Основной элемент передача: Основной элемент, Научно-популярная передача, смотреть онлайн

Основной элемент — Телеканал «Наука»

    • Раскопки

    В Саккаре обнаружены 3300-летние гробницы с замечательными украшениями

    • 42
    • Физика всего
    • Внеземное

    «Кольца Эйнштейна» пролили свет на природу темной материи

    • Устройство человека

    Частицы микропластика смогли преодолеть гематоэнцефалический барьер и попасть в мозг

    • Внеземное
    • Красивое

    Мощная геомагнитная буря позволила наблюдать полярные сияния даже на Кавказе — фото и видео

    • Внеземное

    В атмосфере далекой экзопланеты обнаружили облака из тяжелых металлов

  • Роскосмос / космонавт Олег Артемьев

    Лучшие фото с орбиты Земли за 2022 год

  • Канарский институт астрофизики

    10 необычных экзопланет, открытых или изученных в 2022 году

  • Midjourney

    Как использовать энергию Солнца для нужд человека: возможное будущее

  • Midjourney

    Конец науки и образования? Все, что нужно знать о ChatGPT

  • Институт физики плазмы Китайской академии наук

    Новый термоядерный рекорд: китайский токамак удерживал плазму 403 секунды

Хотите быть в курсе последних событий в науке?

Оставьте ваш email и подпишитесь на нашу рассылку

Ваш e-mail

Нажимая на кнопку «Подписаться», вы соглашаетесь на обработку персональных данных

«Основной элемент» на канале Доктор.

Телепрограмма

показать прошедшие сеансы

Сб, 22 апр

07:40

Влечение

Зрение, слух, обоняние и осязание — наши органы чувств, которые подбирают нам идеального партнера для продолжения рода. Как трансформировались механизмы влечения в современном обществе? Где почти не осталось запретов и ограничений? И действительно ли гигиена работает на основной инстинкт, а интернет — против него?

08:10

Механизмы боли

Человечество, сколько помнит себя, старается найти средство от боли. И ученые до сих пор не могут до конца объяснить механизмы ее возникновения. Почему мы ощущаем боль? И отчего так по-разному? Да и существует ли боль на самом деле?

15:40

Влечение

Зрение, слух, обоняние и осязание — наши органы чувств, которые подбирают нам идеального партнера для продолжения рода. Как трансформировались механизмы влечения в современном обществе? Где почти не осталось запретов и ограничений? И действительно ли гигиена работает на основной инстинкт, а интернет — против него?

16:05

Механизмы боли

Человечество, сколько помнит себя, старается найти средство от боли. И ученые до сих пор не могут до конца объяснить механизмы ее возникновения. Почему мы ощущаем боль? И отчего так по-разному? Да и существует ли боль на самом деле?

23:40

Влечение

Зрение, слух, обоняние и осязание — наши органы чувств, которые подбирают нам идеального партнера для продолжения рода. Как трансформировались механизмы влечения в современном обществе? Где почти не осталось запретов и ограничений? И действительно ли гигиена работает на основной инстинкт, а интернет — против него?

00:05

Механизмы боли

Человечество, сколько помнит себя, старается найти средство от боли. И ученые до сих пор не могут до конца объяснить механизмы ее возникновения. Почему мы ощущаем боль? И отчего так по-разному? Да и существует ли боль на самом деле?

05:35

Влечение

Зрение, слух, обоняние и осязание — наши органы чувств, которые подбирают нам идеального партнера для продолжения рода. Как трансформировались механизмы влечения в современном обществе? Где почти не осталось запретов и ограничений? И действительно ли гигиена работает на основной инстинкт, а интернет — против него?

Вчера

12:00

Влечение

Зрение, слух, обоняние и осязание — наши органы чувств, которые подбирают нам идеального партнера для продолжения рода. Как трансформировались механизмы влечения в современном обществе? Где почти не осталось запретов и ограничений? И действительно ли гигиена работает на основной инстинкт, а интернет — против него?

12:30

Механизмы боли

Человечество, сколько помнит себя, старается найти средство от боли. И ученые до сих пор не могут до конца объяснить механизмы ее возникновения. Почему мы ощущаем боль? И отчего так по-разному? Да и существует ли боль на самом деле?

19:55

Влечение

Зрение, слух, обоняние и осязание — наши органы чувств, которые подбирают нам идеального партнера для продолжения рода. Как трансформировались механизмы влечения в современном обществе? Где почти не осталось запретов и ограничений? И действительно ли гигиена работает на основной инстинкт, а интернет — против него?

20:25

Механизмы боли

Человечество, сколько помнит себя, старается найти средство от боли. И ученые до сих пор не могут до конца объяснить механизмы ее возникновения. Почему мы ощущаем боль? И отчего так по-разному? Да и существует ли боль на самом деле?

02:05

Основной элемент

02:30

Основной элемент

05:30

Основной элемент

Сегодня

20:05

Основной элемент

20:30

Основной элемент

Сегодня

02:50

Основной элемент

Завтра

16:10

Основной элемент

16:40

Основной элемент

показать следующие сеансы

Ср, 26 апр

10:00

Влечение

Зрение, слух, обоняние и осязание — наши органы чувств, которые подбирают нам идеального партнера для продолжения рода. Как трансформировались механизмы влечения в современном обществе? Где почти не осталось запретов и ограничений? И действительно ли гигиена работает на основной инстинкт, а интернет — против него?

10:30

Механизмы боли

Человечество, сколько помнит себя, старается найти средство от боли. И ученые до сих пор не могут до конца объяснить механизмы ее возникновения. Почему мы ощущаем боль? И отчего так по-разному? Да и существует ли боль на самом деле?

Сб, 29 апр

07:50

Теория правды

Честность — не самое сильное качество человека. Мы врем и плутуем при любой возможности. Психологи говорят, честных людей не существует. И даже если вы убеждаете себя в собственной честности, вы уже врете. Что заложено в нас природой: честность или лживость? Почему все время говорить правду — признак заболевания? Можно ли человека заставить быть честным? И как это сделать?

