Подключение импульсного блока питания: Импульсный блок питания: схемы, принцип работы, особенности

Содержание

Импульсный блок питания: схемы, принцип работы, особенности

Мы имеем множество различных устройств, подключая которые к сети мы даже не задумываемся о том, какое питание им необходимо. Значительная часть бытовой техники имеет импульсный блок питания. Даже светодиодные или люминесцентные цокольные лампы имеют встроенный источник импульсного питания (ИИП).

Содержание статьи

  • 1 Что делает импульсный блок питания (ИБП)
  • 2 Чем отличается от трансформаторного блока питания
    • 2.1 Как работает трансформаторный блок питания
    • 2.2 Устройство импульсного блока питания и его принцип работы
    • 2.3 Достоинства и недостатки импульсных блоков питания
  • 3 Схемы импульсных блоков питания
    • 3.1 Входной фильтр
    • 3.2 Сетевой выпрямитель и сглаживающий фильтр
    • 3.3 Инвертор или блок ключей
    • 3.4 Силовой трансформатор
    • 3.5 Выходной выпрямитель и фильтр, стабилизатор

Что делает импульсный блок питания (ИБП)

В сети напряжение имеет синусоидальную форму. Для некоторых устройств это то что нужно, другим надо постоянное или импульсное напряжение. Вот этим и занимаются источники питания — преобразуют синусоидальную форму в нужную и, чаще всего, это постоянное напряжение. Независимо от формы выходного напряжения блок питания называют импульсным, потому что одна из стадий преобразования — формирование импульсов, которые затем выпрямляются.

Примеры импульсных блоков питания:

  • Зарядное устройство для телефона или смартфона;
  • Внешний блок питания ноутбука;
  • Блок питания компьютера;
  • Блок питания для светодиодной ленты.

Импульсный блок питания Robiton EN5000S. Предназначен для питания от источника переменного тока 100-240В приборов с напряжением 6,0 / 7,5 / 9,0 / 12,0 / 13,5 / 15 / 16В и максимальным входным током 5000 мА

Есть импульсные источники питания выдающие постоянное напряжение одного номинала. Наиболее распространенные на — 5 В, 12 В или  24 В. Есть устройства, выдающие сразу несколько уровней. Такие, например, стоят в компьютерах. На выходе они формируют сразу 5 В и 12 В. Есть — регулируемые ИИП, при помощи переключателей в них можно задавать выходные параметры (в определенных рамках). Импульсный блок питания может быть в виде отдельного устройства или являться частью какого-то более сложного прибора.

Путь преобразования синусоиды в постоянное напряжение при помощи источника импульсного питания

Если говорить об отдельных ИБП, то самыми распространенными, пожалуй, являются зарядные устройства для телефонов, ноутбуков. Они имеют компактные размеры, так как требуется небольшая мощность. Встроенный импульсный блок питания есть в телевизорах, компьютерах и другой сложной электронике, в некоторых бытовых приборах. Блоки питания бывают линейные (трансформаторные) или импульсные (инверторные).

Инвертор — устройство для преобразования постоянного тока в переменный с изменением величины напряжения. Обычно представляет собой генератор периодического напряжения, по форме приближённого к синусоиде, или дискретного сигнала.

Оба типа блоков питания преобразуют синусоиду в постоянный ток, но вот путь преобразования разный, да и результаты несколько отличаются. Импульсный блок питания отличается высокой стабильностью работы. Тем не менее трансформаторные источники еще в ходу. Почему? Стоит разобраться.

Чем отличается от трансформаторного блока питания

И трансформаторный (линейный) и импульсный (инверторный) БП выдают на выходе постоянное напряжение. Причем вторые имеют меньшие габариты, более стабильны в работе, часто ниже по цене, да еще и напряжение дают более «качественное» и независящее от параметров исходной синусоиды (а она далеко не идеальная в наших сетях). Так почему же используют и трансформаторные блоки, и импульсные? Чтобы понять, надо знать в чем отличие трансформаторного блока питания от импульсного. А для этого придется разбираться в устройстве и принципах работы. На основании этого можно уяснить основные свойства.

Блок-схемы трансформаторного и импульсного блоков питания

Как работает трансформаторный блок питания

В линейном блоке питания основное преобразование происходит при помощи трансформатора. Его первичная обмотка рассчитана под сетевое напряжение, вторичная обычно понижающая. В случае классического трансформатора переменного тока, предложенного П. Яблочковым, он преобразует синусоиду входного напряжения в такое же синусоидальное напряжение на выходе вторичной обмотки.

Следующий блок — выпрямитель, на котором синусоида сглаживается, превращается в пульсирующее напряжение. Этот блок выполнен на основе выпрямительных диодов. Диод может стоять один, может быть установлен диодный мост (мостовая схема). Разница между ними — в частоте импульсов, которые получаем на выходе. Дальше стоит стабилизатор и фильтр, придающие выходному напряжению нужный уровень и форму. На выходе имеем постоянное напряжение.

Самый простой линейный блок питания с двухполупериодным выпрямителем без стабилизации

Основной недостаток линейных источников питания — большие габариты. Они зависят от размеров трансформатора — чем выше требуется мощность, тем больше размеры блока питания. Нужен еще стабилизатор, который корректирует выходное напряжение, а это еще увеличивает габариты, снижает КПД. Зато это устройство не грозит помехами работающему рядом оборудованию.

Устройство импульсного блока питания и его принцип работы

В импульсном блоке питания преобразование сложнее. На входе стоит сетевой фильтр, задача которого не допустить в сеть высокочастотные колебания, вырабатываемые этим устройством. Они могут повлиять на работу рядом расположенных приборов. Сетевой фильтр в дешевых моделях стоит не всегда, и в этом зачастую кроется проблема с нестабильной работой каких-то устройств, которые мы часто списываем на «падение напряжения в сети».

Далее стоит сглаживающий фильтр, который выпрямляет синусоиду. Полученное на его выходе пилообразное напряжение подается на инвертор, преобразуется в импульсы, имеющие положительную и отрицательную полярность. Их параметры (частота и скважность) задаются при помощи блока управления. Частота обычно выбирается высокой — от 10 кГц до 50 кГц. Именно наличие этой ступени преобразования — генерации импульсов — и дало название этому типу преобразователей.

Блок-схема ИИП с формами напряжения в ключевых точках

Высокочастотные импульсы поступают на трансформатор, который является гальванической развязкой от сети. Трансформаторы эти небольшие, так как с возрастанием частоты сердечники нужны все меньше. Причем сердечник может быть набран из ферромагнитных пластин (в линейных БП должен быть из более дорогой электромагнитной стали).

На выходном выпрямителе биполярные импульсы превращаются в положительные, а выходной фильтр на их основе формирует постоянное напряжение. Основное достоинство ИБП в том, что существует обратная связь, которая позволяет регулировать работу устройства таким образом, чтобы напряжение на выходе было близко к идеалу. Это дает возможность получать стабильные параметры на выходе, независимо от того, что имеем на входе.

Достоинства и недостатки импульсных блоков питания

Для новичков не сразу становится понятным, почему лучше использовать импульсные выпрямители, а не линейные. Дело не только в габаритах и материалоемкости. Дело в более стабильных параметрах, которые выдают импульсные устройства. Качество напряжения на выходе не зависит от качества сетевого напряжения. Для наших сетей это актуально. Но не только это. Такое свойство позволяет использовать импульсный блок питания в сети разных стран. Ведь параметры сетевого напряжения в России, Англии и в некоторых странах Европы отличаются. Не кардинально, но отличается напряжение, частота. А зарядки работают в любой из них — практично и удобно.

Размер тоже имеет значение

Кроме того импульсники имеют высокий КПД — до 98%, что не может не радовать. Потери минимальны, в то время как в трансформаторных много энергии уходит на непродуктивный нагрев. Также ИБП меньше стоят, но при этом надежны. При небольших размерах позволяют получить широкий диапазон мощностей.

Но импульсный блок питания имеет серьезные недостатки. Первый — они создают высокочастотные помехи. Это заставляет ставить на входе сетевые фильтры. И даже они не всегда справляются с задачей. Именно поэтому некоторые устройства, особо требовательные к качеству электропитания, работают только от линейных БП. Второй недостаток — импульсный блок питания имеет ограничение по минимальной нагрузке. Если подключенное устройство обладает мощностью ниже этого предела, схема просто не будет работать.

Схемы импульсных блоков питания

Чтобы понимать, как работает импульсный блок питания, надо разобраться в том, что происходит в каждой его части. Сделать это проще по схемам. Мы приведем только некоторые, так как вариантов и вариаций — море. Схема импульсного блока питания содержит пять обязательных блоков плюс обратная связь. Вот о каждом элементе и поговорим отдельно, Попутно приведем полные схемы ИБП с использованием различной элементной базы.

Вариант импульсного источника питания с выходным напряжением 5 В и 12 В и разной полярности

Входной фильтр

Как мы уже говорили, входной фильтр стоит для того, чтобы в сеть не попали высокочастотные помехи, генерируемые источником питания. В самом простейшем варианте это устройство представляет собой дроссель, который подавляет электромагнитные помехи и два конденсатора, включенных параллельно входу и нагрузке.

Схема простейшего входного фильтра

Конденсаторы используются специальные — X-типа. Икс-конденсаторы были разработаны специально для этих целей. Они выдерживают мгновенные киловольтные всплески напряжения (до 2,5 кВ), гася тем самым помехи между фазой и нейтралью (противофазные помехи). Дроссель — это ферритовый сердечник с намотанными лакированными медными проводами. В нем наводятся токи, нейтрализующие токи помех.

Приведенная выше схема входного фильтра для импульсного источника питания не устраняет помехи, которые возникают между фазой и землей (корпусом) или между нейтралью и корпусом. Для их нейтрализации в схему добавляют два конденсатора Y-типа (которые выдерживают скачки напряжения до 5 кВ). Специальная конструкция Y-конденсатора гарантирует обрыв цепи, а не короткое замыкание, в случае выхода его из строя.

Оба типа конденсаторов (X и Y), который ставят во входных фильтрах, выполняют из специальных негорючих материалов, так как они могут греться до очень высоких температур и могут стать причиной пожара. Именно в этом, да еще в конструктивных особенностях кроется причина их высокой стоимости (по сравнению с обычными).

Схема для компенсации всех типов помех

Но для корректной работы этой схемы необходимо рабочее заземление. Его надо подключить к корпусу блока питания. Без заземления, корпус блока питания будет находиться под напряжением около 110 В. Ток будет очень маленьким, но прикосновения будут ощутимы.

Сетевой выпрямитель и сглаживающий фильтр

Как уже сказано выше, выпрямитель проводит предварительное выпрямление синусоиды. Если установлен один диод, он отсекает нижние (отрицательные) полуволны.

Сравнение однополупериодного и двухполупериодного выпрямителя. При использовании одного диода низкий КПД и большая пульсация выпрямленного напряжения. По этим причинам предпочтительней мостовая схема на четырех диодах

В самом простом случае выпрямитель — диод Шоттки, но может использоваться и диодный мост с параллельно подключенным конденсатором. Для диодных мостов часто применяют обычные диоды типа 1N4007, но лучше все-таки устанавливать все те же диоды Шоттки. Они «быстрее», так что можно получить лучше результаты на выходе.

Несколько схем фильтров разной степени сложности

Один диод ставят в блоках питания к недорогой технике. На его выходе напряжение имеет вид идущих с некоторыми промежутками положительных полуволн. На выходе диодного моста пульсации намного ниже, так что такой выпрямитель ставят для более требовательных к питанию приборов. Пульсирующее напряжение с выхода диода/диодного моста подается на конденсатор (он должен быть рассчитан на напряжение 270-400 В), который из полуволн делает «зубчики». Тут уже получаем более-менее стабильное постоянное напряжение.

Инвертор или блок ключей

На следующем блоке выпрямленное напряжение преобразуется в импульсы. Частота импульсов высокая — от 10 до 50 кГц. Есть два способа реализации этих блоков: при помощи микросхем, на основе автогенератора (блокинг-генератора).

Еще одна блок-схема ИИП

Во втором случае используется пара транзисторов, которые включаются попеременно, формируя на выходе последовательность импульсов. Частота переключений задается генератором. Такие схемы встречаются и сейчас, но большинство реализуется на микросхемах.

Пример схемы инвертора на транзисторах

Если есть микросхема, зачем городить огород из нескольких десятков деталей. Тем более, что требуемый тип микросхем широко распространен и стоит немного. Это так называемые ШИМ-контроллеры ( TL494, UC384х, Dh421,  TL431, IR2151, IR2153 и др).  К этим микросхемам надо добавить всего-лишь пару полевых транзисторов и несколько мелких деталей и получим требуемый инвертор.

Схема ИИП с ШИМ контроллером для обратноходового и полумостового преобразователей

ШИМ-контроллер отлично встраивается в любой тип схем. Он совместим с обратноходовыми, полумостовыми и мостовыми схемами выпрямителей. Естественно, отличается количество элементов, но все они простые и доступные.В обратноходовых схемах транзисторы должны быть рассчитаны на более высокое напряжение, чем подается на вход.

Устройство импульсного источника напряжения с ШИМ контроллером и двухтактным и мостовым выпрямителем

По полумостовым схемам построены импульсные блоки питания в осветительных приборах, в энергосберегающих и светодиодных лампах, электронный балласт для люминисцентных ламп (ЭПРА). Мостовые схемы применяют в более мощных блоках. Например, в сварочных инверторах.

Есть и более «серьезные» контроллеры, которые параллельно с работой, проверяют параметры входного и выходного напряжения и, при неисправностях, просто блокируют свою работу. Так как в импульсном блоке питания этот компонент, обычно, самый дорогой, это очень неплохо. Заменив неисправные детали (обычно резисторы или конденсаторы), получаем рабочий агрегат.

Силовой трансформатор

Узел трансформатора на блоке питания является одним из самых стабильных. В этом блоке, кроме самого трансформатора, содержится небольшая группа элементов которая нейтрализует выброс тока, который возникает на обмотках трансформатора при смене полярностей. Эта группа называется «снаббер».

Рассматриваемый блок обведен красным, а снаббер — зеленым

Трансформатор — один из самых надежных элементов. В нем очень редко возникают проблемы. Он может повредиться при пробое инвертора. В этом случае через обмотку течет слишком высокий ток, который и выводит из строя трансформатор.

Схема блока силового трансформатора для ИИП

Работает все это следующим образом:

  • На первом такте работы импульсного источника питания открыт ключ ВТ1 (полевой транзистор с индуцированным каналом n-типа). Ток течет через первичную обмотку трансформатора, заряд накапливается в сердечнике.
  • На втором такте ключ закрывается, ток течет во вторичной обмотке через диод VD2.
  • При переключении на первичной обмотке возникает выброс, который вызван неидеальностью деталей. Тут в работу вступает снаббер. Его задача поглотить этот выброс, так как напряжение может быть достаточно большим и может повредить ключевой транзистор, что приведет к неработоспособности схемы. Ток выброса течет через первичную обмотку трансформатора, диод VD1, через сопротивление R1 и емкость C2.
  • Далее полярность снова меняется, вступает в работу ключ ВТ1.

Номиналы выбираются исходя из параметров трансформатора. Подбор сложный, так что описывать его не имеет смысла. И еще: не во всех схемах есть снаббер, но его наличие увеличивает надежность и стабильность работы импульсного источника питания.

Несколько слов о диодах, которые используют в снабберах. Это может быть обычный диод, подобранный по параметрам, но более надежны схемы со стабилитроном. Еще может быть вариант без резистора и емкости, но с включенным навстречу супрессором (на схеме ниже).

Еще один вариант блока силового трансформатора с использованием супрессора (защитного диода) D1

Супрессор — это защитный диод, принцип работы похож на стабилитрон, вот только выравнивается импульсный ток и рассеиваемая мощность. Может быть несимметричный и симметричным.

Выходной выпрямитель и фильтр, стабилизатор

На этом, можно считать со схемой импульсного блока питания разобрались, так как выходные выпрямитель и фильтр устроены по тому же принципу. Элементы могут быть другие, а схемы те же. Единственное, что еще стоит рассмотреть — стабилизация выходных параметров. Это опционная часть, но такой импульсный блок питания более надежен.

Наиболее простой и дешевый способ стабилизации используется в дешевых блоках питания — обратная связь на пассивных элементах. На схеме ниже, это два резистора R6 и R7, подключенные к вспомогательной обмотке силового трансформатора. Не слишком надежно, потому что есть влияние между обмотками, но просто и недорого.

Простой способ стабилизации

Второй вариант стабилизатора выходного напряжения сделан на стабилизаторе VD9 и оптроне HL1. Выходное напряжение складывается из падения на стабилитроне и напряжения на оптроне. Это чуть более надежная схема для ИИП средней мощности.

Стабилизация выхода ИИП при помощи стабилитрона и оптрона

Наиболее стабильные выходные показатели имеют схемы ИИП со стабилизатором  TL431.

TL431 — интегральная схема трёхвыводного регулируемого параллельного стабилизатора напряжения с улучшенной температурной стабильностью. С внешним делителем TL431 способна стабилизировать напряжения от 2,5 до 36 В при токах до 100 мА.

ИБП с использованием микросхемы TL431 более сложные, но надежные. В таких схемах может быть подстроечный переменный резистор, который позволяет изменять выходное напряжение в небольших пределах. Обычно подстройка составляет не более 20%, так как в противном случае схема может быть нестабильной.

Схема со стабильным напряжением на выходе

Если подстройка выходного напряжения не нужна, лучше подстроечный резистор заменить обычным, так как переменные менее надежны.

Пару слов о резисторе R20 (см. схему выше), который стоит на выходе. Это так называемый, нагрузочный резистор. Как известно ИИП не будет работать без нагрузки. Поэтому на выходе и ставят сопротивление, которое обеспечивает минимальную рабочую нагрузку. Но это решение неидеально, так как резистор греется и порой очень сильно. Располагать рядом конденсаторы крайне нежелательно, иначе подогреваются и они. А в качестве выходного сопротивления должны стоять высокоточные резисторы, так как они при нагреве мало меняют свои параметры (блок выдает стабильное напряжение даже при длительной работе).

Импульсный блок питания своими руками: принцип работы, схемы

В большинстве современных электронных устройств практически не используются аналоговые (трансформаторные) блоки питания, им на смену пришли импульсные преобразователи напряжения. Чтобы понять, почему так произошло, необходимо рассмотреть конструктивные особенности, а также сильные и слабы стороны этих устройств. Мы также расскажем о назначении основных компонентов импульсных источников, приведем простой  пример реализации, который может быть собран своими руками.

Конструктивные особенности и принцип работы

Из нескольких способов преобразования напряжения для питания электронных компонентов, можно выделить два, получивших наибольшее распространение:

  1. Аналоговый, основным элементом которого является понижающий трансформатор, помимо основной функции еще и обеспечивающий гальваническую развязку.
  2. Импульсный принцип.

Рассмотрим, чем отличаются эти два варианта.

БП на основе силового трансформатора

Рассмотрим упрощенную структурную схему данного устройства. Как видно из рисунка, на входе установлен понижающий трансформатор, с его помощью производится преобразование амплитуды питающего напряжения, например из 220 В получаем 15 В. Следующий блок – выпрямитель, его задача преобразовать синусоидальный ток в импульсный (гармоника показана над условным изображением). Для этой цели используются выпрямительные полупроводниковые элементы (диоды), подключенные по мостовой схеме. Их принцип работы можно найти на нашем сайте.

Упрощенная структурная схема аналогового БП

Следующий блок играет выполняет две функции: сглаживает напряжение (для этой цели используется конденсатор соответствующей емкости) и стабилизирует его. Последнее необходимо, чтобы напряжение «не проваливалось» при увеличении нагрузки.

Приведенная структурная схема сильно упрощена, как правило, в источнике данного типа имеется входной фильтр и защитные цепи, но для объяснения работы устройства это не принципиально.

Все недостатки приведенного варианта прямо или косвенно связаны с основным элементом конструкции – трансформатором. Во-первых, его вес и габариты, ограничивают миниатюризацию. Чтобы не быть голословным приведем в качестве примера понижающий трансформатор 220/12 В номинальной мощностью 250 Вт. Вес такого агрегата – около 4-х килограмм, габариты 125х124х89 мм. Можете представить, сколько бы весила зарядка для ноутбука на его основе.

Понижающий трансформатор ОСО-0,25 220/12

Во-вторых, цена таких устройств порой многократно превосходит суммарную стоимость остальных компонентов.

Импульсные устройства

Как видно из структурной схемы, приведенной на рисунке 3, принцип работы данных устройств существенно отличается от аналоговых преобразователей, в первую очередь, отсутствием входного понижающего трансформатора.

Рисунок 3. Структурная схема импульсного блока питания

Рассмотрим алгоритм работы такого источника:

  • Питание поступает на сетевой фильтр, его задача минимизировать сетевые помехи, как входящие, так и исходящие, возникающие вследствие работы.
  • Далее вступает в работу блок преобразования синусоидального напряжения в импульсное постоянное и сглаживающий фильтр.
  • На следующем этапе к процессу подключается инвертор, его задача связана с формированием прямоугольных высокочастотных сигналов. Обратная связь с инвертором осуществляется через блок управления.
  • Следующий блок – ИТ, он необходим для автоматического генераторного режима, подачи напряжения на цепи, защиты, управления контроллером, а также нагрузку. Помимо этого в задачу ИТ входит обеспечение гальванической развязки между цепями высокого и низкого напряжения.

В отличие от понижающего трансформатора, сердечник этого устройства изготавливается из ферримагнитных материалов, это способствует надежной передачи ВЧ сигналов, которые могут быть в диапазоне 20-100 кГц. Характерная особенность ИТ заключается в том, что при его подключении критично включение начала и конца обмоток. Небольшие размеры этого устройства позволяют изготавливать приборы миниатюрных размеров, в качестве примера можно привести электронную обвязку (балласт) светодиодной или энергосберегающей лампы.

Пример миниатюрных импульсных БП

  • Далее вступает в работу выходной выпрямитель, поскольку он работает с высокочастотным напряжением, для процесса необходимы быстродействующие полупроводниковые элементы, поэтому для этой цели применяют диоды Шоттки.
  • На завершавшей фазе производится сглаживание на выгодном фильтре, после чего напряжение подается на нагрузку.

Теперь, как и обещали, рассмотрим принцип работы основного элемента данного устройства – инвертора.

Как работает инвертор?

ВЧ модуляцию, можно сделать тремя способами:

  • частотно-импульсным;
  • фазо-импульсным;
  • широтно-импульсным.

На практике применяется последний вариант. Это связано как с простотой исполнения, так и тем, что у ШИМ неизменна коммуникационная частота, в отличие от двух остальных способов модуляции. Структурная схема, описывающая работу контролера, показана ниже.

Структурная схема ШИМ-контролера и осциллограммы основных сигналов

Алгоритм работы устройства следующий:

Генератор задающей частоты формирует серию прямоугольных сигналов, частота которых соответствует опорной. На основе этого сигнала формируется UП пилообразной формы, поступающее на вход компаратора КШИМ. Ко второму входу этого устройства подводится сигнал UУС, поступающий с регулирующего усилителя. Сформированный этим усилителем сигнал соответствует пропорциональной разности UП (опорное напряжение) и UРС (регулирующий сигнал от цепи обратной связи). То есть, управляющий сигнал UУС, по сути, напряжением рассогласования с уровнем, зависящим как от тока на грузке, так и напряжению на ней (UOUT).

Данный способ реализации позволяет организовать замкнутую цепь, которая позволяет управлять напряжением на выходе, то есть, по сути, мы говорим о линейно-дискретном функциональном узле. На его выходе формируются импульсы, с длительностью, зависящей от разницы между опорным и управляющим сигналом. На его основе создается напряжение, для управления ключевым транзистором инвертора.

Процесс стабилизации напряжения на выходе производится путем отслеживания его уровня, при его изменении пропорционально меняется напряжение регулирующего сигнала UРС, что приводит к увеличению или уменьшению длительности между импульсами.

В результате происходит изменение мощности вторичных цепей, благодаря чему обеспечивается стабилизация напряжения на выходе.

Для обеспечения безопасности необходима гальваническая развязка между питающей сетью и обратной связью. Как правило, для этой цели используются оптроны.

Сильные и слабые стороны импульсных источников

Если сравнивать аналоговые и импульсные устройства одинаковой мощности, то у последних будут следующие преимущества:

  • Небольшие размеры и вес, за счет отсутствия низкочастотного понижающего трансформатора и управляющих элементов, требующих отвода тепла при помощи больших радиаторов. Благодаря применению технологии преобразования высокочастотных сигналов можно уменьшить емкость конденсаторов, используемых в фильтрах, что позволяет устанавливать элементы меньших габаритов.
  • Более высокий КПД, поскольку основные потери вызывают только переходные процессы, в то время как в аналоговых схемам много энергии постоянно теряется при электромагнитном преобразовании. Результат говорит сам за себя, увеличение КПД до 95-98%.
  • Меньшая стоимость за счет применения мене мощных полупроводниковых элементов.
  • Более широкий диапазон входного напряжения. Такой тип оборудования не требователен к частоте и амплитуде, следовательно, допускается подключение к различным по стандарту сетям.
  • Наличие надежной защиты от КЗ, превышения нагрузки и других нештатных ситуаций.

К недостаткам импульсной технологии следует отнести:

Наличие ВЧ помех, это является следствием работы высокочастотного преобразователя. Такой фактор требует установки фильтра, подавляющего помехи. К сожалению, его работа не всегда эффективна, что накладывает некоторые ограничения на применение устройств данного типа в высокоточной аппаратуре.

Особые требования к нагрузке, она не должна быть пониженной или повышенной. Как только уровень тока превысит верхний или нижний порог, характеристики напряжения на выходе начнут существенно отличаться от штатных. Как правило, производители (в последнее время даже китайские) предусматривают такие ситуации и устанавливают в свои изделия соответствующую защиту.

Сфера применения

Практически вся современная электроника запитывается от блоков данного типа, в качестве примера можно привести:

  • различные виды зарядных устройств;
    Зарядки и внешние БП
  • внешние блоки питания;
  • электронный балласт для осветительных приборов;
  • БП мониторов, телевизоров и другого электронного оборудования.

Импульсный модуль питания монитора

Собираем импульсный БП своими руками

Рассмотрим схему простого источника питания, где применяется вышеописанный принцип работы.

Принципиальная схема импульсного БП

Обозначения:

  • Резисторы: R1 – 100 Ом, R2 – от 150 кОм до 300 кОм (подбирается), R3 – 1 кОм.
  • Емкости: С1 и С2 – 0,01 мкФ х 630 В, С3 -22 мкФ х 450 В, С4 – 0,22 мкФ х 400 В, С5 – 6800 -15000 пФ (подбирается),012 мкФ, С6 — 10 мкФ х 50 В, С7 – 220 мкФ х 25 В, С8 – 22 мкФ х 25 В.
  • Диоды: VD1-4 – КД258В, VD5 и VD7 – КД510А, VD6 – КС156А, VD8-11 – КД258А.
  • Транзистор VT1 – KT872A.
  • Стабилизатор напряжения D1 — микросхема КР142 с индексом ЕН5 – ЕН8 (в зависимости от необходимого напряжения на выходе).
  • Трансформатор Т1 – используется ферритовый сердечник ш-образной формы размерами 5х5. Первичная обмотка наматывается 600 витков проводом Ø 0,1 мм, вторичная (выводы 3-4) содержит 44 витка Ø 0,25 мм, и последняя – 5 витков Ø 0,1 мм.
  • Предохранитель FU1 – 0.25А.

Настройка сводится к подбору номиналов R2 и С5, обеспечивающих возбуждение генератора при входном напряжении 185-240 В.

Импульсный источник питания

: преимущества использования и принцип работы | Артикул

СКАЧАТЬ PDF

Получайте ценные ресурсы прямо на свой почтовый ящик — рассылка раз в месяц

Подписаться

Мы ценим вашу конфиденциальность

Что такое блок питания?

Источник питания — это электрическое устройство, которое преобразует электрический ток, поступающий от источника питания, в значение напряжения, необходимое для питания нагрузки, такой как двигатель или электронное устройство.

Существует две основные конструкции источников питания: линейный источник питания и импульсный источник питания.

  • Линейный: В линейных источниках питания используется трансформатор для понижения входного напряжения. Затем напряжение выпрямляется и превращается в напряжение постоянного тока, которое затем фильтруется для улучшения качества сигнала. В линейных источниках питания используются линейные стабилизаторы для поддержания постоянного напряжения на выходе. Эти линейные регуляторы рассеивают любую дополнительную энергию в виде тепла.
  • Коммутация: конструкция импульсного источника питания — это новая методология, разработанная для решения многих проблем, связанных с конструкцией линейного источника питания, включая размер трансформатора и регулирование напряжения. В импульсных конструкциях блоков питания входное напряжение больше не снижается; вместо этого он выпрямляется и фильтруется на входе. Затем напряжение проходит через прерыватель, который преобразует его в высокочастотную последовательность импульсов. Прежде чем напряжение достигнет выхода, оно еще раз фильтруется и выпрямляется.

Как работает импульсный источник питания?

В течение многих лет линейные блоки питания переменного/постоянного тока преобразовывали энергию переменного тока из коммунальной сети в напряжение постоянного тока для работы бытовой техники или освещения. Потребность в источниках меньшего размера для мощных приложений означает, что линейные источники питания стали использоваться в конкретных промышленных и медицинских целях, где они по-прежнему необходимы из-за низкого уровня шума. Но импульсные источники питания взяли верх, потому что они меньше по размеру, более эффективны и способны работать с большой мощностью. На рис. 1 показано общее преобразование переменного тока (AC) в постоянный ток (DC) в импульсном источнике питания.

Рис. 1. Изолированный импульсный источник питания переменного/постоянного тока

Входное выпрямление

Выпрямление — это процесс преобразования переменного напряжения в постоянное. Выпрямление входного сигнала является первым шагом в импульсных источниках питания переменного/постоянного тока.

Принято считать, что напряжение постоянного тока представляет собой прямую, непоколебимую линию постоянного напряжения, подобного типу, который выходит из батареи. Однако то, что определяет постоянный ток (DC), является однонаправленным потоком электрического заряда. Это означает, что напряжение течет в одном и том же направлении, но не обязательно постоянно.

Синусоида является наиболее типичной формой волны переменного тока (AC). Она положительна в течение первого полупериода, но отрицательна в остальной части цикла. Если отрицательный полупериод обратить или устранить, то ток перестает быть переменным и становится постоянным током. Это может быть достигнуто с помощью процесса, называемого исправлением.

Выпрямление может быть достигнуто путем использования пассивного полумостового выпрямителя для устранения отрицательной половины синусоиды с помощью диода (см. рис. 2) . Диод позволяет току течь через него во время положительной половины волны, но блокирует ток, когда он течет в противоположном направлении.

Рис. 2: Полумостовой выпрямитель

После выпрямления полученная синусоида будет иметь низкую среднюю мощность и не сможет эффективно питать устройства. Гораздо более эффективным методом было бы изменить полярность отрицательной полуволны и сделать ее положительной. Этот метод называется двухполупериодным выпрямлением, и для него требуется всего четыре диода в мостовой конфигурации (см. рис. 3) . Такое расположение поддерживает стабильное направление тока, независимо от полярности входного напряжения.

Рис. 3: Мостовой выпрямитель

Полностью выпрямленная волна имеет более высокое среднее выходное напряжение, чем напряжение, создаваемое полумостовым выпрямителем, но она все еще очень далека от постоянной формы волны постоянного тока, необходимой для питания электронных устройств. Хотя это волна постоянного тока, использование ее для питания устройства было бы неэффективным из-за формы волны напряжения, которая очень быстро и очень часто меняет значение. Это периодическое изменение напряжения постоянного тока называется пульсацией — уменьшение или устранение пульсации имеет решающее значение для эффективного источника питания.

Самым простым и наиболее часто используемым методом уменьшения пульсаций является использование большого конденсатора на выходе выпрямителя, называемого накопительным конденсатором или сглаживающим фильтром (см. рис. 4) .

Конденсатор накапливает напряжение во время пика волны, затем подает ток на нагрузку до тех пор, пока его напряжение не станет меньше нарастающей волны выпрямленного напряжения. Результирующая форма сигнала намного ближе к желаемой форме, и ее можно рассматривать как напряжение постоянного тока без составляющей переменного тока. Эта окончательная форма волны напряжения теперь может использоваться для питания устройств постоянного тока.

Рис. 4: Мостовой выпрямитель со сглаживающим фильтром

В пассивном выпрямлении используются полупроводниковые диоды в качестве неуправляемых переключателей. Это самый простой метод выпрямления волны переменного тока, но он не самый эффективный.

Диоды являются относительно эффективными переключателями; они могут быстро включаться и выключаться с минимальной потерей мощности. Единственная проблема с полупроводниковыми диодами заключается в том, что они имеют прямое падение напряжения смещения от 0,5 В до 1 В, что снижает эффективность.

Активное выпрямление заменяет диоды управляемыми переключателями, такими как полевые МОП-транзисторы или биполярные транзисторы (см. рис. 5) . Это имеет двойное преимущество: во-первых, выпрямители на основе транзисторов устраняют фиксированное падение напряжения от 0,5 В до 1 В, связанное с полупроводниковыми диодами, поскольку их сопротивления можно сделать сколь угодно малыми и, следовательно, иметь небольшое падение напряжения. Во-вторых, транзисторы являются управляемыми переключателями, а это означает, что частотой переключения можно управлять и, следовательно, оптимизировать.

Недостатком активных выпрямителей является то, что для достижения их цели требуются более сложные схемы управления, что требует дополнительных компонентов и, следовательно, делает их более дорогими.

Рис. 5: Мостовой активный выпрямитель

Коррекция коэффициента мощности (PFC)

Вторым этапом в конструкции импульсного источника питания является коррекция коэффициента мощности (PFC).

Цепи PFC имеют мало общего с фактическим преобразованием мощности переменного тока в мощность постоянного тока, но являются важным компонентом большинства коммерческих источников питания.

Рис. 6. Кривые напряжения и тока на выходе выпрямителя

Если вы наблюдаете кривую тока накопительного конденсатора выпрямителя (см. рис. 6) , вы увидите, что зарядный ток протекает через конденсатор в течение очень короткого промежутка времени, особенно от точки, где напряжение на входе конденсатора больше, чем заряд конденсатора, до выпрямленного сигнала. вершина горы. Это создает серию коротких всплесков тока в конденсаторе, что создает серьезную проблему не только для источника питания, но и для всей энергосистемы из-за большого количества гармоник, которые эти всплески тока вводят в сеть. Гармоники могут генерировать искажения, которые могут повлиять на другие источники питания и устройства, подключенные к сети.

В конструкции импульсного источника питания целью схемы коррекции коэффициента мощности является минимизация этих гармоник путем их фильтрации. Для этого есть два варианта: активная и пассивная коррекция коэффициента мощности.

  • Пассивные схемы ККМ состоят из пассивных фильтров нижних частот, которые пытаются устранить высокочастотные гармоники. Однако источники питания, особенно в приложениях большой мощности, не могут соответствовать международным нормам по гармоническим шумам, используя только пассивную коррекцию коэффициента мощности. Вместо этого они должны применять коррекцию активной мощности.
  • Active PFC изменяет форму кривой тока и заставляет ее следовать за напряжением. Гармоники перемещаются на гораздо более высокие частоты, что облегчает их фильтрацию. Наиболее широко используемой схемой для этих случаев является повышающий преобразователь, также называемый повышающим преобразователем.

Изоляция: изолированные и неизолированные импульсные источники питания

Независимо от того, присутствует схема PFC или нет, последним шагом преобразования мощности является понижение выпрямленного постоянного напряжения до значения, необходимого для предполагаемого применения.

Поскольку входной сигнал переменного тока был выпрямлен на входе, выходное напряжение постоянного тока будет высоким: если нет PFC, выходное постоянное напряжение выпрямителя будет около 320 В. Если имеется активная схема PFC, на выходе повышающего преобразователя будет постоянное напряжение постоянного тока 400 В или более.

Оба сценария чрезвычайно опасны и бесполезны для большинства приложений, которые обычно требуют значительно более низких напряжений. В таблице 1 показаны некоторые аспекты преобразователя и приложений, которые следует учитывать при выборе правильной топологии изоляции.

Изолированные блоки питания переменного/постоянного тока Неизолированные источники питания переменного/постоянного тока
Топология Обратноходовой преобразователь Понижающий преобразователь
Безопасность Гальваническая развязка обеспечивает повышенную безопасность пользователя Потенциальные утечки тока могут причинить значительный вред пользователям или нагрузкам
Размер и эффективность Трансформаторы увеличивают размер и вес Требуется только одна катушка индуктивности, схема гораздо меньшего размера
Эффективность Потери в железе и меди трансформатора влияют на КПД Один индуктор намного эффективнее, чем трансформатор целиком
Сложность Схема управления необходима для обоих

Таблица 1. Изолированные и неизолированные блоки питания переменного/постоянного тока

При выборе метода понижения напряжения основной проблемой является безопасность.

Блок питания подключен к сети переменного тока на входе, а значит, при утечке тока на выходе поражение электрическим током такой пропорции может привести к тяжелым травмам или смерти, а также повредить любое устройство, подключенное к выходу.

Безопасность может быть обеспечена за счет магнитной изоляции входных и выходных цепей подключенного к сети источника переменного/постоянного тока. Наиболее широко используемые схемы в изолированных источниках переменного/постоянного тока — это обратноходовые преобразователи и резонансные LLC-преобразователи, поскольку они включают гальваническую или магнитную изоляцию (см. рис. 7) .

Рис. 7: Обратноходовой преобразователь (слева) и LLC-резонансный преобразователь (справа)

Использование трансформатора означает, что сигнал не может представлять собой плоское напряжение постоянного тока. Вместо этого должно быть изменение напряжения и, следовательно, изменение тока, чтобы передавать энергию с одной стороны трансформатора на другую посредством индуктивной связи. Следовательно, как обратноходовые, так и LLC-преобразователи «режут» входное постоянное напряжение на прямоугольную волну, которую можно понизить с помощью трансформатора. Затем выходная волна должна быть снова выпрямлена перед выходом.

Обратноходовые преобразователи в основном используются для маломощных приложений. Обратноходовой преобразователь представляет собой изолированный повышающе-понижающий преобразователь, что означает, что выходное напряжение может быть выше или ниже входного напряжения, в зависимости от соотношения витков трансформатора между первичной и вторичной обмотками.

Работа обратноходового преобразователя очень похожа на работу повышающего преобразователя.

Когда переключатель замкнут, первичная катушка заряжается от входа, создавая магнитное поле. Когда переключатель разомкнут, заряд первичной катушки индуктивности переносится на вторичную обмотку, которая подает ток в цепь, питая нагрузку.

Обратноходовые преобразователи относительно просты в конструкции и требуют меньшего количества компонентов, чем другие преобразователи, но они не очень эффективны из-за значительных потерь из-за жесткого переключения из-за принудительного произвольного включения и выключения транзистора (см. рис. 8). Особенно в приложениях с высокой мощностью это очень вредно для жизненного цикла транзистора и приводит к значительным потерям мощности, поэтому обратноходовые преобразователи лучше подходят для приложений с низким энергопотреблением, обычно до 100 Вт.

Резонансные преобразователи LLC чаще используются в приложениях большой мощности. Эти цепи также имеют магнитную изоляцию через трансформатор. Преобразователи LLC основаны на явлении резонанса, которое представляет собой усиление определенной частоты, когда она совпадает с собственной частотой фильтра. В этом случае резонансная частота LLC-преобразователя определяется последовательно включенными катушкой индуктивности и конденсатором (LC-фильтр) с дополнительным эффектом первичной катушки индуктивности (L) трансформатора, отсюда и название LLC-преобразователь.

LLC-резонансные преобразователи предпочтительнее использовать для мощных приложений, поскольку они могут производить переключение с нулевым током, также известное как мягкое переключение (см. рис. 8) . Этот метод переключения включает и выключает переключатель, когда ток в цепи приближается к нулю, минимизируя коммутационные потери транзистора, что, в свою очередь, снижает электромагнитные помехи и повышает эффективность. К сожалению, за эти улучшенные характеристики приходится платить: сложно разработать LLC-резонансный преобразователь, который может обеспечить плавное переключение для широкого диапазона нагрузок. С этой целью компания MPS разработала специальный инструмент проектирования LLC, который помогает убедиться, что преобразователь работает точно в правильном резонансном состоянии для оптимальной эффективности переключения.

Рисунок 8: Потери при жестком переключении (слева) и при мягком переключении (справа)

Ранее в этой статье мы обсуждали, почему одним из ограничений источников питания переменного/постоянного тока являются для низкой рабочей частоты (50 Гц) требуются большие катушки индуктивности и магнитные сердечники, чтобы избежать насыщения.

В импульсных источниках питания частота колебаний напряжения значительно выше (как минимум выше 20 кГц). Это означает, что понижающий трансформатор может быть меньше, поскольку высокочастотные сигналы вызывают меньшие магнитные потери в линейных трансформаторах. Уменьшение размера входных трансформаторов позволяет миниатюризировать систему до такой степени, что весь блок питания помещается в корпус размером с зарядные устройства для мобильных телефонов, которые мы используем сегодня.

Существуют устройства постоянного тока, которым не требуется изоляция, обеспечиваемая трансформатором. Это обычно наблюдается в устройствах, к которым пользователю не нужно напрямую прикасаться, таких как источники света, датчики, IoT и т. д., поскольку любые манипуляции с параметрами устройства выполняются с отдельного устройства, такого как мобильный телефон. планшет или компьютер.

Это предлагает большие преимущества с точки зрения веса, размера и производительности. Эти преобразователи снижают уровни выходного напряжения с помощью высоковольтного понижающего преобразователя, также называемого понижающим преобразователем. Эта схема может быть описана как инверсия повышающего преобразователя, описанного ранее. В этом случае, когда транзисторный ключ закрыт, ток, протекающий через катушку индуктивности, создает напряжение на катушке индуктивности, которое противодействует напряжению от источника питания, уменьшая напряжение на выходе. Когда ключ размыкается, катушка индуктивности высвобождает ток, протекающий через нагрузку, поддерживая значение напряжения на нагрузке, пока цепь отключена от источника питания.

В импульсных источниках питания переменного/постоянного тока используется высоковольтный понижающий преобразователь, поскольку полевой МОП-транзистор, работающий в качестве переключателя, должен выдерживать большие изменения напряжения (см. рис. 9) . Когда ключ замкнут, напряжение на МОП-транзисторе близко к 0 В; но когда он открывается, это напряжение возрастает до 400 В для однофазных приложений или до 800 В для трехфазных преобразователей. Эти большие резкие изменения напряжения могут легко повредить обычный транзистор, поэтому используются специальные высоковольтные полевые МОП-транзисторы.

Рис. 9. Неизолированный импульсный источник питания переменного/постоянного тока с активной коррекцией коэффициента мощности

Понижающие преобразователи интегрируются намного проще, чем трансформатор, поскольку требуется только одна катушка индуктивности. Они также намного более эффективны при понижении напряжения с нормальным КПД выше 95%. Такой уровень эффективности возможен благодаря тому, что транзисторы и диоды почти не имеют потерь мощности при переключении, поэтому единственные потери приходятся на дроссель.

Одним из примеров неизолированного выходного стабилизатора переменного/постоянного тока является семейство MPS MP17xA. Это семейство может управлять множеством различных топологий преобразователей, таких как понижающий, повышающий, повышающе-понижающий или обратноходовой. Его можно использовать для напряжения до 700 В, то есть он предназначен для однофазного питания. Он также имеет вариант зеленого режима, в котором частота коммутации и пиковый ток уменьшаются пропорционально нагрузке, повышая общую эффективность блока питания. На рис. 10 показана типичная схема применения MP173A, где он регулирует понижающий преобразователь, состоящий из катушки индуктивности (L1), диода (D1) и конденсатора (C4). Резисторы (R1 и R2) образуют делитель напряжения, который обеспечивает напряжение обратной связи (вывод FB), замыкая контур управления.

Рис. 10: Типовая прикладная схема MP173A

Импульсные блоки питания переменного/постоянного тока обеспечивают повышенную производительность при небольшом размере, что и сделало их такими популярными. Недостатком является то, что их схемы значительно сложнее, и они требуют более точных схем управления и фильтров шумоподавления. Несмотря на дополнительную сложность, MPS предлагает простые и эффективные решения, облегчающие разработку вашего источника питания переменного/постоянного тока.

Резюме

Импульсные блоки питания переменного/постоянного тока в настоящее время являются наиболее эффективным способом преобразования мощности переменного тока в мощность постоянного тока. Преобразование питания осуществляется в три этапа:

  1. Выпрямление на входе: Этот процесс берет сетевое напряжение переменного тока и преобразует его в выпрямленное напряжение постоянного тока с помощью диодного моста. На выходе моста добавлен конденсатор для уменьшения пульсаций напряжения.
  2. Коррекция коэффициента мощности (PFC): из-за нелинейного тока в выпрямителе содержание гармоник в токе довольно велико. Есть два способа решить эту проблему. Первый — это пассивная коррекция коэффициента мощности, в которой используется фильтр для ослабления влияния гармоник, но он не очень эффективен. Второй вариант, называемый активной коррекцией коэффициента мощности, использует импульсный повышающий преобразователь, чтобы форма кривой тока соответствовала форме входного напряжения. Активная коррекция коэффициента мощности — это единственный метод проектирования силового преобразователя, который соответствует современным стандартам размера и эффективности.
  3. Изоляция: Импульсные источники питания могут быть изолированными или неизолированными. Устройство изолировано, когда вход и выход источника питания физически не связаны. Изоляция осуществляется с помощью трансформаторов, которые гальванически развязывают две половины цепи. Однако трансформаторы могут передавать электроэнергию только при изменении тока, поэтому выпрямленное постоянное напряжение расщепляется на высокочастотную прямоугольную волну, которая затем передается во вторичную цепь, где снова выпрямляется и, наконец, передается на выход.

При проектировании импульсного источника питания необходимо учитывать множество различных аспектов, особенно связанных с безопасностью, производительностью, размером, весом и т. д. Схемы управления импульсными источниками питания также более сложны, чем в линейных источниках питания, поэтому многие разработчики считают полезным использовать встроенные модули в своих источниках питания.

MPS предлагает широкий выбор модулей, упрощающих проектирование импульсных источников питания, таких как силовые преобразователи, контроллеры, выпрямители и т. д.

_________________________

Вы нашли это интересным? Получайте ценные ресурсы прямо на свой почтовый ящик — рассылка раз в месяц!

Voltage — Как использовать этот импульсный блок питания с питанием от настенной розетки?

спросил

Изменено
6 лет, 10 месяцев назад

Просмотрено
2к раз

\$\начало группы\$

Я предполагаю, что цель этих устройств — преобразовать мощность настенной розетки во что-то, что можно использовать для электронных проектов/продуктов. В моем случае мне нужно 24В на 5А для проверки электродвигателя.

Итак, я подумываю получить что-то вроде этого:

https://www.amazon.ca/Susay%C2%AE-Switching-Switch-Supply-Driver/dp/B00FEYHSKW/ref=sr_1_3?ie=UTF8&qid =1464

  • 0&sr=8-3&keywords=переключение+питание+питание

    И я знаю, как подключить контроллер мотора к обычным зачищенным проводам: отвинтить колпачки, надеть провода на винты, закрутить их обратно.

    Но какую комбинацию проводов/адаптеров я бы использовал для настенной розетки (например, 2 или 3 контакта)? Я даже не знаю, какую терминологию искать в Интернете.

    Спасибо за любую помощь, и я также открыт для других предложений по моему вопросу о блоке питания (проект электродвигателя).

    • источник питания
    • напряжение
    • мощность
    • ток
    • преобразователь

    \$\конечная группа\$

    5

    \$\начало группы\$

    Блок питания имеет заземление, нейтраль и подключение к сети под напряжением, поэтому вам потребуется кабель с 3 контактами. Зеленый подключается к земле, белый или синий подключается к нейтрали, а черный или коричневый подключается к линии. Но никогда не полагайтесь только на цвет , быстрая проверка мультиметром соединения провода с контактом предотвратит неправильное подключение!

    Рассмотрите возможность обжима изолированных наконечников в виде лопаток к проводам, чтобы обеспечить лучшее соединение.

    И, как всегда, применяются все правила и рекомендации по электробезопасности.

    \$\конечная группа\$

    \$\начало группы\$

    Подача питания на этот источник питания осуществляется через три клеммы справа. Они помечены символом земли / земли (что-то вроде Ξ), а также «N» и «L».

    Чтобы подключить это к сетевому шнуру питания, вы должны подключить его следующим образом…

    • ЗАЗЕМЛЕНИЕ = зеленый шнур питания (или зелено-желтая полоса) к винту заземления (Ξ)
    • НЕЙТРАЛЬНЫЙ = шнур питания Белый (или голубой) к винту «N».
    • LINE = кабель питания Черный (или коричневый) к винту «L».

    Это предполагает, что вы используете кабель питания с предварительно подключенным кабелем (в качестве старого кабеля питания компьютера или принтера, который вы утилизировали). Старый североамериканский стандарт был зеленым/белым/черным. Новый стандарт «Евро» — зелено-желтый/голубой/коричневый.

    Обязательно используйте все средства безопасности, такие как пластиковая крышка на винтах и ​​т. д. Напряжение сети может убить вас и сжечь ваш дом, если вы не будете осторожны.

    \$\конечная группа\$

    \$\начало группы\$

    То, что вам нужно, если вы не устанавливаете это в качестве постоянного крепления, для бытовых розеток 5-15R в США — это стандартный кабель NEMA 5-15P на ROJ (с удаленной внешней оболочкой) . Желательно поляризованный. Их можно найти в любом магазине товаров для дома или в Интернете.

    Затем вы можете подключить провода к кольцевой или лепестковой клемме, обычно просто обжатой.

    \$\конечная группа\$

    1

    \$\начало группы\$

    Крайние правые 3 соединения предназначены для «горячего», «нейтрального» и «заземления оборудования» от источника питания переменного тока.

    Электропитание от сети переменного тока может вас убить, поэтому все, что вы делаете с ним, должно быть «по правилам». Там буквально книга 🙂 Вот суть.

    Вам необходимо поместить это устройство в какой-либо корпус (сертифицированный) UL или CE. Шнуру требуется правильно подобранная втулка или другая защита, когда шнур проходит через корпус. Шнур также должен быть указан. Самый простой способ — отрезать конец шнура питания ПК или удлинителя.

    Шнур будет многожильным. В документации к блоку питания будет указано, нужен ли для его подключения разъем, такой как обжимная лепестковая клемма.


  • Опубликовано

    в

    от

    Метки:

    Комментарии

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *