Содержание
Сила Ампера | СПАДИЛО
Определение
Сила Ампера — сила, которая действует на проводник с током, помещенный в магнитное поле.
Модуль силы Ампера обозначается как FA. Единица измерения — Ньютон (Н).
Математически модуль силы Ампера определяется как произведение модуля вектора магнитной индукции B, силы тока I, длины проводника l и синуса угла α между условным направлением тока и вектором магнитной индукции:
FA=BIlsin.α
Максимальное значение сила Ампера принимает, когда ток в проводнике направлен перпендикулярно вектору магнитной индукции, так как sin.90°=1. И сила Ампера отсутствует совсем, если ток в проводнике направлен относительно вектора магнитной индукции вдоль одной линии. В этом случае угол между ними равен 0, а sin.0°=1.
Пример №1. Максимальная сила, действующая в однородном магнитном поле на проводник с током длиной 10 см, равна 0,02 Н. Сила тока в проводнике равна 8 А. Найдите модуль вектора магнитной индукции этого поля.
10 см = 0,1 м
Так как речь идет о максимальной силе, действующей на проводник с током, тоsin.α при этом равен 1 (проводник с током расположен перпендикулярно вектору магнитной индукции).
Определение направления силы Ампера
Направление вектора силы Ампера определяется правилом левой руки.
Правило левой руки
Если левую руку расположить так, чтобы перпендикулярная проводнику составляющая вектора магнитной индукции →B входила в ладонь, то отогнутый на 90 градусов большой палец покажет направление силы, действующий на отрезок проводника (направление силы Ампера).
Пример №2. В однородном магнитном поле находится рамка, по которой начинает течь ток (см. рисунок). Какое направление (вверх, вниз, влево, вправо, от наблюдателя, наблюдателю) имеет сила, действующая на нижнюю сторону рамки?
Так как в нижней стороне рамки ток направлен вправо, то четыре пальца левой руки нужно направить вправо. Саму левую руку при этом нужно расположить перпендикулярно плоскости рисунка ладонью вверх, чтобы в нее входили линии вектора магнитной индукции. Если отогнуть большой палец на прямой угол, то он покажет направление силы Ампера, действующей на нижнюю часть рамки. В данном случае она направлена в сторону от наблюдателя.
Проводники, на которые действует сила Ампера, могут перемещаться под действием этой силы. В этом случае говорят, что сила Ампера совершает работу. Из курса механики вспомним, что работа равна:
A=Fscos.α
F — сила, совершающая работу, s — перемещение, совершенное телом под действием этой силы, α — угол между вектором силы и вектором перемещения.
Отсюда работа, совершаемая силой Ампера, равна:
A=FAscos.α=BIlsin.βscos.α
α — угол между вектором силы и вектором перемещения, β — угол между условным направлением тока и вектором магнитной индукции.
Пример №3. Проводник длиной l = 0,15 м перпендикулярен вектору магнитной индукции однородного магнитного поля, модуль которого B = 0,4 Тл. Сила тока в проводнике I = 8 А. Найдите работу, которая была совершена при перемещении проводника на 0,025 м по направлению действия силы Ампера.
Так как проводник расположен перпендикулярно вектору магнитной индукции, и поле однородно, то синус угла между ними равен «1». Так как направление перемещение проводника совпадает с направлением действия силы Ампера, то косинус угла между ними тоже равен «1». Поэтому формула для вычисления работы силы Ампера принимает вид:
A=BIls
Подставим известные данные:
A=0,4·8·0,15·0,025=0,012 (Дж)=12 (мДж)
Задание EF17704
Как направлена сила Ампера, действующая на проводник № 3 со стороны двух других (см. рисунок), если все проводники тонкие, лежат в одной плоскости и параллельны друг другу? По проводникам идёт одинаковый ток силой I.
а) вверх
б) вниз
в) к нам
г) от нас
Алгоритм решения
1.Определить направление вектора результирующей магнитной индукции первого и второго проводников в любой точке третьего проводника.
2.Используя правило левой руки, определить направление силы Ампера, действующей на третий проводник со стороны первых двух проводников.