08:20

Миф об IQ

Одних людей считают умными, других — глупцами. Кто-то молниеносно разгадывает кроссворды, а кто-то в уме умножает семизначные числа. Уровень интеллекта сегодня в основном измеряют тестом на АйКью. Но стоит ли ему доверять? Как сравнить умственные способности математика и гуманитария? И возможно ли в принципе измерить живость ума и работу человеческой мысли?

16:15

Теория правды

Честность — не самое сильное качество человека. Мы врем и плутуем при любой возможности. Психологи говорят, честных людей не существует. И даже если вы убеждаете себя в собственной честности, вы уже врете. Что заложено в нас природой: честность или лживость? Почему все время говорить правду — признак заболевания? Можно ли человека заставить быть честным? И как это сделать?

16:45

Миф об IQ

Одних людей считают умными, других — глупцами. Кто-то молниеносно разгадывает кроссворды, а кто-то в уме умножает семизначные числа. Уровень интеллекта сегодня в основном измеряют тестом на АйКью. Но стоит ли ему доверять? Как сравнить умственные способности математика и гуманитария? И возможно ли в принципе измерить живость ума и работу человеческой мысли?

00:35

Теория правды

Честность — не самое сильное качество человека. Мы врем и плутуем при любой возможности. Психологи говорят, честных людей не существует. И даже если вы убеждаете себя в собственной честности, вы уже врете. Что заложено в нас природой: честность или лживость? Почему все время говорить правду — признак заболевания? Можно ли человека заставить быть честным? И как это сделать?

01:05

Миф об IQ

Одних людей считают умными, других — глупцами. Кто-то молниеносно разгадывает кроссворды, а кто-то в уме умножает семизначные числа. Уровень интеллекта сегодня в основном измеряют тестом на АйКью. Но стоит ли ему доверять? Как сравнить умственные способности математика и гуманитария? И возможно ли в принципе измерить живость ума и работу человеческой мысли?

Вс, 30 апр

12:20

Теория правды

Честность — не самое сильное качество человека. Мы врем и плутуем при любой возможности. Психологи говорят, честных людей не существует. И даже если вы убеждаете себя в собственной честности, вы уже врете. Что заложено в нас природой: честность или лживость? Почему все время говорить правду — признак заболевания? Можно ли человека заставить быть честным? И как это сделать?

12:50

Миф об IQ

Одних людей считают умными, других — глупцами. Кто-то молниеносно разгадывает кроссворды, а кто-то в уме умножает семизначные числа. Уровень интеллекта сегодня в основном измеряют тестом на АйКью. Но стоит ли ему доверять? Как сравнить умственные способности математика и гуманитария? И возможно ли в принципе измерить живость ума и работу человеческой мысли?

20:45

Теория правды

Честность — не самое сильное качество человека. Мы врем и плутуем при любой возможности. Психологи говорят, честных людей не существует. И даже если вы убеждаете себя в собственной честности, вы уже врете. Что заложено в нас природой: честность или лживость? Почему все время говорить правду — признак заболевания? Можно ли человека заставить быть честным? И как это сделать?

21:15

Миф об IQ

Одних людей считают умными, других — глупцами. Кто-то молниеносно разгадывает кроссворды, а кто-то в уме умножает семизначные числа. Уровень интеллекта сегодня в основном измеряют тестом на АйКью. Но стоит ли ему доверять? Как сравнить умственные способности математика и гуманитария? И возможно ли в принципе измерить живость ума и работу человеческой мысли?

Страх в гены человека заложила эволюция. Что бывает, когда страх выходит из-под контроля? Лень управляет нами или все-таки мы управляем ленью? Почему одни вещи кажутся нам красивыми, а другие нет? Вся наша жизнь основана на отношениях подчинения и доминирования. Может ли это стать предметом рассмотрения науки? Есть ли среди нас прирожденные боссы и рабы? Ответы на эти вопросы — в новом цикле о мире научных открытий и технологий.

Компоненты трансмиссии | Mister Transmission

Вы когда-нибудь задумывались, что находится внутри современной автоматической коробки передач? В этой статье описываются и информируются о пакетах фрикционов, односторонних муфтах, гидротрансформаторах и многом другом.

Современная автоматическая трансмиссия состоит из многих компонентов и систем, которые предназначены для совместной работы в симфонии умных механических, гидравлических и электрических технологий, которые с годами превратились в то, что многие люди, склонные к механике, считают формой искусства. Мы пытаемся использовать простые, общие объяснения, где это возможно, для описания этих систем, но из-за сложности некоторых из этих компонентов вам, возможно, придется использовать некоторую умственную гимнастику, чтобы визуализировать их работу.

Основные компоненты, из которых состоит автоматическая коробка передач, включают:

  • Планетарные передачи, представляющие собой механические системы, обеспечивающие различные передаточные числа переднего и заднего хода.
  • Гидравлическая система, в которой используется специальная трансмиссионная жидкость, подаваемая под давлением масляным насосом через корпус клапана для управления муфтами и лентами, чтобы управлять наборами планетарных передач.
  • Уплотнения и прокладки используются для удержания масла там, где оно должно быть, и предотвращения его утечки.
  • Гидротрансформатор, который действует как сцепление, позволяя автомобилю останавливаться на передаче при работающем двигателе.
  • Регулятор и модулятор или трос дроссельной заслонки контролируют скорость и положение дроссельной заслонки, чтобы определить момент переключения.
  • Компьютер, который управляет точками переключения на новых автомобилях и управляет электрическими соленоидами для переключения потока масла на соответствующий компонент в нужный момент.

Планетарные передачи

Автоматические коробки передач содержат множество передач в различных комбинациях. В механической коробке передач шестерни скользят вдоль валов, когда вы перемещаете рычаг переключения передач из одного положения в другое, задействуя шестерни различных размеров по мере необходимости, чтобы обеспечить правильное передаточное число. Однако в автоматической коробке передач шестерни никогда физически не перемещаются и всегда включают одни и те же передачи. Это достигается за счет использования планетарных передач.

