом
2) Между источником тока и реостатом
3) Между реостатом и ключом
4) В любом месте цепи
3. В каких единицах измеряется электрическое напряжение?
1) В джоулях (Дж)
2) В амперах (А)
3) В омах (Ом)
4) В вольтах (В)
4. На каком из участков электрической цепи ток совершит наименьшую работу, если на первом из них напряжение равно 20 В, на втором — 10 В и на третьем — 60 В?
1) На первом
2) На втором
3) На третьем
5. Выясните по приведенным здесь графикам зависимости сил тока в двух цепях, чему равны силы тока в них при напряжении на их концах 30 В.
1) №1 — 4 А; №2 — 1 А
2) №1 — 1 А; №2 — 4 А
3) В обеих цепях 4 А
4) В обеих цепях 1 А
6. Как изменится сопротивление проводника, если сила тока в нем возрастет в 2 раза?
1) Увеличится в 4 раза
2) Уменьшится в 2 раза
3) Не изменится
4) Увеличится в 2 раза
7. Какова сила тока в проводнике, сопротивление которого 10 Ом, при напряжении 220 В?
1) 2,2 А
2) 22 А
3) 2,2 кА
4) 22 кА
8. При напряжении 70 В сила тока в проводнике 1,4 А. Определите его сопротивление.
1) 5 Ом
2) 50 Ом
3) 98 Ом
4) 9,8 Ом
9. Как сопротивление проводника зависит от его поперечного сечения?
1) При увеличении сечения сопротивление уменьшается
2) С увеличением его площади сопротивление увеличивается
3) Изменение площади сечения не влияет на сопротивление
10. Серебро имеет малое удельное сопротивление. Оно — хороший или плохой проводник электричества?
1) Ответить нельзя — нет нужных данных
2) Плохой
3) Хороший
11. Спираль изготовлена из нихромового провода длиной 50 м и поперечным сечением 0,2 мм2. Каково его сопротивление?
1) 11 Ом
2) 27,5 Ом
3) 110 Ом
4) 275 Ом
12. Куда следует передвинуть ползунок, чтобы сопротивление увеличить?
1) Влево
2) Вправо
3) Поставить на середину
13. Цепь, схема которой показана на рисунке, состоит из источника тока, амперметра и двух одинаковых параллельно соединенных электроламп. Амперметр показывает силу тока, равную 0,6 А. Какова сила тока в лампах?
1) В обеих лампах 0,6 А
2) В №1 — 0,6 А; №2 — 0,3 А
3) №1 — 0,3 А; №2 — 0,6 А
4) В обеих лампах 0,3 А
14. К источнику тока подключены две одинаковые последовательно соединенные лампы сопротивлением 6 Ом каждая. Сила тока в лампе №1 равна 1,5 А. Определите напряжение на полюсах источника тока и силу тока в соединительных проводах.
1) 9 В; 1,5 А
2) 18 В; 1,5 А
3) 18 В; 3 А
4) 9 В; 3 А
15. Какими тремя приборами надо располагать, чтобы измерить величины, необходимые для расчета работы электрического тока?
1) Амперметром, аккумулятором, вольтметром
2) Амперметром, вольтметром, реостатом
3) Амперметром, вольтметром, часами
16. По какой формуле рассчитывают мощность электрического тока?
1) q = It
2) А = Uq
3) Р = UI
4) U = IR
17. Сопротивление участка цепи 75 Ом, напряжение на его концах 150 В. Чему равна мощность электрического тока на этом участке? Какую работу он совершит здесь за 0,5 мин?
1) 300 Вт; 9 кДж
2) 300 Вт; 0,6 кДж
3) 300 Вт; 90 кДж
4) 300 Вт; 900 кДж
8. Как зависит теплота, выделяющаяся в проводнике, от силы тока?
1) Чем больше сила тока, тем больше выделяется теплоты
2) Чем больше сила тока, тем меньше выделяется теплоты
3) Количество теплоты прямо пропорционально силе тока
4) Количество теплоты прямо пропорционально квадрату силы тока
19. Как изменится выделение теплоты в цепи, если силу тока в ней уменьшить в 3 раза, а сопротивление увеличить в 3 раза?
1) Уменьшится в 9 раз
2) Уменьшится в 3 раза
3) Увеличится в 3 раза
4) Не изменится
20. Проводник сопротивлением 250 Ом при силе тока, равной 200 мА, нагревался 3 мин. Сколько энергии электрического тока перешло при этом в его внутреннюю энергию? (Потери энергии не учитывать.)
1) 180 Дж
2) 1800 Дж
3) 18 кДж
4) 30 кДж
Физиология Макгилла |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Ваш браузер не поддерживает скрипт
|
С++ — Как получить уровень сигнала Wi-Fi с помощью Qt?
спросил
Изменено
9 лет, 5 месяцев назад
Просмотрено
4к раз
Пока я могу сканировать все доступные Wi-Fi, используя QNetworkConfigurationManager::allConfigurations(), но данные QNetworkConfiguration для каждого из них не имеют уровня сигнала Wi-Fi. Можете ли вы указать мне, как получить эти данные? Спасибо!
8
Вы можете использовать QProcess и запускать команды командной строки для сканирования сетей Wi-Fi. Используйте регулярные выражения для анализа вывода командной строки, который содержит все сведения о сети Wi-Fi.
Если вы используете Linux, то команда «iwlist scan»
1
Я не уверен, что вы можете сделать это даже на обычном рабочем столе (я имею в виду только использование Qt). Qt просто не имеет общего интерфейса с устройством для получения таких вещей. Я не уверен, какую ОС вы используете, но лучше всего для вас связать ОС и получить от нее информацию или напрямую поговорить с устройством через драйвер. Оба способа сложны, тем более, что нужна документация, и к тому же:
- Для первого метода подключение через драйвер — это будет работать только для определенного драйвера, если мощность сигнала не сообщается способом, общим для многих драйверов.
Добавить комментарий