Решение
На третьем проводнике выберем произвольную точку и определим, в какую сторону в ней направлен результирующий вектор →B, равный геометрической сумме векторов магнитной индукции первого и второго проводников (→B1и →B2). Применим правило буравчика. Мысленно сопоставим острие буравчика с направлением тока в первом проводнике. Тогда направление вращения его ручки покажем, что силовые линии вокруг проводника 1 направляются относительно плоскости рисунка против хода часовой стрелки. Ток во втором проводнике направлен противоположно току в первом. Следовательно, его силовые линии направлены относительно плоскости рисунка по часовой стрелке.
В точке А вектор →B1 направлен в сторону от наблюдателя, а вектор →B2— к наблюдателю. Так как второй проводник расположен ближе к третьему, создаваемое им магнитное поле в точке А более сильное (силы тока во всех проводниках равны по условию задачи). Следовательно, результирующий вектор →B направлен к наблюдателю.
Теперь применим правило левой руки. Расположим ее так, чтобы четыре пальца были направлены в сторону течения тока в третьем проводнике. Ладонь расположим так, чтобы результирующий вектор →B входил в ладонь. Теперь отставим большой палец на 90 градусов. Относительно рисунка он покажет «вверх». Следовательно, сила Ампера →FА, действующая на третий проводник, направлена вверх.
Ответ: а
pазбирался: Алиса Никитина | обсудить разбор | оценить
Задание EF18417
Чему равна сила Ампера, действующая на стальной прямой проводник с током длиной 10 см и площадью поперечного сечения 2⋅10–2 мм2 , если напряжение на нём 2,4 В, а модуль вектора магнитной индукции 1 Тл? Вектор магнитной индукции перпендикулярен проводнику. Удельное сопротивление стали 0,12 Ом⋅мм2/м.
Алгоритм решения
1.Записать исходные данные и перевести единицы измерения величин в СИ.
2.Записать формулу для определения силы Ампера.
3.Выполнить решение в общем виде.
4.Подставить известные данные и вычислить искомую величину.
Решение
Запишем исходные данные:
• Длина проводника: l = 10 см.
• Площадь поперечного сечения проводника: S = 2⋅10–2 мм2.
• Напряжение в проводнике: U = 2,4 В.
• Модуль вектора магнитной индукции: B = 1 Тл.
• Удельное сопротивление стали: r = 0,12 Ом⋅мм2/м.
• Угол между проводником с током и вектором магнитной индукции: α = 90о.
10 см = 0,1 м
Сила Ампера определяется формулой:
FA=BIlsin.α
Так как α = 90о, синус равен 1. Тогда сила Ампера равна:
FA=BIl
Силу тока можно выразить из закона Ома:
I=UR..
Сопротивление проводника вычисляется по формуле:
R=rlS..
Тогда сила тока равна:
I=USrl..
Конечная формула для силы Ампера принимает вид:
FA=BlUSrl. .=BUSr..=1·2,4·2·10−20,12..=0,4 (Н)
.
.
Ответ: 0,4
pазбирался: Алиса Никитина | обсудить разбор | оценить
Задание EF17725
На непроводящей горизонтальной поверхности стола лежит жёсткая рамка массой m из однородной тонкой проволоки, согнутая в виде квадрата AСDЕ со стороной a(см. рисунок). Рамка находится в однородном горизонтальном магнитном поле, вектор индукции B которого перпендикулярен сторонам AE и CD и равен по модулю В. По рамке течёт ток в направлении, указанном стрелками (см. рисунок). При какой минимальной силе тока рамка начнет поворачиваться вокруг стороны CD?
Алгоритм решения
1.Сделать список известных данных.
2.Определить, при каком условии рамка с током будет вращаться вокруг стороны CD.
3.Выполнить решение в общем виде.
Решение
По условию задачи известными данными являются:
• Сторона квадратной рамки с током: a.
• Вектор магнитной индукции однородного горизонтального магнитного поля, в котором лежит рамка: B.
• Масса рамки: m.