Базовая планетарная передача состоит из солнечной шестерни, зубчатого венца и двух или более планетарных шестерен, находящихся в постоянном зацеплении. Планетарные шестерни соединены друг с другом через общее водило, которое позволяет шестерням вращаться на валах, называемых «шестернями», которые прикреплены к водилу.

Одним из примеров использования этой системы является соединение зубчатого венца с входным валом, идущим от двигателя, соединение водила планетарной передачи с выходным валом и блокировка солнечной шестерни, чтобы она не могла двигаться. В этом сценарии, когда мы поворачиваем зубчатый венец, планеты будут «ходить» вдоль солнечной шестерни (которая удерживается неподвижно), заставляя водило планетарной передачи вращать выходной вал в том же направлении, что и входной вал, но с меньшей скоростью, вызывая понижающая передача (аналогично автомобилю на первой передаче).

Если мы разблокируем солнечную шестерню и соединим вместе любые два элемента, это заставит все три элемента вращаться с одинаковой скоростью, так что выходной вал будет вращаться с той же скоростью, что и входной вал. Это похоже на автомобиль, который находится на третьей или высшей передаче. Другой способ, которым мы можем использовать планетарную передачу, — это заблокировать водило планетарной передачи от движения, а затем подать мощность на зубчатый венец, который заставит солнечную шестерню вращаться в противоположном направлении, давая нам заднюю передачу.

На рисунке справа показано, как описанная выше простая система будет выглядеть в реальной трансмиссии. Первичный вал соединен с зубчатым венцом (темно-серый), Выходной вал соединен с водилом планетарной передачи (светло-серый), который также соединен с «многодисковым» пакетом сцепления. Солнечная шестерня соединена с барабаном (оранжевым), который также соединен с другой половиной пакета сцепления. Барабан снаружи окружен лентой (синего цвета), которую при необходимости можно затянуть вокруг барабана, чтобы предотвратить вращение барабана с прикрепленной солнечной шестерней.

В данном случае пакет фрикционов используется для блокировки водила планетарной передачи с солнечной шестерней, заставляя их вращаться с одинаковой скоростью. Если бы и пакет сцепления, и лента были отпущены, система была бы в нейтральном положении. Поворот входного вала повернет планетарные шестерни против солнечной шестерни, но поскольку солнечную шестерню ничто не удерживает, она просто будет вращаться свободно и не окажет никакого влияния на выходной вал. Чтобы перевести устройство на первую передачу, применяется лента, удерживающая солнечную шестерню от движения. Для переключения с первой на высшую передачу ремень освобождается и включается сцепление, в результате чего выходной вал вращается с той же скоростью, что и входной вал.

Возможны многие другие комбинации с использованием двух или более планетарных пар, соединенных различными способами для обеспечения различных скоростей переднего и заднего хода, используемых в современных автоматических коробках передач.

Некоторые из хитроумных механизмов переключения передач, встречающиеся в четырех-, а теперь пяти-, шести- и даже семиступенчатых автоматах, достаточно сложны, чтобы заставить технически проницательного человека закружиться в голове, пытаясь понять поток мощности через коробку передач при переключении с первой передачи через высшую передачу, в то время как автомобиль разгоняется до скорости шоссе. На более новых автомобилях бортовой компьютер отслеживает и контролирует эти переключения, так что они почти незаметны.

Пакеты сцепления

Пакет сцепления состоит из чередующихся дисков, которые устанавливаются внутри барабана сцепления. Половина дисков стальные и имеют шлицы, которые входят в канавки на внутренней стороне барабана. Другая половина имеет фрикционный материал, прикрепленный к их поверхности, и имеет шлицы на внутренней кромке, которые соответствуют канавкам на внешней поверхности соседней ступицы. Внутри барабана есть поршень, который активируется давлением масла в нужный момент, чтобы сжать пакет сцепления вместе, так что два компонента блокируются и вращаются как один.

Обгонная муфта

Обратная муфта (также известная как «кулачковая» муфта) — это устройство, позволяющее такому компоненту, как зубчатый венец, свободно вращаться в одном направлении, но не в другом. Этот эффект аналогичен эффекту велосипеда, когда педали будут вращать колесо при вращении педалей вперед, но будут свободно вращаться при вращении педалей назад.

Обычно муфта свободного хода используется на первой передаче, когда рычаг переключения передач находится в положении движения. Когда вы начинаете ускоряться с места, коробка передач включается на первой передаче. Но вы когда-нибудь замечали, что происходит, если вы отпускаете газ, пока он все еще находится на первой передаче? Автомобиль продолжает двигаться по инерции, как если бы вы были на нейтральной передаче. Теперь переключитесь на пониженную передачу, а не на драйв. Когда вы отпустите газ в этом случае, вы почувствуете, как двигатель замедляет вас, как в стандартной машине с переключением передач. Причина этого в том, что в режиме Drive используется одностороннее сцепление, тогда как в режиме Low используется пакет сцепления или лента.

Ленты

Лента представляет собой стальную ленту с фрикционным материалом, прикрепленным к внутренней поверхности. Один конец ленты закреплен на корпусе трансмиссии, а другой конец соединен с сервоприводом. В нужный момент гидравлическое масло под давлением подается в сервопривод, чтобы стянуть ленту вокруг барабана и остановить вращение барабана.

Преобразователь крутящего момента

В автоматических коробках передач преобразователь крутящего момента заменяет сцепление на автомобилях со стандартным переключением передач. Это необходимо для того, чтобы двигатель продолжал работать, когда автомобиль останавливается. Принцип работы преобразователя крутящего момента подобен подключенному к стене вентилятору и нагнетанию воздуха в другой вентилятор, не подключенный к сети. Если вы возьмете лопасть отключенного от сети вентилятора, вы сможете удержать его от вращения, но как только вы отпустите, он начнет ускоряться, пока не приблизится к скорости работающего вентилятора. Разница с гидротрансформатором заключается в том, что вместо воздуха он использует масло или трансмиссионную жидкость, если быть точнее.

