Содержание
Последовательное и параллельное соединение. Применение и схемы
В электрических цепях элементы могут соединяться по различным схемам, в том числе они имеют последовательное и параллельное соединение.
При таком соединении проводники соединяются друг с другом последовательно, то есть, начало одного проводника будет соединяться с концом другого. Основная особенность данного соединения заключается в том, что все проводники принадлежат одному проводу, нет никаких разветвлений. Через каждый из проводников будет протекать один и тот же электрический ток. Но суммарное напряжение на проводниках будет равняться вместе взятым напряжениям на каждом из них.
Рассмотрим некоторое количество резисторов, соединенных последовательно. Так как нет разветвлений, то количество проходящего заряда через один проводник, будет равно количеству заряда, прошедшего через другой проводник. Силы тока на всех проводниках будут одинаковыми. Это основная особенность данного соединения.
Это соединение можно рассмотреть иначе. Все резисторы можно заменить одним эквивалентным резистором.
Ток на эквивалентном резисторе будет совпадать с общим током, протекающим через все резисторы. Эквивалентное общее напряжение будет складываться из напряжений на каждом резисторе. Это является разностью потенциалов на резисторе.
Если воспользоваться этими правилами и законом Ома, который подходит для каждого резистора, можно доказать, что сопротивление эквивалентного общего резистора будет равно сумме сопротивлений. Следствием первых двух правил будет являться третье правило.
Применение
Последовательное соединение используется, когда нужно целенаправленно включать или выключать какой-либо прибор, выключатель соединяют с ним по последовательной схеме. Например, электрический звонок будет звенеть только тогда, когда он будет последовательно соединен с источником и кнопкой. Согласно первому правилу, если электрический ток отсутствует хотя бы на одном из проводников, то его не будет и на других проводниках. И наоборот, если ток имеется хотя бы на одном проводнике, то он будет и на всех других проводниках. Также работает карманный фонарик, в котором есть кнопка, батарейка и лампочка. Все эти элементы необходимо соединить последовательно, так как нужно, чтобы фонарик светил, когда будет нажата кнопка.
Иногда последовательное соединение не приводит к нужным целям. Например, в квартире, где много люстр, лампочек и других устройств, не следует все лампы и устройства соединять последовательно, так как никогда не требуется одновременно включать свет в каждой из комнат квартиры. Для этого последовательное и параллельное соединение рассматривают отдельно, и для подключения осветительных приборов в квартире применяют параллельный вид схемы.
Параллельное соединение
В этом виде схемы все проводники соединяются параллельно друг с другом. Все начала проводников объединены в одну точку, и все концы также соединены вместе. Рассмотрим некоторое количество однородных проводников (резисторов), соединенных по параллельной схеме.
Этот вид соединения является разветвленным. В каждой ветви содержится по одному резистору. Электрический ток, дойдя до точки разветвления, разделяется на каждый резистор, и будет равняться сумме токов на всех сопротивлениях. Напряжение на всех элементах, соединенных параллельно, является одинаковым.
Все резисторы можно заменить одним эквивалентным резистором. Если воспользоваться законом Ома, можно получить выражение сопротивления. Если при последовательном соединении сопротивления складывались, то при параллельном будут складываться величины обратные им, как записано в формуле выше.
Применение
Если рассматривать соединения в бытовых условиях, то в квартире лампы освещения, люстры должны быть соединены параллельно. Если их соединить последовательно, то при включении одной лампочки мы включим все остальные. При параллельном же соединении мы можем, добавляя соответствующий выключатель в каждую из ветвей, включать соответствующую лампочку по мере желания. При этом такое включение одной лампы не влияет на остальные лампы.
Все электрические бытовые устройства в квартире соединены параллельно в сеть с напряжением 220 В, и подключены к распределительному щитку. Другими словами, параллельное соединение используется при необходимости подключения электрических устройств независимо друг от друга. Последовательное и параллельное соединение имеют свои особенности. Существуют также смешанные соединения.
Работа тока
Последовательное и параллельное соединение, рассмотренное ранее, было справедливо для величин напряжения, сопротивления и силы тока, являющихся основными. Работа тока определяется по формуле:
А = I х U х t, где А – работа тока, t – время течения по проводнику.
Для определения работы при последовательной схеме соединения, необходимо заменить в первоначальном выражении напряжение. Получаем:
А=I х (U1 + U2) х t
Раскрываем скобки и получаем, что на всей схеме работа определяется суммой на каждой нагрузке.
Точно также рассматриваем параллельную схему соединения. Только меняем уже не напряжение, а силу тока. Получается результат:
А = А1+А2
Мощность тока
При рассмотрении формулы мощности участка цепи снова необходимо пользоваться формулой:
Р=U х I
После аналогичных рассуждений выходит результат, что последовательное и параллельное соединение можно определить следующей формулой мощности:
Р=Р1 + Р2
Другими словами, при любых схемах общая мощность равна сумме всех мощностей в схеме. Этим можно объяснить, что не рекомендуется включать в квартире сразу несколько мощных электрических устройств, так как проводка может не выдержать такой мощности.
Влияние схемы соединения на новогоднюю гирлянду
После перегорания одной лампы в гирлянде можно определить вид схемы соединения. Если схема последовательная, то не будет гореть ни одной лампочки, так как сгоревшая лампочка разрывает общую цепь. Чтобы выяснить, какая именно лампочка сгорела, нужно проверять все подряд. Далее, заменить неисправную лампу, гирлянда будет функционировать.
При применении параллельной схемы соединения гирлянда будет продолжать работать, даже если одна или несколько ламп сгорели, так как цепь не разорвана полностью, а только один небольшой параллельный участок. Для восстановления такой гирлянды достаточно увидеть, какие лампы не горят, и заменить их.
Последовательное и параллельное соединение для конденсаторов
При последовательной схеме возникает такая картина: заряды от положительного полюса источника питания идут только на наружные пластины крайних конденсаторов. Конденсаторы, находящиеся между ними, передают заряд по цепи. Этим объясняется появление на всех пластинах равных зарядов с разными знаками. Исходя из этого, заряд любого конденсатора, соединенного по последовательной схеме, можно выразить такой формулой:
qобщ= q1 = q2 = q3
Для определения напряжения на любом конденсаторе, необходима формула:
U= q/С
Где С — емкость. Суммарное напряжение выражается таким же законом, который подходит для сопротивлений. Поэтому получаем формулу емкости:
С= q/(U1 + U2 + U3)
Чтобы сделать эту формулу проще, можно перевернуть дроби и заменить отношение разности потенциалов к заряду емкости. В результате получаем:
1/С= 1/С1 + 1/С2 + 1/C3
Немного иначе рассчитывается параллельное соединение конденсаторов.
Общий заряд вычисляется как сумма всех зарядов, накопившихся на пластинах всех конденсаторов. А величина напряжения также вычисляется по общим законам. В связи с этим формула суммарной емкости при параллельной схеме соединения выглядит так:
С= (q1 + q2 + q3)/U
Это значение рассчитывается как сумма каждого прибора в схеме:
С=С1 + С2 + С3
Смешанное соединение проводников
В электрической схеме участки цепи могут иметь и последовательное и параллельное соединение, переплетающихся между собой. Но все законы, рассмотренные выше для отдельных видов соединений, справедливы по-прежнему, и используются по этапам.
Сначала нужно мысленно разложить схему на отдельные части. Для лучшего представления ее рисуют на бумаге. Рассмотрим наш пример по изображенной выше схеме.
Удобнее всего ее изобразить, начиная с точек Б и В. Они расставляются на некотором расстоянии между собой и от края листа бумаги. С левой стороны к точке Б подключается один провод, а справа отходят два провода. Точка В наоборот, слева имеет две ветки, а после точки отходит один провод.
Далее нужно изобразить пространство между точками. По верхнему проводнику расположены 3 сопротивления с условными значениями 2, 3, 4. Снизу будет идти ток с индексом 5. Первые 3 сопротивления включены в схему последовательно, а пятый резистор подключен параллельно.
Остальные два сопротивления (первый и шестой) подключены последовательно с рассматриваемым нами участком Б-В. Поэтому схему дополняем 2-мя прямоугольниками по сторонам от выбранных точек.