Пусть по рамке течёт ток I. На стороны АЕ и CD будут действовать силы Ампера:
FA1=FA2=IaB
Для того чтобы рамка начала поворачиваться вокруг оси CD, вращательный момент сил, действующих на рамку и направленных вверх, должен быть не меньше суммарного момента сил, направленных вниз. Момент силы Ампера относительно оси, проходящей через сторону CD:
MA=Ia2B
Момент силы тяжести относительно оси CD:
Mmg=−12..mga
Чтобы рамка с током оторвалась от горизонтальной поверхности, нужно чтобы суммарный момент сил был больше нуля:
MA+Mmg>0
Так как момент силы тяжести относительно оси CD отрицательный, это неравенство можно записать в виде:
Ia2B>12..mga
Отсюда выразим силу тока:
I>mga2a2B..
I>mg2aB..
pазбирался: Алиса Никитина | обсудить разбор | оценить
Алиса Никитина | Просмотров: 10. 3k
Сила Ампера
Сила, с которой магнитное поле действует на проводник с током, называется силой Ампера.
Модуль силы Ампера определяется по формуле:
|
Здесь B — это модуль вектора магнитной индукции поля, I — сила тока в проводнике, а l — его длина. Однако эту формулу можно использовать только в том случае, когда проводник расположен перпендикулярно силовым линиям.
Сила Ампера равна нулю, если проводник с током расположен параллельно магнитным линиям. Максимальное значение сила Ампера принимает в случае, если проводник расположен перпендикулярно магнитным линиям. Если же проводник расположен под углом α к линиям магнитной индукции, то следует использовать формулу
|
|
|
|||
Рис. 1. Правило левой руки
|
Одним из самых простых примеров взаимодействия токов является взаимодействие параллельных токов. Закономерности этого явления были экспериментально установлены Ампером.
|
Взаимодействие токов вызывается их магнитными полями: магнитное поле одного тока действует с силой Ампера на другой ток и наоборот.
Для определения направления вектора магнитного поля прямолинейного проводника применяем правило буравчика: направление вращения рукоятки буравчика совпадает с направлением вектора если при вращении буравчик перемещается в направлении тока.
|
|||
Рис. 2. Магнитное поле прямолинейного проводника с током
|
Используя далее правило левой руки, нетрудно установить, что если по двум параллельным проводникам электрические токи текут в одну и ту же сторону, то наблюдается взаимное притяжение проводников. В случае, когда токи текут в противоположных направлениях, проводники отталкиваются.
|
|||
Рис. 3. Магнитное взаимодействие параллельных и антипараллельных токов
|
Сила Ампера применяется в электроизмерительных приборах (амперметр, вольтметр, гальванометр), в двигателе постоянного тока, в электродинамическом громкоговорителе.
|
|||
Рис. 4. Электродинамический громкоговоритель (динамик)
|
В электродинамическом громкоговорителе есть сильный постоянный магнит. В зазоре между полюсами находится звуковая катушка, которая соединена с диффузором (мембраной). Когда переменный ток звуковой частоты проходит по катушке, катушка под действием силы Ампера то втягивается в зазор магнита, то выталкивается из него.
Таким образом, катушка и прикрепленный к ней диффузор совершают механические колебания звуковой частоты. Поэтому мы и слышим звук.
Определение мощности бытового электроснабжения
Этот информационный бюллетень поможет понять, как определить мощность бытового электроснабжения. Довольно часто нам задают, казалось бы, простой вопрос «Каков размер моего электроснабжения»? В большинстве случаев на этот вопрос просто ответить, если знать, что искать.
Вольты и Амперы
Во-первых, важно понимать, что мощность электроснабжения измеряется в силе тока или токе, а не в вольтах. Сила тока – это скорость потока доступного электрического тока. Чем больше доступная мощность тока или сила тока, тем больше электроприборов можно использовать в данный момент времени в здании. Бытовая электросеть входит в здание в двух видах, 120 вольт и 240 вольт. Это номинальные цифры, а значит, реальное напряжение в доме может варьироваться. Часто электрическая сеть 240 вольт упоминается как «220».
Чтобы лучше понять разницу между вольтами и амперами, электричество можно сравнить с потоком воды в трубе. Количество воды, протекающей по трубе, обычно измеряется в объеме воды в единицу времени. Например, через определенную трубу может течь 10 галлонов воды в минуту. Этот расход воды аналогичен силе тока или току в электрическом проводе. Ток — это измерение количества электроэнергии, «текущей» по проводу в данный момент времени. Давление воды, протекающей по трубе, измеряется не количеством воды, а скорее количеством энергии, генерируемой водой внутри трубы. Точно так же напряжение, переносимое электрическим проводом, является мерой количества переносимой энергии.
Опять же, сила тока электроснабжения определяет его мощность, а напряжение электроснабжения (120 вольт или 240 вольт) определяет вид используемого электроснабжения. В жилых помещениях 120-вольтовая сеть используется для освещения, розеток, небольших бытовых приборов (таких как микроволновые печи, утюги, тостеры, часы, телевизоры) и т. д. «220-вольтовая» сеть используется для более крупных электроприборов, таких как кондиционеры, электрические сушилки. , электрические плиты, электрические обогреватели и т. д. Почти во всех современных домах есть 220-вольтовая электрическая сеть. В настоящее время есть несколько домов, в которых нет 220 вольт. Как правило, это старые дома, в которых уже много лет не проводилась модернизация электроснабжения. Они редкость.
Рискуя упростить, простой способ определить, есть ли в доме электричество 220 вольт или только 120 вольт, состоит в том, чтобы визуально осмотреть воздушный электрический провод, который соединяется с домом. Воздушный провод называется служебным входным кабелем или служебным боковым кабелем. Там три провода, две «горячие ноги» и отдельная нейтраль. Нейтраль обычно оголена, а это означает, что вы действительно можете видеть металлический провод. Горячие ножки изолированы, как правило, с черным резиновым покрытием. Этот контактный провод соединяется с магистральным электрическим кабелем или «стояком» для дома в месте присоединения контактного провода к зданию. Если все три провода подключены к сервисному «стояку», который проходит по стене дома, обычно можно сделать вывод, что в доме есть сеть 220 вольт. Это потому, что каждая из «горячих ног» несет 120 вольт, вместе обеспечивая 240 вольт или «220» в дом. Наоборот, если один из горячих проводов воздушной линии не подключен к вертикальному кабелю. Определение пропускной способности линии
Электрическая мощность, которую можно встретить в жилых домах, составляет 30 ампер, 60 ампер, 100 ампер, 125 ампер, 150 ампер и 200 ампер. В некоторых случаях мощность превышает 200 ампер, но это относится только к большим современным высококлассным домам с большими потребностями в электричестве. В отношении этих различных мощностей мы предлагаем следующее:
- 30 ампер. Как было сказано выше, 30-амперная услуга стала довольно редкой. 30-амперная сеть будет иметь только 120-вольтовую мощность. Те редкие случаи, когда обнаруживается ток 30 ампер, представляют собой небольшие старые дома, в которых проживала одна и та же семья или человек на протяжении нескольких поколений, и потребность в модернизации или обновлении не возникла. Эта услуга считается неадекватной для современной жизни.
- 60 Ампер. Обычно это самая низкая емкость для сети 120/240 вольт. Эта способность считается в лучшем случае маргинальной для современной жизни. Довольно часто обслуживание на 60 ампер также включает в себя наличие старой панели предохранителей, в отличие от более современной панели автоматического выключателя.
- 100 Ампер. Большое количество существующих домов среднего размера имеют электрические сети мощностью 100 ампер. Дома среднего размера с газовыми или масляными системами отопления и системами горячего водоснабжения, как правило, не нуждаются в электроснабжении мощностью более 100 ампер. Конечно, это также может зависеть от использования электричества жильцами и от использования других электроприборов.
- 125 Ампер. Они очень редки и будут обсуждаться в конце этого документа.
- 150 Ампер. Обычная практика такова, что это стало типичным минимумом, который может быть установлен в современном строительстве для дома на одну семью.
- 200 Ампер. Это становится нормой для современного индивидуального жилищного строительства. Во многих случаях это не является необходимостью, но устанавливается при новом строительстве.
Какова емкость?
Проще говоря, мощность электросети в доме определяется тремя факторами: мощностью вводного кабеля (кабеля, питающего дом), мощностью главного электрощита и мощностью главного разъединителя. В большинстве случаев эти три фактора совпадают. Другими словами, очень часто кабель на 100 ампер питает панель автоматического выключателя на 100 ампер с главным разъединителем на 100 ампер.
Емкость кабеля сервисного ввода.
Иногда фактическая емкость кабеля сервисного ввода указана непосредственно на кабеле. К сожалению, это не распространено, но при взгляде на некоторые кабели вы увидите «100А» или «150А». Это легко определяет емкость кабеля. Чаще емкость кабеля можно оценить по размеру кабеля. Опять же, с риском упрощения:
- Кабели сервисного ввода на 60 ампер имеют ширину от 3/4 дюйма до 7/8 дюйма
- Кабели на 100 ампер имеют ширину примерно 1 дюйм
- Кабели на 150 ампер имеют ширину примерно 1-1/4 дюйма
- Кабели на 200 ампер обычно имеют ширину 1 и 1/2 дюйма.
- Ширина кабеля может варьироваться в зависимости от того, медный ли это кабель (более старый) или алюминиевый, а также в зависимости от материала внешней оболочки.
Рейтинг панели
Рейтинг панели обычно указывается на этикетке внутри дверцы панели. На этих этикетках обычно указывается «макс. 200 ампер. емкость» или «максимальная емкость 100 А».
Емкость главного разъединителя
Большинство современных панелей имеют один главный разъединитель. Часто это отключение помечается как «основное». Емкость разъединителя указана непосредственно на разъединителе. Обычно это означает «100А», «150А» или «200А».
Как видно из вышеизложенного, если бы вы увидели, что панель рассчитана максимум на 150 ампер, оснащена главным разъединителем на 150 ампер и питается кабелем на 150 ампер, вы можете сделать вывод, что обслуживание на 150 ампер.
Бывают случаи, когда три определяющих фактора не равны. Например, если кабель на 100 ампер питает панель на 150 ампер с разъединителем на 150 ампер, услуга технически считается услугой на 100 ампер. Кабель будет ограничивающим фактором. Кроме того, это было бы небезопасным условием, поскольку кабель не имел бы достаточно большой емкости, чтобы выдержать потенциал тока в 150 ампер, разрешенный панелью, и отключиться. Кабель будет считаться слишком маленьким, и из соображений безопасности будет рекомендована замена кабелем соответствующего размера. Напротив, кабель на 150 ампер, питающий панель на 100 ампер и разъединитель, будет считаться услугой на 100 ампер, а также будет считаться безопасным (кабель может быть больше, но не меньше).
Многоквартирные дома
Часто бывает так, что в многоквартирных домах имеется отдельная или индивидуальная система электроснабжения для каждой квартиры. В этих случаях обычно один большой служебный кабель питает несколько электрических счетчиков. Затем каждый отдельный счетчик питает каждую отдельную электрическую панель. Мощность услуги для каждой квартиры определяется кабелем, питающим каждую из отдельных панелей, а также номиналом отдельных панелей и их отключений.
Раздельные панели с шинами
При использовании раздельных панелей с шинами возникает путаница. Эти типы панелей использовались с большой частотой в 1950-х и 60-х годах. Они не оборудованы одним разъединителем. Это может вызвать путаницу, поскольку размер основного отключения часто определяет пропускную способность службы. Для панели с разделенной шиной размер или пропускная способность услуги определяется сечением кабеля и номиналом панели (поскольку нет единого главного разъединителя). Очень часто панели с раздельными шинами имеют максимальную мощность 125 ампер. Также обычно эти панели питаются кабелем на 100 мА. Эта услуга будет рассчитана на 100 ампер (в зависимости от кабеля). Услуги на 125 ампер встречаются редко из-за того, что кабели ввода на 125 ампер являются редкостью.
Электрические нормы для существующих сетей не требуют, чтобы панель была оборудована одним главным разъединителем. Вот почему сплит-панели до сих пор используются. Они не используются для новых установок, но многие панели все еще используются. Электрические нормы ограничивают количество главных разъединителей до шести. Обычно это называют «правилом шести бросков». Что это значит, что нужно иметь возможность отключить все электроснабжение дома не более чем с 6 главными разъединителями.
Я надеюсь, что это обсуждение даст вам некоторое общее представление о том, как определить мощность электроснабжения. Пожалуйста, не стесняйтесь звонить в наш офис, если у вас есть конкретные вопросы по этому поводу. Мы всегда готовы помочь.