Гидротрансформатор представляет собой большую гидравлическую муфту в форме пончика (диаметром от 10 до 15 дюймов), которая устанавливается между двигателем и коробкой передач. Он состоит из трех внутренних элементов, которые вместе передают мощность на трансмиссию. Три элемента гидротрансформатора — это насос, турбина и статор. Насос установлен непосредственно на корпусе гидротрансформатора, который, в свою очередь, привинчен непосредственно к коленчатому валу двигателя и вращается со скоростью двигателя. Турбина находится внутри корпуса и соединена непосредственно с входным валом трансмиссии, обеспечивающей мощность для движения транспортного средства. Статор крепится к односторонней муфте, так что он может свободно вращаться в одном направлении, но не в другом. На каждом из трех элементов установлены ребра, которые точно направляют поток масла через гидротрансформатор.

При работающем двигателе трансмиссионная жидкость втягивается в секцию насоса и выталкивается наружу под действием центробежной силы, пока не достигнет секции турбины, которая запускает ее вращение. Жидкость продолжает круговое движение обратно к центру турбины, где она входит в статор. Если турбина движется значительно медленнее, чем насос, жидкость соприкасается с передней частью ребер статора, которые вдавливают статор в одностороннюю муфту и предотвращают его вращение. Когда статор остановлен, жидкость направляется ребрами статора, чтобы снова войти в насос под «помогающим» углом, обеспечивая увеличение крутящего момента. Когда скорость турбины достигает скорости насоса, жидкость начинает ударяться о лопасти статора с обратной стороны, заставляя статор вращаться в том же направлении, что и насос и турбина. При увеличении скорости все три элемента начинают вращаться примерно с одинаковой скоростью.

С 80-х годов для повышения экономии топлива преобразователи крутящего момента оснащались муфтой блокировки (не показана), которая блокирует турбину и насос, когда скорость автомобиля достигает примерно 45–50 миль в час. Эта блокировка управляется компьютером и обычно не включается, если коробка передач не находится на 3-й или 4-й передаче.

Гидравлическая система

Гидравлическая система представляет собой сложный лабиринт каналов и труб, по которым трансмиссионная жидкость под давлением подается ко всем частям трансмиссии и гидротрансформатора. Диаграмма слева — простая схема 3-ступенчатого автомата 60-х годов. Более новые системы намного сложнее и сочетаются с компьютеризированными электрическими компонентами. Трансмиссионная жидкость служит ряду целей, в том числе: управление переключением передач, общая смазка и охлаждение трансмиссии. В отличие от двигателя, который использует масло в первую очередь для смазки, каждый аспект работы трансмиссии зависит от постоянной подачи жидкости под давлением. Это похоже на систему кровообращения человека (жидкость даже красная), где даже несколько минут работы при недостатке давления могут быть вредными или даже фатальными для жизни трансмиссии. Для поддержания нормальной рабочей температуры трансмиссии часть жидкости направляется по одной из двух стальных трубок в специальную камеру, погруженную в антифриз в радиаторе. Жидкость, проходящая через эту камеру, охлаждается и затем возвращается в трансмиссию через другую стальную трубу. В типичной трансмиссии между трансмиссией, гидротрансформатором и бачком охладителя находится в среднем десять литров жидкости. Фактически, большинство компонентов трансмиссии постоянно смазываются жидкостью, включая пакеты сцепления и ленты. Поверхности трения на этих деталях предназначены для правильной работы только тогда, когда они покрыты маслом.

Масляный насос

Масляный насос коробки передач (не путать с насосным элементом внутри гидротрансформатора) отвечает за создание всего давления масла, необходимого в коробке передач. Масляный насос установлен в передней части картера коробки передач и напрямую соединен со ступицей корпуса гидротрансформатора. Поскольку корпус гидротрансформатора напрямую соединен с коленчатым валом двигателя, насос будет создавать давление всякий раз, когда двигатель работает, пока имеется достаточное количество трансмиссионной жидкости. Масло поступает в насос через фильтр, расположенный в нижней части масляного поддона коробки передач, и проходит по всасывающей трубке непосредственно к масляному насосу. Затем масло под давлением направляется к регулятору давления, корпусу клапана и остальным компонентам по мере необходимости.

Блок клапанов

Блок клапанов является центром управления автоматической коробкой передач.

Корпус клапана содержит множество каналов и проходов, которые направляют гидравлическую жидкость к многочисленным клапанам, которые затем активируют соответствующий пакет сцепления или ленточный сервопривод для плавного переключения на соответствующую передачу для каждой дорожной ситуации. Каждый из множества клапанов в корпусе клапана имеет определенное назначение и назван в честь этой функции. Например, клапан 2-3 переключения активирует переключение со 2-й на 3-ю передачу на повышение или клапан переключения 3-2 передачи, который определяет, когда должно происходить переключение на пониженную передачу.

Самый важный клапан, которым вы можете управлять напрямую, это ручной клапан. Ручной клапан напрямую соединен с рукояткой переключения передач и закрывает и открывает различные проходы в зависимости от того, в каком положении находится переключатель передач. Например, когда вы переводите переключатель передач в режим Drive, ручной клапан направляет жидкость в пакет сцепления ( s), который активирует 1-ю передачу. Он также настраивается для контроля скорости автомобиля и положения дроссельной заслонки, чтобы определить оптимальное время и усилие для переключения с 1 на 2 передачу. В трансмиссиях, управляемых компьютером, у вас также будут электрические соленоиды, которые установлены в корпусе клапана, чтобы направлять жидкость к соответствующим пакетам сцепления или ремням под управлением компьютера, чтобы более точно контролировать моменты переключения.

Компьютерное управление

Компьютер использует датчики на двигателе и трансмиссии для определения таких параметров, как положение дроссельной заслонки, скорость автомобиля, частота вращения двигателя, нагрузка на двигатель, положение выключателя стоп-сигналов и т. д., чтобы контролировать точные моменты переключения, а также степень мягкости или твердый сдвиг должен быть. Некоторые компьютеризированные трансмиссии даже изучают ваш стиль вождения и постоянно адаптируются к нему, чтобы каждое переключение происходило именно тогда, когда вам это нужно.