Теперь используем формулу расчета сопротивления:
- Первая формула для последовательного вида соединения.
- Далее, для параллельной схемы.
- И окончательно для последовательной схемы.
Аналогичным образом можно разложить на отдельные схемы любую сложную схему, включая соединения не только проводников в виде сопротивлений, но и конденсаторов. Чтобы научиться владеть приемами расчета по разным видам схем, необходимо потренироваться на практике, выполнив несколько заданий.
Похожие темы:
- Закон Ома. Для цепей и тока. Формулы и применение
- Расчет сечения кабеля. По мощности, току, длине
- Электрические цепи. Виды и составные части. Режимы работы
- Активное и реактивное сопротивление. Свойства. Треугольник сопротивлений
- Фильтры ВЧ. Виды и работа. Применение и особенности
- Закон Джоуля-Ленца. работа и применение. Особенности
Последовательное и параллельное соединение
В данной статье речь пойдет о последовательном и параллельном соединении проводников. На примерах будут рассмотрены данные соединения и как при таких соединениях будут изменяться такие величины как:
- ток;
- напряжение;
- сопротивление.
В таблице 1.8 [Л2, с.24] приведены схемы и формулы по определению сопротивлений, токов и напряжений при параллельном и последовательном соединении.
Последовательное соединение
Последовательным соединением называются те участки цепи, по которым всегда проходят одинаковые токи.
При последовательном соединении:
- сила тока во всех проводниках одинакова;
- напряжение на всём соединении равно сумме напряжений на отдельных проводниках;
- сопротивление всего соединения равно сумме сопротивлений отдельных проводников.
Пример 1
Последовательно подключены две лампы накаливания одинаковой мощности Рл1=Рл2=100 Вт к сети с напряжением Uн=220В. Сопротивление нити в лампах составляет Rл1=Rл2=122 Ом. Номинальное напряжение для ламп равно 220 B. На рис.1 показано последовательное включение ламп.
Решение
Составляем схему замещения, выражая каждую из входящих элементов цепи (в данном случае лампы накаливания) в виде сопротивлений.
1. Определяем ток протекающей по участкам цепи:
Iн = Uн/Rл1+ Rл2 = 220/122+122 = 0,9 A
2. Определяем напряжение на каждой из ламп накаливания, так как мощность ламп у нас одинаковая, то и напряжение для каждой из ламп будет одинаково:
Uл1=Uл2 = Iн*R = 0,9*122 = 110 B
Как мы видим напряжение источника (в данном примере 220 В) разделиться поровну, между обоими последовательно включенными лампами. При этом лампы будут ели светит, их накал будет неполным.
Для того чтобы лампы горели с полным накалом, нужно увеличить напряжение источника с 220В до 440В, при этом на каждой из ламп установиться номинальное (рабочее) напряжение равное 220В.
Пример 2
Последовательно подключены две лампы накаливания мощность Рл1 = 100 Вт и Рл2 = 75 Вт к сети с напряжением Uн=220В. Сопротивление нити в лампах составляют Rл1= 122 Ом для стоваттной лампы и Rл2= 153 Ом для семидесяти пяти ватной лампы.
Решение
1. Определяем ток протекающей по участкам цепи:
Iн = Uн/Rл1+ Rл2 = 220/122+153 = 0,8 A
2. Определяем напряжение на каждой из ламп накаливания:
Uл1= Iн*Rл1 = 0,8*122 = 98 B
Uл2= Iн*Rл2 = 0,8*153 = 122 B
Исходя из результатов расчетов, более мощная лампа 100 Вт получает при этом меньшее напряжение. Но ток в двух последовательно включенных даже разных лампах остается одинаковым. Например, если одна из ламп перегорит (порвется ее нить накаливания), погаснут обе лампы.
Данное соединение лампочек, например, используется в трамвайном вагоне для освещения салона.
Параллельное соединение
Параллельное соединение – это соединение, при котором начала всех проводников присоединяются к одной точке цепи, а их концы к другой.
Точки цепи, к которым сходится несколько проводов, называют узлами. Участки цепи, соединяющие между собой узлы, называют ветвями.
При параллельном соединении:
- напряжение на всех проводниках одинаково;
- сила тока в месте соединения проводников равна сумме токов в отдельных проводниках;
- величина, обратная сопротивлению всего соединения, равна сумме величин, обратных сопротивлениям отдельных проводников.
Пример 3
Определить токи и напряжения всех участков цепи (рис.5), если известно:
- Номинальное напряжение сети Uн = 220В;
- Сопротивление нити в лампах HL1 и HL2 составляют Rл1 = Rл2 = 122 Ом.
- Сопротивление нити в лампе HL3 составляют Rл3 = 153 Ом.
Решение
Составляем схему замещения для схемы, представленной на рис.5.
1. Определяем проводимость всей цепи [Л1, с.47] и согласно таблицы 1.8:
2. Определяем сопротивление всей цепи [Л1, с.47]:
3. Определяем силу тока цепи по закону Ома:
4. Определяем токи для каждой цепи [Л1, с.47]:
5. Выполним проверку, согласно которой, сила тока в месте соединения проводников равна сумме токов в отдельных проводниках:
Iл1+ Iл2+ Iл3=Iобщ. =1,8+1,8+1,44=5,04=5,04 (условие выполняется)
Смешанное соединение
Смешанным соединением – называется последовательно-параллельное соединение сопротивлений или участков цепи.
Пример 4
Определить токи и напряжения всех участков цепи (рис.7), если известно:
- Номинальное напряжение сети Uн = 220В;
- Сопротивление нити в лампах HL1, HL2, HL3 составляют Rл1 = Rл2 = Rл3 = 122 Ом.
- Сопротивление нити в лампе HL4 составляют Rл4 = 153 Ом.
- Результаты расчетов для участка цепи ВС (параллельное соединение проводников) применим из примера 3:
Сопротивление цепи ВС составляет Rвс = 43,668 Ом.
Решение
Составляем схему замещения для схемы, представленной на рис.7.
1. Определяем сопротивление всей цепи:
Rобщ = Rав+Rвс = Rл1+Rвс = 122+43,688 = 165,688 Ом
2. Определяем силу тока цепи, согласно закона Ома:
3. Определяем напряжение на первом сопротивлении:
Uав=Uл1= Iобщ*Rл1 = 1,33*122 = 162 B
4. Определяем напряжение на участке ВС:
Uвс= Iобщ*Rвс = 1,33*43,688 = 58,1 B
5. Определяем токи для каждой цепи участка ВС:
6. Выполним проверку для участка цепи ВС:
Iл2+ Iл3+ Iл4= Iобщ.=0,48+0,48+0,38=1,33=1,33 (условие выполняется)
Литература:
- Общая электротехника с основами электроники, В.С. Попов, 1972 г.
- Справочная книга электрика. В.И. Григорьева. 2004 г.
Всего наилучшего! До новых встреч на сайте Raschet.info.
6.2 Резисторы, включенные последовательно и параллельно. Введение в электричество, магнетизм и электрические цепи
ЦЕЛИ ОБУЧЕНИЯ
К концу раздела вы сможете:
- Определение термина эквивалентное сопротивление
- Рассчитать эквивалентное сопротивление резисторов, соединенных последовательно
- Рассчитать эквивалентное сопротивление резисторов, соединенных параллельно
В разделе «Ток и сопротивление» мы описали термин «сопротивление» и объяснили базовую конструкцию резистора. По сути, резистор ограничивает поток заряда в цепи и представляет собой омическое устройство, где . Большинство схем имеют более одного резистора. Если несколько резисторов соединены вместе и подключены к батарее, ток, выдаваемый батареей, зависит от эквивалентное сопротивление Ом цепи.
Эквивалентное сопротивление комбинации резисторов зависит как от их индивидуальных значений, так и от того, как они соединены. Простейшими сочетаниями резисторов являются последовательное и параллельное соединения (рис. 6.2.1). В последовательной схеме выходной ток первого резистора протекает на вход второго резистора; следовательно, ток в каждом резисторе одинаков. В параллельной цепи все выводы резистора на одной стороне резисторов соединены вместе, а все выводы на другой стороне соединены вместе. В случае параллельной конфигурации каждый резистор имеет одинаковое падение потенциала, и токи через каждый резистор могут быть разными, в зависимости от резистора. Сумма отдельных токов равна току, протекающему в параллельных соединениях.
(рис. 6.2.1)
Рисунок 6.2.1 (a) При последовательном соединении резисторов ток в каждом резисторе одинаков. б) при параллельном соединении резисторов напряжение на каждом резисторе одинаково.
Резисторы серии
Резисторы называются последовательными, если ток течет через резисторы последовательно. Рассмотрим Рисунок 6.2.2, на котором показаны три последовательно соединенных резистора с приложенным напряжением, равным . Поскольку существует только один путь для протекания зарядов, ток через каждый резистор одинаков. Эквивалентное сопротивление набора резисторов при последовательном соединении равно алгебраической сумме сопротивлений отдельных элементов.
(рис. 6.2.2)
Рисунок 6.2.2 (a) Три резистора, подключенные последовательно к источнику напряжения. (b) Исходная схема сводится к эквивалентному сопротивлению и источнику напряжения.
На рисунке 6. 2.2 ток, поступающий от источника напряжения, протекает через каждый резистор, поэтому ток через каждый резистор одинаков. Ток в цепи зависит от напряжения, подаваемого источником напряжения, и сопротивления резисторов. Для каждого резистора происходит падение потенциала, равное потере электрической потенциальной энергии при протекании тока через каждый резистор. Согласно закону Ома, падение потенциала на резисторе при протекании через него тока рассчитывается по уравнению , где — ток в амперах () и — сопротивление в омах (). Поскольку энергия сохраняется, а напряжение равно потенциальной энергии на один заряд, сумма напряжения, приложенного к цепи источником, и падений потенциала на отдельных резисторах вокруг петли должна быть равна нулю:
Это уравнение часто называют петлевым законом Кирхгофа, который мы рассмотрим более подробно далее в этой главе. Для Рисунка 6.2.2 сумма падения потенциала каждого резистора и напряжения, подаваемого источником напряжения, должна равняться нулю:
Поскольку ток через каждый компонент одинаков, равенство можно упростить до эквивалентного сопротивления, которое представляет собой просто сумму сопротивлений отдельных резисторов.
Любое количество резисторов может быть соединено последовательно. Если резисторы соединены последовательно, эквивалентное сопротивление равно 90 016 Ом.
(6.2.1)
Одним из результатов последовательного соединения компонентов является то, что если что-то происходит с одним компонентом, это влияет на все остальные компоненты. Например, если несколько ламп соединены последовательно и одна лампочка перегорает, все остальные лампы гаснут.
ПРИМЕР 6.2.1
Эквивалентное сопротивление, ток и мощность в последовательной цепи
Батарея с напряжением на клеммах подключена к цепи, состоящей из четырех и одного резисторов, соединенных последовательно (рис. 6.2.3). Предположим, что батарея имеет незначительное внутреннее сопротивление. а) Рассчитайте эквивалентное сопротивление цепи. б) Рассчитайте ток через каждый резистор. в) Рассчитайте падение потенциала на каждом резисторе. г) Определите общую мощность, рассеиваемую резисторами, и мощность, отдаваемую батареей.
(рис. 6.2.3)
Рисунок 6.2.3 Простая последовательная цепь с пятью резисторами.
Стратегия
В последовательной цепи эквивалентное сопротивление представляет собой алгебраическую сумму сопротивлений. Сила тока в цепи определяется по закону Ома и равна напряжению, деленному на эквивалентное сопротивление. Падение потенциала на каждом резисторе можно найти по закону Ома. Мощность, рассеиваемую каждым резистором, можно найти с помощью , а общая мощность, рассеиваемая резисторами, равна сумме мощностей, рассеиваемых каждым резистором. Мощность, выдаваемую аккумулятором, можно найти с помощью .
Решение
а. Эквивалентное сопротивление представляет собой алгебраическую сумму сопротивлений:
б. Ток в цепи одинаков для каждого резистора в последовательной цепи и равен приложенному напряжению, деленному на эквивалентное сопротивление:
в. Падение потенциала на каждом резисторе можно найти по закону Ома:
Обратите внимание, что сумма падений потенциала на каждом резисторе равна напряжению, выдаваемому батареей.
д. Мощность, рассеиваемая резистором, равна , а мощность, отдаваемая батареей, равна :
Значение
Есть несколько причин, по которым мы будем использовать несколько резисторов вместо одного резистора с сопротивлением, равным эквивалентному сопротивлению цепи. Возможно, резистора нужного размера нет в наличии, или нам нужно отводить выделяющееся тепло, или мы хотим минимизировать стоимость резисторов. Каждый резистор может стоить от нескольких центов до нескольких долларов, но при умножении на тысячи единиц экономия затрат может быть заметной.
ПРОВЕРЬТЕ ВАШЕ ПОНИМАНИЕ 6.2
Некоторые цепочки миниатюрных праздничных огней закорачивают, когда перегорает лампочка. Устройство, вызывающее короткое замыкание, называется шунтом, который позволяет току течь по разомкнутой цепи. «Короткое замыкание» похоже на наложение куска провода на компонент. Луковицы обычно сгруппированы в серии из девяти луковиц. Если перегорает слишком много лампочек, шунты со временем открываются. Что вызывает это?
Кратко перечислим основные характеристики последовательно соединенных резисторов:
Сопротивления серии
- суммируются, чтобы получить эквивалентное сопротивление:
- Один и тот же ток протекает через каждый резистор последовательно.
- Отдельные последовательно соединенные резисторы не получают общее напряжение источника, а делят его. Общее падение потенциала на последовательных резисторах равно сумме падений потенциала на каждом резисторе.
Параллельные резисторы
На рис. 6.2.4 показаны резисторы, подключенные параллельно к источнику напряжения. Резисторы параллельны, когда один конец всех резисторов соединен непрерывным проводом с пренебрежимо малым сопротивлением, а другой конец всех резисторов также соединен друг с другом непрерывным проводом с пренебрежимо малым сопротивлением. Падение потенциала на каждом резисторе одинаково. Ток через каждый резистор можно найти с помощью закона Ома, согласно которому напряжение на каждом резисторе постоянно. Например, автомобильные фары, радио и другие системы соединены параллельно, так что каждая подсистема использует полное напряжение источника и может работать совершенно независимо. То же самое относится и к проводке в вашем доме или любом здании.
(рис. 6.2.4)
Рисунок 6.2.4 (a) Два резистора, подключенные параллельно к источнику напряжения. (b) Исходная схема сводится к эквивалентному сопротивлению и источнику напряжения.
Ток, протекающий от источника напряжения на Рисунке 6.2.4 , зависит от напряжения, подаваемого источником напряжения, и эквивалентного сопротивления цепи. В этом случае ток течет от источника напряжения и входит в соединение или узел, где цепь разделяется, протекая через резисторы и . По мере того как заряды текут от батареи, некоторые из них проходят через резистор, а некоторые — через резистор. Сумма токов, втекающих в соединение, должна быть равна сумме токов, вытекающих из соединения:
Это уравнение называется правилом пересечения Кирхгофа и будет подробно обсуждаться в следующем разделе. На Рисунке 6.2.4 правило соединения дает . В этой цепи есть два контура, что приводит к уравнениям и Обратите внимание, что напряжения на параллельных резисторах одинаковы (), а ток суммируется:
Обобщая любое количество резисторов, эквивалентное сопротивление параллельного соединения связано с сопротивлением отдельных резисторов в 9 раз.0016
(6.2.2)
Это соотношение приводит к эквивалентному сопротивлению, которое меньше, чем наименьшее из отдельных сопротивлений. Когда резисторы соединены параллельно, от источника протекает больший ток, чем по каждому из них по отдельности, поэтому общее сопротивление меньше.
ПРИМЕР 6.2.2
Анализ параллельной цепи
Три резистора , и соединены параллельно. Параллельное соединение подключается к источнику напряжения. а) чему равно сопротивление? б) Найдите ток, подаваемый источником в параллельную цепь. (c) Рассчитайте токи в каждом резисторе и покажите, что их сумма равна выходному току источника. г) Рассчитайте мощность, рассеиваемую каждым резистором. (e) Найдите выходную мощность источника и покажите, что она равна полной мощности, рассеиваемой резисторами.
Стратегия
(a) Общее сопротивление для параллельной комбинации резисторов находится с помощью .
(Обратите внимание, что в этих расчетах каждый промежуточный ответ отображается с дополнительной цифрой.)
(b) Ток, подаваемый источником, можно найти из закона Ома, заменив полное сопротивление на .
(c) Отдельные токи легко рассчитать по закону Ома, поскольку на каждый резистор подается полное напряжение. Общий ток представляет собой сумму отдельных токов: .
(d) Мощность, рассеиваемая каждым резистором, может быть найдена с помощью любого из уравнений, связывающих мощность с током, напряжением и сопротивлением, поскольку все три известны. Возьмем , так как на каждый резистор подается полное напряжение.
(e) Суммарная мощность также может быть рассчитана несколькими способами, используйте .
Решение
а. Общее сопротивление для параллельной комбинации резисторов находится с помощью уравнения 6.2.2. Ввод известных значений дает
Общее сопротивление с правильным количеством значащих цифр равно . Как и предполагалось, меньше наименьшего индивидуального сопротивления.
б. Полный ток можно найти из закона Ома, подставив полное сопротивление. Это дает
Ток для каждого устройства намного больше, чем для тех же устройств, соединенных последовательно (см. предыдущий пример). Цепь с параллельными соединениями имеет меньшее общее сопротивление, чем резисторы, соединенные последовательно.
в. Отдельные токи легко рассчитать по закону Ома, так как на каждый резистор подается полное напряжение. Таким образом,
Аналогично,
и
Общий ток представляет собой сумму отдельных токов:
д. Мощность, рассеиваемую каждым резистором, можно найти с помощью любого из уравнений, связывающих мощность с током, напряжением и сопротивлением, поскольку все три известны. Возьмем , так как на каждый резистор подается полное напряжение. Таким образом,
Аналогично,
и
эл. Суммарная мощность также может быть рассчитана несколькими способами. Выбор и ввод общей текущей доходности
Значение
Суммарная мощность, рассеиваемая резисторами, также равна:
Обратите внимание, что общая мощность, рассеиваемая резисторами, равна мощности, отдаваемой источником.
ПРОВЕРЬТЕ ВАШЕ ПОНИМАНИЕ 6.3
Рассмотрим одинаковую разность потенциалов, приложенную к тем же трем резисторам, соединенным последовательно. Будет ли эквивалентное сопротивление последовательной цепи выше, ниже или равно трем резисторам, включенным параллельно? Будет ли ток в последовательной цепи больше, меньше или равен току, обеспечиваемому тем же напряжением, приложенным к параллельной цепи? Как мощность, рассеиваемая резистором, включенным последовательно, будет отличаться от мощности, рассеиваемой резисторами, включенными параллельно?
ПРОВЕРЬТЕ ВАШЕ ПОНИМАНИЕ 6.
4
Как бы вы использовали реку и два водопада для моделирования параллельной конфигурации двух резисторов? Как разрушается эта аналогия?
Подытожим основные характеристики резисторов при параллельном включении:
- Эквивалентное сопротивление находится из
и меньше любого отдельного сопротивления в комбинации.
- Падение потенциала на каждом параллельном резисторе одинаково.
- Параллельные резисторы не получают суммарный ток каждый; они его делят. Ток, входящий в параллельную комбинацию резисторов, равен сумме токов, протекающих через каждый параллельный резистор.
В этой главе мы представили эквивалентное сопротивление резисторов, соединенных последовательно, и резисторов, соединенных параллельно. Возможно, вы помните, что в разделе «Емкость» мы ввели эквивалентную емкость конденсаторов, соединенных последовательно и параллельно. Схемы часто содержат как конденсаторы, так и резисторы. В таблице 6.2.1 обобщаются уравнения, используемые для эквивалентного сопротивления и эквивалентной емкости для последовательных и параллельных соединений.
(таблица 6.2.1)
Комбинация серии | Параллельная комбинация | |
---|---|---|
Эквивалентная емкость | ||
Эквивалентное сопротивление |
Добавить комментарий