Douglas J. Burgasser, P. E.
Допустимая токовая нагрузка медных проводников
Допустимая токовая нагрузка определяется как сила тока, которую проводник может выдержать до расплавления проводника или изоляции. Нагрев, вызванный электрическим током, протекающим по проводнику, определяет величину тока, который будет выдерживать провод. Теоретически количество тока, которое может быть пропущено через один неизолированный медный проводник, может быть увеличено до тех пор, пока выделяемое тепло не достигнет температуры плавления меди. Есть много факторов, которые будут ограничивать величину тока, который может быть пропущен через провод.
Основными определяющими факторами являются:
Размер проводника:
Чем больше площадь круглого мила, тем больше допустимая нагрузка по току.
Количество выделяемого тепла никогда не должно превышать максимально допустимую температуру изоляции.
Температура окружающей среды:
Чем выше температура окружающей среды, тем меньше тепла требуется для достижения максимальной температуры изоляции.
Номер проводника:
Рассеивание тепла уменьшается по мере увеличения количества индивидуально изолированных проводников, связанных вместе.
Условия установки:
Ограничение рассеивания тепла путем установки проводников в кабелепроводах, каналах, лотках или желобах снижает допустимую нагрузку по току. Это ограничение можно также несколько уменьшить, используя надлежащие методы вентиляции, принудительное воздушное охлаждение и т. д. оценки могут стать критическими.
На диаграмме показан ток, необходимый для повышения температуры одинарного изолированного провода на открытом воздухе (окружающая среда 30°C) до пределов для различных типов изоляции. В следующей таблице приведен коэффициент снижения номинальных характеристик, который следует использовать, когда проводники соединены в жгуты. Эти таблицы следует использовать только в качестве руководства при попытке установить номинальные токи на проводнике и кабеле.
Факторы снижения номинальных характеристик для пучков проводов | |
---|---|
Комплект № | Понижающий коэффициент (X ампер) |
2-5 | 0,8 |
6-15 | 0,7 |
16-30 | 0,5 |
Ампер
Изоляционные материалы: | Полиэтилен Неопрен Полиуретан Поливинилхлорид (Полужесткий) |
Полипропилен Полиэтилен (высокая плотность) |
Поливинилхлорид ПВХ (облученный) Нейлон |
Kynar (135°C) Полиэтилен (сшитый) Термопласт Эластомеры |
Каптон ПТФЭ ФЭП ПФА Силикон |
---|---|---|---|---|---|
Медь Темп. | 80°С | 90°С | 105°С | 125°С | 200°С |
30 AWG | 2 | 3 | 3 | 3 | 4 |
28AWG | 3 | Insulation Materials: Polypropylene, Polyethylene (High Density)»> 4 | 4 | 5 | 6 |
26 AWG | 4 | 5 | 5 | 6 | Insulation Materials: Kapton, PTFE, FEP, PFA, Silicone»> 7 |
24 AWG | 6 | 7 | 7 | 8 | 10 |
22AWG | 8 | 9 | Insulation Materials: Polyvinylchloride, PVC (Irradiated), Nylon»> 10 | 11 | 13 |
20 AWG | 10 | 12 | 13 | 14 | 17 |
18 AWG | Insulation Materials: Polyethylene, Neoprene, Polyurethane, Polyvinylchloride (Semi-Rigid)»> 15 | 17 | 18 | 20 | 24 |
16 AWG | 19 | 22 | 24 | 26 | Insulation Materials: Kapton, PTFE, FEP, PFA, Silicone»> 32 |
14 AWG | 27 | 30 | 33 | 40 | 45 |
12 AWG | 36 | 40 | Insulation Materials: Polyvinylchloride, PVC (Irradiated), Nylon»> 45 | 50 | 55 |
10 AWG | 47 | 55 | 58 | 70 | 75 |
8 AWG | Insulation Materials: Polyethylene, Neoprene, Polyurethane, Polyvinylchloride (Semi-Rigid)»> 65 | 70 | 75 | 90 | 100 |
6 AWG | 95 | 100 | 105 | 125 |
Добавить комментарий