Из-за компьютерного управления спортивные модели выпускаются с возможностью ручного управления трансмиссией, как будто это рычаг переключения передач, что позволяет водителю выбирать передачи вручную. На некоторых автомобилях это достигается путем пропускания рычага переключения передач через специальную заслонку, а затем касания его в одном или другом направлении, чтобы по желанию переключаться на более высокую или более низкую передачу. Компьютер отслеживает это действие, чтобы убедиться, что водитель не выберет передачу, которая может привести к превышению скорости двигателя и его повреждению.

Еще одним преимуществом этих «умных» коробок передач является то, что они имеют режим самодиагностики, который может обнаружить проблему на ранней стадии и предупредить вас с помощью светового индикатора на приборной панели. Затем технический специалист может подключить тестовое оборудование и получить список кодов неисправностей, которые помогут определить источник проблемы.

Регулятор, вакуумный модулятор, трос дроссельной заслонки

Эти три компонента важны для некомпьютеризированных трансмиссий. Они обеспечивают входные данные, которые сообщают коробке передач, когда переключать передачи.

Регулятор соединен с выходным валом и регулирует гидравлическое давление в зависимости от скорости автомобиля. Это достигается за счет центробежной силы, которая вращает пару шарнирных грузов против возвратных пружин. По мере того, как грузы вытягиваются дальше от пружин, большее давление масла проходит мимо регулятора, чтобы воздействовать на клапаны переключения, которые находятся в корпусе клапана, которые затем сигнализируют о соответствующих переключениях.

Конечно, не только скорость автомобиля определяет время переключения передач, но и нагрузка на двигатель. Чем больше нагрузка на двигатель, тем дольше трансмиссия будет удерживать передачу перед переключением на следующую.

Существует два типа устройств, предназначенных для контроля нагрузки двигателя: трос дроссельной заслонки и вакуумный модулятор. Передача будет использовать одно или другое, но, как правило, не оба этих устройства. Каждый из них работает по-своему, чтобы контролировать нагрузку на двигатель.

Трос дроссельной заслонки просто контролирует положение педали газа через кабель, который проходит от педали газа к дроссельной заслонке в корпусе клапана.

Вакуумный модулятор контролирует разрежение в двигателе с помощью резинового вакуумного шланга, подсоединенного к двигателю. Вакуум двигателя очень точно реагирует на нагрузку двигателя: высокий вакуум создается, когда двигатель находится под небольшой нагрузкой, и уменьшается до нуля, когда двигатель находится под большой нагрузкой. Модулятор прикреплен к корпусу трансмиссии снаружи и имеет вал, проходящий через корпус и прикрепленный к дроссельному клапану в корпусе клапана. Когда двигатель находится под небольшой нагрузкой или без нагрузки, на модулятор воздействует высокий вакуум, который перемещает дроссельную заслонку в одном направлении, позволяя трансмиссии переключаться раньше и плавнее. По мере увеличения нагрузки на двигатель разрежение уменьшается, что приводит к перемещению клапана в другом направлении, что приводит к более позднему и более жесткому переключению передач.

Уплотнения и прокладки

Автоматическая коробка передач имеет множество уплотнений и прокладок для регулирования потока гидравлической жидкости и предотвращения ее утечки. Есть два основных внешних уплотнения: переднее уплотнение и заднее уплотнение. Переднее уплотнение герметизирует место крепления гидротрансформатора к картеру трансмиссии. Это уплотнение позволяет жидкости свободно перемещаться от гидротрансформатора к трансмиссии, но предотвращает утечку жидкости. Заднее уплотнение предотвращает утечку жидкости через выходной вал.

Уплотнение обычно изготавливается из неопрена (аналогично неопрену в щетке стеклоочистителя) и используется для предотвращения утечки масла через движущиеся части, такие как вращающийся вал. В некоторых случаях неопреновому соединению помогает пружина, которая удерживает неопрен в тесном контакте с вращающимся валом.

Прокладка — это тип уплотнения, используемого для герметизации двух неподвижных частей, скрепленных вместе. Некоторые распространенные материалы для прокладок: бумага, пробка, резина, силикон и мягкий металл.

Помимо основных уплотнений, имеется также ряд других уплотнений и прокладок, которые различаются в зависимости от коробки передач. Типичным примером является резиновое уплотнительное кольцо, уплотняющее вал рычага переключения передач. Это вал, который вы перемещаете, когда манипулируете переключателем передач. Другим примером, который является общим для большинства трансмиссий, является прокладка масляного поддона. Фактически, уплотнения требуются везде, где устройство должно пройти через корпус трансмиссии, и каждое из них является потенциальным источником утечек.

Хотите узнать больше?
Посетите один из наших офисов

Как работает автоматическая коробка передач | Искусство мужественности

С возвращением в Gearhead 101 — серию статей об основах работы автомобилей для новичков в автомобилестроении.

Если вы следили за Gearhead 101, вы знаете, как работает автомобильный двигатель, как двигатель передает мощность, которую он вырабатывает, через трансмиссию, и как механическая коробка передач функционирует как своего рода распределительный щит между двигателем и трансмиссией. .

Но большинство людей в наши дни (по крайней мере, если вы живете в Соединенных Штатах) ездят на машинах с автоматической коробкой передач . Вы когда-нибудь задумывались, как ваш автомобиль может переключаться на соответствующую передачу без каких-либо действий, кроме нажатия на педаль газа или тормоз?

Ну, держись за задницу. Мы собираемся познакомить вас с одним из самых удивительных образцов механической (и гидродинамической) инженерии в истории человечества: автоматической коробкой передач.

(Серьезно, я не преувеличиваю: как только вы поймете, как работают автоматические коробки передач, вы будете поражены тем, что люди смогли придумать эту штуку без компьютеров. )

Время обзора: назначение трансмиссии

Прежде чем мы углубимся во все тонкости работы автоматической трансмиссии, давайте в первую очередь кратко рассмотрим, зачем транспортным средствам нужна трансмиссия — любого типа.

Как обсуждалось в нашем учебнике по работе автомобильного двигателя, двигатель вашего автомобиля создает мощность вращения. Чтобы двигать машину, нам нужно передать эту вращающую силу на колеса. Это то, что делает трансмиссия автомобиля, частью которой является трансмиссия.

Но вот проблема: двигатель может вращаться только с определенной скоростью, чтобы работать эффективно. Если он вращается слишком низко, вы не сможете заставить машину тронуться с места; если он вращается слишком быстро, двигатель может самоуничтожиться.

Нам нужен какой-то способ увеличить мощность, вырабатываемую двигателем, когда это необходимо (начало движения с места, подъем в гору и т. д.), а также уменьшить мощность, передаваемую двигателем, когда это не требуется. необходимо (спуск с горы, очень быстрая скорость, резкое торможение).

Включить передачу.

Коробка передач обеспечивает оптимальную скорость вращения двигателя (ни слишком медленную, ни слишком быструю), одновременно обеспечивая колеса мощностью, необходимой им для движения и остановки автомобиля, независимо от ситуации, в которой вы оказались. Он находится между двигателем и остальной частью трансмиссии и действует как распределительный щит автомобиля.

Ранее мы подробно рассказывали о том, как механические коробки передач достигают этого с помощью передаточных чисел. Соединяя шестерни разного размера друг с другом, вы можете увеличить количество мощности, передаваемой остальной части автомобиля, без существенного изменения скорости вращения двигателя. Если вы еще не поняли идею передаточных чисел, я рекомендую вам посмотреть видео, которое мы включили в прошлый раз, прежде чем двигаться дальше; ничто другое не будет иметь смысла, если вы не поймете эту концепцию.

С механической коробкой передач вы управляете включенными передачами, нажимая сцепление и переключая передачи на место.

В автоматической коробке передач гениальная инженерия определяет, какая передача включена, и вам не нужно ничего делать, кроме как нажимать педали газа или тормоза. Это автомобильная магия.

Детали автоматической коробки передач

Итак, к настоящему моменту вы должны иметь общее представление о назначении коробки передач: она обеспечивает оптимальную скорость вращения двигателя (ни слишком медленную, ни слишком быструю), одновременно обеспечивая работу колес. с нужным количеством энергии, чтобы двигаться и останавливать автомобиль, независимо от ситуации.

Давайте посмотрим на детали, которые позволяют это сделать в случае с автоматической коробкой передач:

Картер коробки передач

В картере коробки передач находятся все части коробки передач. Он чем-то похож на колокольчик, поэтому его часто называют «кожухом колокола». Корпус трансмиссии обычно изготавливается из алюминия. Помимо защиты всех движущихся шестерен трансмиссии, кожух колокола на современных автомобилях имеет различные датчики, которые отслеживают входную скорость вращения двигателя и выходную скорость вращения остальной части автомобиля.

Гидротрансформатор

Вы никогда не задумывались, почему вы можете включить двигатель вашего автомобиля, но он не движется вперед? Ну, это потому, что поток мощности от двигателя к трансмиссии отключен. Это отключение позволяет двигателю продолжать работу, даже если остальная часть трансмиссии автомобиля не получает мощности. На механической коробке передач вы отключаете питание от двигателя к трансмиссии, выжимая сцепление.

Но как отключить питание двигателя от остальной части трансмиссии на автоматической коробке передач без сцепления?

Конечно, с гидротрансформатором.

Вот тут-то и начинается черная магия автоматических коробок передач (мы еще даже не дошли до планетарных передач).

Гидротрансформатор находится между двигателем и коробкой передач. Это нечто похожее на пончик, которое находится внутри большого отверстия колокола трансмиссии. Он выполняет две основные функции по передаче крутящего момента:

  1. Передает мощность от двигателя на первичный вал коробки передач
  2. Умножает выходной крутящий момент двигателя

Он выполняет эти две функции благодаря гидравлической мощности, обеспечиваемой трансмиссионной жидкостью внутри вашей коробки передач.

Чтобы понять, как это работает, нам нужно знать, как работают различные части гидротрансформатора.

Детали гидротрансформатора

В большинстве современных автомобилей гидротрансформатор состоит из четырех основных частей: 1) насос, 2) статор, 3) турбина и 4) гидротрансформатор. схватить.

1. Насос (он же рабочее колесо). Насос выглядит как вентилятор. Он имеет множество лопастей, исходящих из его центра. Насос крепится непосредственно к корпусу гидротрансформатора, который, в свою очередь, крепится болтами непосредственно к маховику двигателя. Следовательно, насос вращается с той же скоростью, что и коленчатый вал двигателя. (Вам нужно помнить об этом, когда мы рассмотрим, как работает гидротрансформатор.) Насос «качает» трансмиссионную жидкость наружу от центра к . . .

2. Турбина. Турбина находится внутри корпуса гидротрансформатора. Как и насос, он выглядит как вентилятор. Турбина соединяется непосредственно с входным валом коробки передач. Он не подключен к насосу, поэтому может двигаться с другой скоростью, чем насос. Это важный момент. Это то, что позволяет двигателю вращаться с другой скоростью, чем остальная часть трансмиссии.

Турбина может вращаться благодаря трансмиссионной жидкости, подаваемой насосом. Лопасти турбины сконструированы таким образом, что поступающая на них жидкость перемещается к центру турбины и обратно к насосу.

3. Статор (он же Реактор). Статор находится между насосом и турбиной. Это похоже на лопасть вентилятора или пропеллер самолета (вы видите здесь закономерность?). Статор делает две вещи: 1) более эффективно отправляет трансмиссионную жидкость из турбины обратно в насос и 2) увеличивает крутящий момент, поступающий от двигателя, чтобы помочь машине двигаться, но затем передает меньший крутящий момент, когда машина движется с хорошей скоростью. клип.

Это достигается благодаря умной инженерии. Во-первых, лопасти реактора сконструированы таким образом, что когда трансмиссионная жидкость, выходящая из турбины, попадает на лопасти статора, жидкость отклоняется в том же направлении, что и вращение насоса.

Во-вторых, статор соединен с неподвижным валом трансмиссии через обгонную муфту. Это означает, что статор может двигаться только в одном направлении. Это гарантирует, что жидкость из турбины будет направлена ​​в одном направлении. Статор начнет вращаться только тогда, когда скорость жидкости от турбины достигнет определенного уровня.

Эти два конструктивных элемента статора облегчают работу насоса и создают большее давление жидкости. Это, в свою очередь, создает усиленный крутящий момент на турбине, а поскольку турбина соединена с трансмиссией, больший крутящий момент может передаваться на трансмиссию и остальную часть автомобиля. Фух.

4. Муфта гидротрансформатора. Благодаря тому, как работает гидродинамика, мощность теряется, когда трансмиссионная жидкость проходит от насоса к турбине. Это приводит к тому, что турбина вращается с несколько меньшей скоростью, чем насос. Это не проблема, когда автомобиль начинает движение (на самом деле разница в скорости позволяет турбине передавать больший крутящий момент на трансмиссию), но когда он движется, эта разница приводит к некоторой неэффективности использования энергии.

Чтобы свести на нет эту потерю энергии, большинство современных гидротрансформаторов имеют муфту гидротрансформатора, соединенную с турбиной. Когда автомобиль достигает определенной скорости (обычно 45-50 миль в час), муфта гидротрансформатора включается и заставляет турбину вращаться с той же скоростью, что и насос. Компьютер контролирует, когда муфта гидротрансформатора включена.

Итак, это детали гидротрансформатора.

Давайте соберем все вместе и посмотрим, как будет выглядеть действие гидротрансформатора при переходе от полной остановки к крейсерской скорости:

Вы включаете двигатель, и он работает на холостом ходу. Насос вращается с той же скоростью, что и двигатель, и подает трансмиссионную жидкость к турбине, но, поскольку двигатель вращается не очень быстро при полной остановке, турбина не вращается так быстро, поэтому она не может подавать. крутящий момент на трансмиссию.

Вы жмете на газ. Это заставляет двигатель вращаться быстрее, что приводит к более быстрому вращению насоса гидротрансформатора. Поскольку насос вращается быстрее, трансмиссионная жидкость движется от насоса достаточно быстро, чтобы турбина начала вращаться быстрее. Лопасти турбины направляют жидкость к статору. Статор еще не вращается, потому что скорость трансмиссионной жидкости недостаточно высока.

Но из-за конструкции лопастей статора, когда жидкость проходит через них, она отводит жидкость обратно к насосу в том же направлении, что и насос. Это позволяет насосу перекачивать жидкость обратно в турбину с более высокой скоростью и создает большее давление жидкости. Когда жидкость возвращается к турбине, она делает это с большим крутящим моментом, в результате чего турбина передает больший крутящий момент на трансмиссию. Автомобиль начинает двигаться вперед.

Снова и снова этот цикл продолжается по мере того, как ваша машина набирает скорость. Когда вы достигаете крейсерской скорости, трансмиссионная жидкость достигает давления, при котором лопасти реактора начинают вращаться. При вращении реактора крутящий момент уменьшается. В этот момент вам не нужен большой крутящий момент для движения автомобиля, потому что автомобиль движется с хорошей скоростью. Муфта гидротрансформатора включается и заставляет турбину вращаться с той же скоростью, что и насос и двигатель.

Итак, преобразователь крутящего момента — это то, что позволяет или предотвращает передачу мощности от двигателя к трансмиссии и умножает крутящий момент на трансмиссию, чтобы заставить автомобиль трогаться с мертвой точки. Пришло время взглянуть на части трансмиссии, которые позволяют автомобилю переключаться автоматически.

Планетарные передачи

По мере того, как ваш автомобиль достигает более высоких скоростей, ему требуется меньший крутящий момент, чтобы поддерживать движение автомобиля. Трансмиссии могут увеличивать или уменьшать крутящий момент, передаваемый на колеса автомобиля, благодаря передаточному числу. Чем меньше передаточное число, тем больше крутящий момент передается. Чем выше передаточное число, тем меньше крутящий момент.

На механической коробке передач для изменения передаточных чисел необходимо переключить рычаг переключения передач.

В автоматической коробке передач передаточные числа увеличиваются и уменьшаются автоматически. И это возможно благодаря хитроумной конструкции планетарной передачи.

Планетарная передача состоит из трех компонентов:

  1. Солнечная шестерня. Расположен в центре планетарной передачи.
  2. Планетарные шестерни и их водила. Три или четыре шестерни меньшего размера, окружающие солнечную шестерню и находящиеся в постоянном зацеплении с солнечной шестерней. Планетарные шестерни (или шестерни) установлены и поддерживаются водилом. Каждая из планетарных шестерен вращается на отдельных валах, соединенных с водилой. Планетарные шестерни не только вращаются, но и вращаются вокруг солнечной шестерни.
  3. Зубчатый венец. Зубчатый венец является внешним зубчатым колесом и имеет внутренние зубья. Зубчатый венец окружает остальную часть набора шестерен, и его зубья находятся в постоянном зацеплении с планетарными шестернями.

Одинарный планетарный ряд обеспечивает передачу заднего хода и пять уровней передачи вперед. Все зависит от того, какой из трех компонентов зубчатой ​​передачи движется или остается неподвижным.

Давайте посмотрим на это в действии с различными компонентами, действующими как входная шестерня (шестерня, которая генерирует мощность), выходная шестерня (шестерня, которая получает мощность) или неподвижно.

Солнечная шестерня: входная шестерня / Водило планетарной передачи: выходная шестерня / Кольцевая шестерня: удерживается неподвижно

В этом сценарии солнечная шестерня является входной шестерней. Зубчатый венец не двигается. Когда солнечная шестерня движется, а зубчатый венец удерживается на месте, планетарные шестерни будут вращаться на собственных несущих валах и перемещаться внутри зубчатого венца, но в направлении, противоположном направлению солнечной шестерни. Это заставляет водило вращаться в том же направлении, что и солнечная шестерня. Таким образом, водила становится выходной шестерней.

Эта конфигурация создает низкое передаточное число, что означает, что входная шестерня (в данном случае солнечная шестерня) вращается быстрее, чем выходная шестерня (водило планетарной передачи). Но крутящий момент, создаваемый водилом планетарной передачи, намного больше, чем у солнечной шестерни.

Такая конфигурация используется, когда автомобиль только заводится.

Солнечная шестерня: неподвижна / Водило планетарной передачи: выходная шестерня / Кольцевая шестерня: входная шестерня

он передает мощность на систему передач). Поскольку солнечная шестерня удерживается, вращающиеся планетарные шестерни будут ходить вокруг солнечной шестерни и нести с собой водило планетарной передачи.

Водило планетарной передачи движется в том же направлении, что и зубчатый венец, и является выходной шестерней.

Эта конфигурация создает немного более высокое передаточное число, чем первая конфигурация. Но входная шестерня (коронная шестерня) по-прежнему вращается быстрее, чем выходная шестерня (водило планетарной передачи). Это приводит к тому, что планетарная передача передает больший крутящий момент или мощность на остальную часть трансмиссии. Эта конфигурация, вероятно, будет использоваться, когда ваша машина ускоряется после полной остановки или когда вы едете в гору.

Солнечная шестерня: входная шестерня / Водило планетарной передачи: выходная шестерня / Кольцевая шестерня: входная шестерня

В этом сценарии и солнечная шестерня, и коронная шестерня действуют как входные шестерни. То есть оба вращаются с одинаковой скоростью и в одном направлении. Это приводит к тому, что планетарные шестерни не вращаются на своих отдельных валах. Почему? Если зубчатый венец и солнечная шестерня являются входными элементами, внутренние зубья зубчатого венца будут пытаться вращать планетарные шестерни в одном направлении, в то время как внешние зубья солнечной шестерни будут пытаться вращать их в противоположном направлении. Так они фиксируются на месте. Весь узел (солнечная шестерня, водило планетарной передачи, зубчатый венец) движется вместе с одинаковой скоростью и передает одинаковую мощность. Когда вход и выход передают одинаковый крутящий момент, это называется прямым приводом.

Эта схема будет работать, когда вы едете со скоростью около 45-50 миль в час.

Солнечная шестерня: неподвижна / Водило планетарной передачи: входная шестерня / Кольцевая шестерня: выходная шестерня

система передач. Кольцевая шестерня теперь является выходной шестерней.

При вращении водила планетарные шестерни вынуждены ходить вокруг удерживаемой солнечной шестерни, что приводит в движение зубчатый венец быстрее. Один полный оборот водила планетарной передачи приводит к тому, что зубчатый венец совершает более одного полного оборота в одном и том же направлении. Это высокое передаточное число, обеспечивающее большую выходную скорость, но меньший крутящий момент. Эта схема также известна как «овердрайв».

Вы будете в этой конфигурации, когда едете по автостраде со скоростью 60+ миль в час.

Автоматическая коробка передач обычно имеет более одного планетарного ряда. Они работают вместе, чтобы создать несколько передаточных чисел.

Поскольку шестерни в планетарной системе передач находятся в постоянном зацеплении, переключение передач производится без включения или выключения шестерен, как в механической коробке передач.

Но как автоматическая коробка передач определяет, какие части планетарной системы передач должны работать как входная шестерня, как выходная шестерня или оставаться неподвижными, чтобы мы могли получить эти различные передаточные числа?

С помощью тормозных лент и муфт внутри трансмиссии.

Тормозные ленты и муфты

Тормозные ленты изготовлены из металла, футерованного органическим фрикционным материалом. Тормозные ленты могут затягиваться, чтобы удерживать кольцо или солнечную шестерню в неподвижном состоянии, или ослабляться, чтобы позволить им вращаться. Натяжение или ослабление тормозной ленты контролируется гидравлической системой.

Ряд муфт также соединяются с различными частями планетарной системы передач. Сцепления трансмиссии в автоматических коробках передач состоят из нескольких металлических и фрикционных дисков (поэтому их иногда называют «многодисковым сцеплением в сборе»). Когда диски прижимаются друг к другу, это приводит к включению сцепления. Муфта может привести к тому, что часть планетарной передачи станет входной шестерней, или она может стать неподвижной. Это просто зависит от того, как он связан с планетарной передачей. Включается сцепление или нет, определяется комбинацией механической, гидравлической и электрической конструкции. И все это происходит автоматически.

Теперь сложно понять, как различные муфты работают вместе, чтобы удерживать и приводить в движение различные компоненты. Слишком сложно, чтобы описать это в тексте. Это лучше всего понять визуально. Я настоятельно рекомендую просмотреть это видео, которое проведет вас через это:

Как работает автоматическая коробка передач

Как вы видите, внутри автоматической коробки передач находится множество движущихся частей. В нем используется сочетание механической, гидравлической и электрической инженерии, чтобы обеспечить плавный переход от полной остановки до крейсерской скорости на шоссе.

Итак, давайте рассмотрим общую картину потока мощности в автоматической коробке передач.

Двигатель подает мощность на насос гидротрансформатора .

Насос передает мощность на турбину гидротрансформатора через трансмиссионную жидкость.

Турбина отправляет трансмиссионную жидкость обратно в насос через статор .

Статор умножает мощность трансмиссионной жидкости, позволяя насосу передавать больше мощности обратно на турбину. Внутри гидротрансформатора создается вихревое силовое вращение.

Турбина соединена с центральным валом, который соединяется с коробкой передач. Когда турбина вращается, вал вращается, передавая мощность на первый планетарный ряд трансмиссии.

В зависимости от того, какое многодисковое сцепление или тормозная лента задействованы в трансмиссии, мощность от гидротрансформатора будет вызывать солнечную шестерню , водило планетарной передачи или зубчатый венец планетарная система передач, чтобы двигаться или оставаться неподвижным.

В зависимости от того, какие части планетарной системы движутся или нет, определяет передаточное число . Независимо от того, какой у вас механизм планетарной передачи (солнечная шестерня действует как вход, водило планетарной передачи действует как выход, зубчатый венец неподвижен — см. выше), будет определять количество мощности, которую трансмиссия передает на остальную часть трансмиссии.

Так, в общих чертах, работает автоматическая коробка передач. Есть датчики и клапаны, которые регулируют и модифицируют вещи, но в этом суть.


Опубликовано

в

от

Метки:

Комментарии

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *