Содержание
ВОЛС, всё про волоконно-оптические линии связи!
Самой высокой пропускной способностью среди всех существующих средств связи обладает оптическое волокно (диэлектрические волноводы). Волоконно-оптические кабели применяются для создания ВОЛС – волоконно-оптических линий связи, способных обеспечить самую высокую скорость передачи информации (в зависимости от типа используемого активного оборудования скорость передачи может составлять десятки гигабайт и даже терабайт в секунду).
Кварцевое стекло, являющееся несущей средой ВОЛС, помимо уникальных пропускных характеристик, обладает ещё одним ценным свойством – малыми потерями и нечувствительностью к электромагнитным полям. Это выгодно отличает его от обычных медных кабельных систем.
Данная система передачи информации, как правило, используется при постройке рабочих объектов в качестве внешних магистралей, объединяющих разрозненные сооружения или корпуса, а также многоэтажные здания. Она может использоваться и в качестве внутреннего носителя структурированной кабельной системы (СКС), однако законченные СКС полностью из волокна встречаются реже – в силу высокой стоимости строительства оптических линий связи.
Применение ВОЛС позволяет локально объединить рабочие места, обеспечить высокую скорость загрузки Интернета одновременно на всех машинах, качественную телефонную связь и телевизионный приём.
Преимущества ВОЛС
При грамотном проектировании будущей системы (этот этап подразумевает решение архитектурных вопросов, а также выбор подходящего оборудования и способов соединения несущих кабелей) и профессиональном монтаже применение волоконно-оптических линий обеспечивает ряд существенных преимуществ:
- Высокую пропускную способность за счёт высокой несущей частоты. Потенциальная возможность одного оптического волокна – несколько терабит информации за 1 секунду.
- Волоконно-оптический кабель отличается низким уровнем шума, что положительно сказывается на его пропускной способности и возможности передавать сигналы различной модуляции.
- Пожарная безопасность (пожароустойчивость). В отличие от других систем связи, ВОЛС может использоваться безо всяких ограничений на предприятиях повышенной опасности, в частности на нефтехимических производствах, благодаря отсутствию искрообразования.
- Благодаря малому затуханию светового сигнала оптические системы могут объединять рабочие участки на значительных расстояниях (более 100 км) без использования дополнительных ретрансляторов (усилителей).
- Информационная безопасность. Волоконно-оптическая связь обеспечивает надёжную защиту от несанкционированного доступа и перехвата конфиденциальной информации. Такая способность оптики объясняется отсутствием излучений в радиодиапазоне, а также высокой чувствительностью к колебаниям. В случае попыток прослушки встроенная система контроля может отключить канал и предупредить о подозреваемом взломе. Именно поэтому ВОЛС активно используют современные банки, научные центры, правоохранительные организации и прочие структуры, работающие с секретной информацией.
- Высокая надёжность и помехоустойчивость системы. Волокно, будучи диэлектрическим проводником, не чувствительно к электромагнитным излучениям, не боится окисления и влаги.
- Экономичность. Несмотря на то, что создание оптических систем в силу своей сложности дороже, чем традиционных СКС, в общем итоге их владелец получает реальную экономическую выгоду. Оптическое волокно, которое изготавливается из кварца, стоит примерно в 2 раза дешевле медного кабеля, дополнительно при строительстве обширных систем можно сэкономить на усилителях. Если при использовании медной пары ретрансляторы нужно ставить через каждые несколько километров, то в ВОЛС это расстояние составляет не менее 100 км. При этом скорость, надёжность и долговечность традиционных СКС значительно уступают оптике.
- Срок службы волоконно-оптических линий составляет полрядка четверти века. Через 25 лет непрерывного использования в несущей системе увеличивается затухание сигналов.
- Если сравнивать медный и оптический кабель, то при одной и той же пропускной способности второй будет весить примерно в 4 раза меньше, а его объём даже при использовании защитных оболочек будет меньше, чем у медного, в несколько раз.
- Перспективы. Использование волоконно-оптических линий связи позволяет легко наращивать вычислительные возможности локальных сетей благодаря установке более быстродействующего активного оборудования, причем без замены коммуникаций.
Область применения ВОЛС
Как уже было сказано выше, волоконно-оптические кабели (ВОК) используются для передачи сигналов вокруг (между) зданий и внутри объектов. При построении вешних коммуникационных магистралей предпочтение отдаётся оптическим кабелям, а внутри зданий (внутренние подсистемы) наравне с ними используется традиционная витая пара. Таким образом, различают ВОК для внешней (outdoor cables) и внутренней (indoor cables) прокладки.
К отдельному виду относятся соединительные кабели: внутри помещений они используются в качестве соединительных шнуров и коммуникаций горизонтальной разводки – для оснащения отдельных рабочих мест, а снаружи – для объединения зданий.
Монтаж волоконно-оптического кабеля осуществляется с помощью специальных инструментов и приборов.
Технологии соединения ВОЛС
Длина коммуникационных магистралей ВОЛС может достигать сотен километров (например, при постройке коммуникаций между городами), тогда как стандартная длина оптических волокон составляет несколько километров (в том числе потому, что работа со слишком большими длинами в некоторых случаях весьма неудобна). Таким образом, при построении трассы необходимо решить проблему сращивания отдельных световодов.
Различают два типа соединений: разъёмные и неразъёмные. В первом случае для соединения применяются оптические коннекторы (это связано с дополнительными финансовыми затратами, и, кроме того, при большом количестве промежуточных разъёмных соединений увеличиваются оптические потери).
Для неразъёмного соединения локальных участков (монтажа трасс) применяются механические соединители, клеевое сращивание и сваривание волокон. В последнем случае используют аппараты для сварки оптических волокон. Предпочтение тому или иному методу отдаётся с учётом назначения и условий применения оптики.
Сварка оптических волокон
Наиболее распространённой на сегодняшний день является технология сварки волокон.
Аппараты для сварки оптического волокна
Самое качественное соединение с минимальными потерями обеспечивает сваривание волокон. Этот метод используется при создании высокоскоростных ВОЛС. Во время сваривания происходит оплавление концов световода, для этого в качестве источника тепловой энергии могут использоваться газовая горелка, электрический заряд или лазерное излучение.
Каждый из методов имеет свои преимущества. Лазерная сварка благодаря отсутствию примесей позволяет получать самые чистые соединения. Для прочной сварки многомодовых волокон, как правило, используют газовые горелки. Наиболее распространенной является электрическая сварка, обеспечивающая высокую скорость и качество выполнения работ. Длительность плавления различных типов оптовых волокон отличается.
Для сварочных работ применяются специальный инструмент и дорогостоящее сварочное оборудование – автоматическое или полуавтоматическое. Современные сварочные аппараты позволяют контролировать качество сварки, а также проводить тестирование мест соединения на растяжение. Усовершенствованные модели оснащены программами, которые позволяют оптимизировать процесс сварки под конкретный тип оптоволокна.
После сращения место соединения защищается плотно насаживаемыми трубками, которые обеспечивают дополнительную механическую защиту.
Склеивание оптических волокон
Технология склеивания волокон применяется реже, в основном при производстве патч кордов и пигтейлов. Она включает несколько технологических операций. В частности, перед соединением оптические кабели проходят предварительную подготовку: в местах будущих соединений удаляются защитное покрытие и лишнее волокно (подготовленный участок очищается от гидрофобного состава). Для надёжной фиксации световода в соединителе (коннекторе) используется эпоксидный клей, которым заполняется внутреннее пространство коннектора (он вводится в корпус разъёма с помощью шприца или дозатора). Для затвердевания и просушки клея применяется специальная печка, способная создать температуру 100 град. С.
После затвердевания клея излишки волокна удаляются, а наконечник коннектора шлифуется и полируется (качество скола имеет первостепенное значение). Для обеспечения высокой точности выполнение данных работ контролируется с помощью 200-кратного микроскопа. Полировка может осуществляться вручную или с помощью полированной машины.
Механическое соединение оптических волокон
Ещё один метод сращивания элементов оптоволокна в единую линию ВОЛС – механическое соединение. Этот способ обеспечивает меньшую чистоту соединения, чем сваривание, однако затухание сигнала в данном случае всё-таки меньше, чем при использовании оптических коннекторов.
Преимущество этого метода перед остальными состоит в том, что для проведения работ используются простые приспособления (например, монтажный столик), которые позволяют проводить работы в труднодоступных местах или внутри малогабаритных конструкций.
Механическое сращивание подразумевает использование специальных соединителей – так называемых сплайсов. Существует несколько разновидностей механических соединителей, которые представляют собой вытянутую конструкцию с каналом для входа и фиксации сращиваемых оптических волокон. Сама фиксация обеспечивается с помощью предусмотренных конструкцией защёлок. После соединения сплайсы дополнительно защищаются муфтами или коробами.
Механические соединители могут использоваться неоднократно. В частности, их применяют во время проведения ремонтных или восстановительных работ на линии.
ВОЛС: типы оптических волокон
Оптические волокна, используемые для построения ВОЛС, отличаются по материалу изготовления и по модовой структуре света. Что касается материала, различают полностью стеклянные волокна (со стеклянной сердцевиной и стеклянной оптической оболочкой), полностью пластиковые волокна (с пластиковой сердцевиной и оболочкой) и комбинированные модели (со стеклянной сердцевиной и с пластиковой оболочкой). Самую лучшую пропускную способность обеспечивают стеклянные волокна, более дешёвый пластиковый вариант используют в том случае, если требования к параметрам затухания и пропускной способности не критичны.
По типу путей, которые проходит свет в сердцевине волокна, различают одно- и многомодовые волокна (в первом случае распространяется один луч света, во втором – несколько: десятки, сотни и даже тысячи).
- Одномодовые волокна (SM) отличаются малым диаметром сердцевины, по которой может пройти только один пучок света.
- Многомодовые волокна (MM) отличаются большим диаметром сердцевины и могут быть со ступенчатым или градиентным профилем. В первом случае пучки света (моды) расходятся по различным траекториям и поэтому приходят к концу световода в различное время. При градиентном профиле временные задержки различных лучей практически полностью исчезают, и моды идут плавно благодаря изменению скорости распространения света по волнообразным спиралям.
Все современные ВОК (и одно-, и многомодовые), с помощью которых создаются линии передачи данных, имеют одинаковый внешний диаметр – 125 мкм. Толщина первичного защитного буферного покрытия составляет 250 мкм. Толщина вторичного буферного покрытия составляет 900 мкм (используется для защиты соединительных шнуров и внутренних кабелей). Оболочка многоволоконных кабелей для удобства работы окрашивается в различные цвета (для каждого волокна).
Диагностика волоконно-оптических линий связи
Основным инструментом для диагностики волоконно-оптических линий связи является оптический рефлектометр. Пример работы с таким прибором смотрите в следующем видео:
Посмотреть примеры оборудования и статьи по теме ВОЛС на fibertop.ru.
Примеры оборудования
Материал подготовлен
техническими специалистами компании “СвязКомплект”.
Подпишитесь на рассылку новых материалов!
Имя
Рабочий e-mail *
Согласие на отправку персональных данных *
* — Обязательное для заполнения
См. также:
Типы и виды оптических кабелей: условия прокладки, сферы применения
Дата публикации: 19 марта 2021
Дата обновления материала: 24 января 2022
- Оптический кабель для задувки в трубы
- Оптический кабель для прокладки в кабельной канализации
- Оптический кабель для прокладки в грунт
- Подводный оптический кабель
- Оптический кабель для подвеса
- Дроп-кабель
- Внутриобъектовый оптический кабель
- Оптический кабель, встроенный в грозозащитный трос (ОКГТ)
- Огнестойкий и пожаробезопасный ОК
- Оптические кабели-датчики
В современном мире сложился такой стереотип, что всё работает «без проводов». Сотовые телефоны, домашние/рабочие Wi-Fi сети и другие гаджеты. Базовые станции, от которых работает сотовая связь, жилые дома, офисы — в большинстве своём все имеют «физическое» подключение по оптическому кабелю. Да, есть варианты подключения «по воздуху», но на пока именно оптический кабель обеспечивает самую высокую скорость передачи и самую минимальную задержку при практически любых погодных условиях и на любые расстояния.
Сегодня на российском рынке представлены более пятидесяти различных типов оптоволоконных кабелей. Такое количество создаёт некие трудности в подборе ОК под конкретный проект. Ускорить процесс подбора можно в нашем удобном конфигураторе — Подбор оптического кабеля.
Основное деление всех типов оптических кабелей происходит в первую очередь от условий их прокладки (рис.1). Главная задача — защитить оптическое волокно от всех внешних воздействий.
Рис. 1. Конструкции ОК
Оптический кабель для задувки в трубы
Способ прокладки в трубы достаточно перспективен по причинам удобства и практичности технологии. Конструкция кабеля очень простая (рис.2), в качестве дополнительных силовых элементов на сердечник накладываются стеклонити, а поверх внешняя оболочка. Плотная труба защищает кабель от возможных механических повреждений. В последнее время, популярное направление задувка микротрубок в канализацию. Для микротрубок был разработан микрокабель, где нет дополнительной защиты, кроме внешней оболочки. Такой вариант меньше по размеру (кстати, в этом варианте возможно использование ОВ с уменьшенным диаметром, 200-микронное волокно SMF-28® Ultra 200, чтобы также уменьшить диаметр модулей в ОК).
Рис. 2 ОК для задувки в трубы
Оптический кабель для прокладки в кабельной канализации
При прокладке в кабельной канализации существует необходимость защиты кабеля от грызунов. Поэтому в конструкции кабеля предусмотрена броня в виде стальной гофрированной ленты, проволочной брони или стеклонитей (рис.3). Существуют варианты как с промежуточной оболочкой, так и без неё. Возможно использование в конструкции ОК двух дополнительных стальных проволок, выполняющих роль силового элемента.
Рис. 3 ОК для кабельной канализации
Оптический кабель для прокладки в грунт
Самый суровый вариант прокладки кабеля — непосредственно в грунт без какой-либо дополнительной защиты (рис 4). Оптические кабели в своей конструкции имеют броню в виде стальной оцинкованной или канатной проволоки, одного либо двух повивов, в зависимости от требуемых характеристик. Обеспечивается защита как от поперечного сдавливания, так и от растягивающих нагрузок.
Рис. 4 ОК для прокладки в грунт (проволочная броня)
Когда необходим кабель с похожими характеристиками, но при этом полностью диэлектрический, то в конструкции вместо проволоки используется броня из стеклопластиковых прутков (рис. 5).
Рис. 5 ОК для прокладки в грунт (диэлектрический)
Подводный оптический кабель
Подводный оптоволоконный кабель (рис. 6) необходим для прокладки на морских участках (прибрежных шельфовых и глубоководных), в том числе во все типы грунтов, включая скальные и подверженные мерзлотным деформациям, в болота, на переходах через судоходные реки и другие водные преграды, в кабельную канализацию, трубы, блоки, лотки, тоннели, эстакады, мосты, коллекторы.
Рис. 6 Подводный оптический кабель
Конструкция такого кабеля имеет дополнительную защиту от проникновения воды в виде алюмополимерной ленты.
Оптический кабель для подвеса
Самый распространённый метод строительства ВОЛС на сегодняшний день. Кабель должен выдерживать растягивающие нагрузки по всей своей длине. Оптические кабели для подвеса бывают по своей конструкции типа «8» (рис. 7, 8) и круглыми (рис. 9).
Оптические кабели типа «8» имеют в своей конструкции металлический (рис. 7) либо стеклопластиковый трос (рис. 8). Кабель со стеклопластиковым тросом полностью диэлектрический (рис. 8).
Рис. 7 ОК для подвеса (с выносным силовым элементом, металлический трос)
Постепенно телеком-операторы переходят на круглый самонесущий оптический кабель (рис. 9) в виду некоторых недостатков кабеля типа «8». Более подробно про недостатки можно прочитать в статье про основные принципы подбора магистральных оптических кабелей.
Рис. 8 ОК для подвеса (с выносным силовым элементом, стеклопластиковый трос)
Подвесной самонесущий кабель или оптический кабель самонесущий неметаллический (ОКСН). Возможны исполнения данного кабеля как на арамидных нитях, так и на стеклонитях. Кабель на арамидных нитях меньше в диаметре и легче в сравнении со стеклонитями. Также у арамидных нитей двухкратный запас прочности на разрыв по отношению к максимально допустимым нагрузкам. Самонесущий кабель на арамидных нитях аттестован к применению на объектах ОАО «ФСК ЕЭС России» и ОАО «Холдинг МРСК», на стеклонитях — запрещен.
Читайте подробнее про применение и особенности монтажа кабеля ОКСН.
Рис. 9. Подвесной самонесущий ОК
Дроп-кабель
Популярный тип подвесного самонесущего оптического кабеля в виду массового строительства сетей GPON в малоэтажном и сельском сегменте (рис. 10). Смотрите подробнее про типы дроп-кабеля.
Рис. 10. Дроп-кабель
Внутриобъектовый оптический кабель
Данный кабель прокладывается внутри помещений, поэтому конструкция очень простая (рис. 11). Чаще всего кабели не содержат в себе гидрофобный заполнитель и потому полностью сухие.
Рис. 11 Внутриобъектовый ОК
Каждый из типов ОК подбирается под условия проекта, т. к. у кабелей свои особенности при прокладке и монтаже.
Оптический кабель, встроенный в грозозащитный трос (ОКГТ)
Это отдельная категория оптических кабелей, которые применяются на воздушных линиях электропередачи напряжением 35 кВ и выше (рис. 12). Конструкции ОКГТ полностью металлические.
Рис. 12 Грозотрос/ОКГТ
В зависимости от требуемых технических характеристик, ОКГТ может быть разного исполнения в конструкции сердечника:
- ОКГТ-Ц — оптический кабель, встроенный в грозозащитный трос с центральным модулем;
- ОКГТ-Ц-А — оптический кабель, встроенный в грозозащитный трос с центральным модулем, плакированным аллюминием;
- ОКГТ-С — оптический кабель, встроенный в грозозащитный трос с оптическим модулем в повиве.
Если использовать ОКФП (оптический кабель, встроенный в фазный провод), то получим продукт «два в одном»: передачу электрической энергии и линию волоконно-оптического кабеля связи. Подробнее про ОКФП читайте в нашей статье.
С помощью конструкций ОКГТ и ОКФП можно проводить мониторинг ЛЭП.
Там, где линия связи уже проложена и требуется защита от ударов молнии применяется ГТК — грозозащитный трос коррозионностойкий.
Огнестойкий и пожаробезопасный ОК
Если важна работоспособность ВОЛС даже при возможном воздействии на неё открытого пламени (при времени воздействия огня до 180 минут), используют огнестойкий и пожаробезопасный оптический кабель (рис. 13).
Рис. 13 Огнестойкий и пожаробезопасный ОК
Оптические кабели-датчики
Данные типы кабелей используются в нефтегазовой отрасли, а также для распределенного мониторинга промышленных и гражданских объектов. Подробнее с конструкциями и сферами применения можно ознакомиться на сайте специальных кабелей Инкаб.
Заключение
Выбор оптического кабеля всегда был делом непростым. Особенно сейчас, когда на рынке есть многообразие различных типов и конструкций. Можно выбрать и проложить самый дорогой и самый надежный в плане защиты от всех внешних факторов (влага, грызуны и т. д.) оптический кабель, но в процессе строительства ответсвенность за работоспособность всей ВОЛС ложится на плечи специалистов-монтажников. Даже одна некорректно смонтированная муфта через некоторое время начнёт отрицательно влиять на характеристики всей ВОЛС.
Учебный центр ВОЛС.Эксперт проводит обучение специалистов отрасли связи. Мы обучаем самым современным технологиям проектирования, строительства, монтажа и измерений волоконно-оптических линий связи.
Посмотреть все доступные курсы
Что такое оптоволоконный кабель? – FireFold
Мир телекоммуникаций быстро переходит от медных проводных сетей к волоконно-оптическим. Оптическое волокно представляет собой очень тонкую нить из чистого стекла, которая действует как волновод для света на большие расстояния. Он использует принцип, известный как полное внутреннее отражение. Волоконно-оптический кабель на самом деле состоит из двух слоев стекла: сердцевины, по которой передается фактический световой сигнал, и оболочки, представляющей собой слой стекла, окружающий сердцевину. Оболочка имеет более низкий показатель преломления, чем сердцевина. Это вызывает полное внутреннее отражение внутри ядра. Большинство волокон работают в дуплексных парах: одно волокно используется для передачи, а другое — для приема. Но можно послать оба сигнала по одной нити. Существует два основных типа оптоволоконных кабелей: одномодовое волокно (SMF) и многомодовое волокно (MMF). Разница в основном в размере ядра. MMF имеет гораздо более широкое ядро, позволяющее распространять несколько мод (или «лучей») света. SMF имеет очень узкую сердцевину, которая позволяет распространяться только одной моде света. Каждый тип волокна имеет различные свойства со своими преимуществами и недостатками.
Зачем использовать оптоволоконный кабель?
- У них практически неограниченная информация
- Обладают высокой пропускной способностью (очень широкая полоса пропускания, ТГц или Тбит/с)
- Имеют очень низкие потери при передаче (<0,2 дБ/км, микроволновая печь cf1 дБ/км, 10 дБ/км по витой медной паре)
- Не рассеивают тепло
- Они невосприимчивы к перекрестным помехам и электромагнитным помехам
Волоконно-оптические кабели имеют множество применений в различных ситуациях в промышленности и приложениях. Проверьте некоторые из этих применений:
Медицинский
Оптические волокна подходят для медицинских целей. Они могут быть сделаны из гибких нитей, чрезвычайно тонких для введения в легкие, кровеносные сосуды и многие полые части тела. Эти оптические волокна используются в нескольких инструментах, которые позволяют врачам наблюдать за внутренними частями тела без хирургического вмешательства.
Телекоммуникации
Оптическое волокно устанавливается и используется для приема и передачи. Для передачи по телефону используются оптоволоконные кабели. Эти волокна передают энергию в виде световых импульсов. Его технология сравнима с технологией коаксиальных кабелей, за исключением того, что оптические волокна способны одновременно обрабатывать тысячи разговоров.
Сеть
Оптоволокно используется для соединения серверов и пользователей в различных сетевых настройках, а также помогает повысить точность и скорость передачи данных.
Промышленный/Коммерческий
Волокна используются для визуализации в зонах досягаемости, таких как сенсорные устройства для измерения температуры, в качестве проводки, где возникают электромагнитные помехи, давление, в качестве проводки в промышленных условиях и автомобилях. Компании, занимающиеся кабельным вещанием и кабельным телевидением, используют оптоволоконные кабели для подключения HDTV, кабельного телевидения, видео по запросу, Интернета и многих других приложений.
Оборона/правительство
Они используются в качестве гидрофонов для SONAR и сейсморазведки, например, для проводки на подводных лодках, самолетах и других транспортных средствах.
Хранение данных
Волоконно-оптические кабели используются как для хранения данных, так и для передачи. Волоконно-оптические кабели также используются для визуализации и освещения, а также в качестве датчиков для мониторинга и измерения широкого спектра переменных. Кроме того, оптоволоконные кабели используются при разработке, исследованиях и тестировании во всех вышеупомянутых приложениях.
Как работают волоконно-оптические кабели связи?
TLDR: в волоконно-оптических кабелях связи свет вводится в сердцевину оптического волокна через источник света (светодиод, лазерный диод). Световые лучи отражаются от внешних стенок сердцевины (слоя оболочки) до тех пор, пока не достигают другого конца волокна, где светочувствительный приемник преобразует импульсы в цифровые единицы и нули.
Как на самом деле работают оптоволоконные кабели связи?
В своей основе волоконно-оптический кабель связи состоит из стеклянных нитей, похожих на нити, диаметром примерно с человеческий волос, каждая из которых может передавать сообщения, модулированные световыми волнами со скоростью света. Они предлагают большую пропускную способность, чем кабель с медным проводом, и стали оптимальным вариантом для удовлетворения потребностей эпохи Интернета, когда большие объемы данных (например, потоковые приложения) должны распространяться среди тысяч подписчиков, находящихся за много миль, и мгновенно. Волоконно-оптические кабели используются не только в системах связи, они также используются в промышленных сетях, датчиках и авионике.
Первый шаг к пониманию того, как работает оптоволокно, — понять, что происходит, когда вы посылаете свет через воздух или воду. Свет распространяется волной. При прохождении через воздух волна теряет часть энергии и становится более рассредоточенной. В результате световой луч становится шире и менее интенсивным. Эта потеря интенсивности называется затуханием.
Однако, когда свет попадает в воду, он не теряет энергии. Вместо этого он огибает молекулы воды, облегчая прохождение света. Вода также замедляет скорость света в 1/v2, где v — скорость света в воде. Это означает, что свет, путешествуя по воде, будет распространяться дальше, чем если бы он шел по воздуху. Оптические волокна используют эти принципы для передачи данных из одной точки в другую.
Большинство используемых сегодня оптических волокон состоят из стеклянных нитей (сердцевины), изготовленных из чистого кварца, окруженных оболочкой из легированного кварца. Ядро настолько маленькое, что только один луч света с определенной длиной волны может пройти до конца. Такие волокна называются одномодовыми. В этой конструкции слой оболочки имеет более низкий показатель преломления и действует как зеркало, удерживая моду внутри сердцевины. Это явление известно как полное внутреннее отражение.
Характеристики оптических волокон зависят от того, насколько хорошо они могут передавать свет. Одним из способов измерения этого является измерение обратных потерь (также называемых вносимыми потерями) волокна. Обратные потери определяются как отношение между мощностью в прямом направлении и мощностью в обратном направлении. Если обратные потери высоки, при прохождении через волокно будет потеряно больше света, чем если бы обратные потери были низкими.
Преимущества волоконно-оптических кабелей
Оптические волокна имеют много преимуществ по сравнению с традиционными медными проводами:
1. Более высокая скорость передачи данных. Волоконно-оптические кабели способны передавать гораздо больше информации, чем традиционные медные провода, при значительно более высоких скоростях. Это делает его идеальным для приложений, которым требуется надежная и высокоскоростная передача данных, таких как потоковое видео или интернет-сервисы.
2. Большая пропускная способность. Волоконно-оптические кабели способны передавать широкий диапазон частот одновременно в обоих направлениях, что называется мультиплексированием. Это позволяет передавать больше данных по одной и той же длине волны, обеспечивая еще большую пропускную способность.
3. Меньшая потеря данных: один оптоволоконный кабель способен передавать сигналы с минимальными потерями или затуханием, что делает его идеальным для установки на большие расстояния и крупномасштабных сервисных сетей.
4. Невосприимчивость к помехам. Когда свет проходит через стекловолокно в кабеле, внешние электрические поля или источники шума, такие как радар или электромагнитные помехи, практически не создают помех. Это делает их совместимыми с высокочастотными системами передачи, такими как системы спутниковой связи и вышки сотовой связи.
5. Улучшенная безопасность. Волоконно-оптические кабели также чрезвычайно безопасны, потому что практически невозможно перехватить их сигнал без физического разрезания самого кабеля, что будет быстро замечено!
Типы коммуникационных волоконно-оптических кабелей
Существует 2 основных типа волокон: одномодовые и многомодовые. Одномодовое оптическое волокно имеет меньший диаметр сердцевины (8,3–10 микрон) и обладает преимуществами с точки зрения пропускной способности и охвата на больших расстояниях, в то время как многомодовые оптические волокна имеют больший диаметр сердцевины (50 микрон или больше) и легко поддерживают большинство расстояний, необходимых для корпоративных сетей и сетей центров обработки данных по цене, как правило, меньшей, чем одномодовые установки.
Оптоволоконная технология сегодня используется по-разному. Он используется для передачи голосовых и видеосигналов, переноса компьютерных данных и для передачи информации на большие расстояния.
Добавить комментарий