Как определить общее сопротивление в цепи: Расчет сопротивления цепи

Содержание

Общее сопротивление электрической цепи, чему оно равно и как найти по формуле. « ЭлектроХобби

Как известно во всем нужна своя мера, которая позволяет делать точные системы, устройства, механизмы, схемы. Мера множественная, имеет свои конкретные величины. В сфере электротехники основными величинами являются напряжение, ток, сопротивление, мощность, частота (для переменного и импульсного тока). Величины между собой связаны определенными формулами. Самой важной формулой, наиболее используемой электриками, электронщиками является закон Ома ( I = U/R, то есть — сила тока равна напряжению деленному на сопротивление). Зная любые две величины из этой формулы всегда можно найти третью.

От сопротивления электрической цепи зависит силы тока при наличии определенного напряжения. Если меняется сопротивление в цепях схемы, то и меняться режимы ее работы в отдельных ее участках или во всей цепи. Знание величины сопротивления могут помочь выявить неисправность, узнать (вычислить из формулы) другие электрические величины в схеме, зависящие от этого сопротивления.

Теперь давайте посмотрим от чего зависит общее сопротивление электрической цепи. Общее — это сумма частных. Любая электрическая цепь и схема содержит в себе электрические компоненты, которые обладают внутренним сопротивлением. Даже обычный конденсатор (две пластины проводника, разделенные диэлектриком, что позволяет накапливать электрический заряд между этими пластинами, не пропуская постоянный ток), который, казалось бы, по сути своей его не должен иметь (точнее оно бесконечно большое) обладает реактивным сопротивлением.

Самая простая электрическая цепь состоит из источника питания и нагрузки. К примеру это будет обычная батарейка и маленькая лампочка накаливания. И батарейка и лампочка имеют свои сопротивления, которые суммируются, что определяет силу тока, текущему по этой простейшей цепи (при определенной величине напряжения). Допустим к нашей цепи мы добавим еще один элемент нагрузки (вторую такую же лампочку). Ее можно подключить к этой простейшей цепи двумя способами либо параллельно первой лампочки, либо же последовательно ей

При последовательном подключении сопротивление будет суммироваться:

При параллельном подключении общее сопротивление можно найти по таким формулам:

То есть, большинство схем будут иметь в себе либо параллельное подключение сопротивлений, либо последовательное или же смешанное. В случае сложной электрической цепи определение общего электрического сопротивления происходит по частям (группам), состоящим, опять же, из параллельных и последовательных подключений элементов, обладающими сопротивлением. Правильнее начинать с той части цепи, схемы, которая имеет наибольшую удаленность от двух конечных выводов, рассматриваемых как контакты общего сопротивления. На рисунке ниже приведен пример последовательности вычисления общего сопротивления сложной цепи, схемы.

Но ведь существуют электрические цепи, в которых общее сопротивление может постоянно меняться, к примеру схема стабилизированного регулятора частоты вращения постоянного электродвигателя, подключенная к самому двигателю. При изменении нагрузки на валу двигателя будет меняться его внутреннее сопротивление, следовательно меняться будет и режимы работы схемы (поддерживающая нужную частоту вращения вала). В таких цепях электрическое сопротивление является динамическим, изменяющемся. Можно лишь рассчитать усредненное сопротивление, которое не будет абсолютно точным.

Помимо этого, как было подмечено ранее, существует еще реактивное сопротивление, которое бывает у индуктивных и емкостных элементов цепи. Оно явно себя проявляет в схемах, что работают с переменным, импульсным током. Если в цепях постоянного тока конденсатор (стоящий последовательно) не будет проводить через себя ток, то в цепи переменного тока будет все иначе. Причем его реактивное сопротивление будет зависеть от частоты (при одной и той же емкости). Вот формулы для нахождения реактивного емкостного и индуктивного сопротивления:

P.S. общее сопротивление можно находить и через использование закона Ома, который гласит, что сопротивление равно напряжение деленное на силу тока. Следовательно, берем мультиметр, измеряем ток и напряжение в том месте цепи, где хотим узнать сопротивление. Воспользовавшись формулой Ома находим (определяем) электрическое сопротивление нужного участка цепи. Напомню, что при использовании закона ома нужно применять основные единицы измерения — ток в амперах, напряжение в вольтах, а сопротивление в омах.

Полное сопротивление цепи переменного тока

В предыдущих статьях мы узнали, что всякое сопротивление, поглощающее энергию, называется активным, а сопротивление, не поглощающее энергии, безваттным или реактивным. Кроме того, мы установили, что реактивные сопротивления делятся на два вида — индуктивные и емкостные.

Однако существуют цепи, где сопротивление не является чисто активным или чисто реактивным. То есть цепи, где вместе с активным сопротивлением включены в цепь, как емкости, так и индуктивности.

Введем понятие полного сопротивления цепи переменному току — Z, которое соответствует векторной сумме всех сопротивлений цепи (активных, емкостных и индуктивных). Понятие полного сопротивления цепи нам необходимо для более полного понимания закона Ома для переменного тока

На рисунке 1 представлены варианты электрических цепей и их классификация в зависимости от того какие элементы (активные или реактивные) включены в цепь.

Рисунок 1. Классификация цепей переменного тока.

Полное сопротивление цепи с чисто активными элементами соответствует сумме активных сопротивлений цепи и рассматривалось нами ранее. О чисто емкостном и индуктивном сопротивлении цепи мы тоже с вами говорили, и оно зависит соответственно от общей емкости и индуктивности цепи.

Рассмотрим более сложные варианты цепи, где последовательно с активным сопротивлением в цепь включено индуктивное и реактивное сопротивление.

Полное сопротивление цепи при последовательном соединении активного и реактивного сопротивления.

В любом сечении цепи, изображенной на рисунке 2,а, мгновенные значения тока должны быть одинаковыми, так как в противном случае наблюдались бы скопления и разрежения электронов в каких-либо точках цепи. Иными словами, фазы тока по всей длине цепи должны быть одинаковыми. Кроме того, мы знаем, что фаза напряжения на индуктивном сопротивлении опережает фазу тока на 90°, а фаза напряжения на активном сопротивлении совпадает с фазой тока (рисунок 2,б). Отсюда следует, что радиус-вектор напряжения UL (напряжение на индуктивном сопротивлении) и напряжения UR (напряжение на активном сопротивлении) сдвинуты друг относительно друга на угол в 90°.

Рисунок 2. Полное сопротивление цепи с активным сопротивлением и индуктивностью.        а) — схема цепи; б) — сдвиг фаз тока и напряжения; в) — треугольник напряжений; д) — треугольник сопротивлений.

Для получения радиуса-вектора результирующего напряжения на зажимах А и В (рис.2,а) мы произведем геометрическое сложение радиусов-векторов UL и UR. Такое сложение выполнено на рис. 2,в, из которого видно, что результирующий вектор UAB является гипотенузой прямоугольного треугольника.

Из геометрии известно, что квадрат гипотенузы равен сумме квадратов катетов.

По закону Ома напряжение должно равняться силе тока, умноженной на сопротивление.

Так как сила тока во всех точках цепи одинакова, то квадрат полного сопротивления цепи (Z2) будет также равен сумме квадратов активного и индуктивного сопротивлений, т. е.

                                      (1)

 

Извлекая квадратный корень из обеих частей этого равенства, получим,

                                       (2)

 

 Таким образом, полное сопротивление цепи, изображенной на рис 2,а, равно корню квадратному из суммы квадратов активного и индуктивного сопротивлений

Полное сопротивление можно находить не только путем вычисления, но и путем построения треугольника сопротивлений, аналогичного треугольнику напряжений (рис 2,д), т. е. полное сопротивление цепи переменному току может быть получено путем измерения гипотенузы, прямоугольного треугольника, катетами которого являются активное и реактивное сопротивления. Разумеется, измерения катетов и гипотенузы должны производиться в одном и том же масштабе. Так, например, если мы условились, что 1 см длины катетов соответствует 1 ом, то число омов полного сопротивления будет равно числу сантиметров, укладывающихся на гипотенузе.

Полное сопротивление цепи, изображенной на рис. 2,а, не является ни чисто активным, ни чисто реактивным; оно содержит в себе оба эти вида сопротивлений. Поэтому угол сдвига фаз тока и напряжения в этой цепи будет отличаться и от 0° и от 90°, то есть он будет больше 0°, но меньше 90°. К которому из этих двух значений он будет более близок, будет зависеть от того, какое из этих сопротивлений имеет преобладающее значение в цепи. Если индуктивное сопротивление будет больше активного, то угол сдвига фаз будет более близок к 90°, и наоборот, если преобладающим будет активное сопротивление, то угол сдвига фаз будет более близок к 0°.

В цепи, изображенной на рис 3,а, соединены последовательно активное и емкостное сопротивления. Полное сопротивление такой цепи можно определить при помощи треугольника сопротивлений так же, как мы определяли выше полное сопротивление активно-индуктивной цепи.

Рисунок 3. Полное сопротивление цепи с активным сопротивлением и емкостью.                                                а) — схема цепи; б) — треугольник сопротивлений.

Разница между обоими случаями состоит лишь в том, что треугольник сопротивлений для активно-емкостной цепи будет повернут в другую сторону (рис 3,б) вследствие того, что ток в емкостной цепи не отстает от напряжения, а опережает его.

Для данного случая:

(3)

 

 

 В общем случае, когда цепь содержит все три вида сопротивлений (рис. 4,а), сначала определяется реактивное сопротивление этой цепи, а затем уже полное сопротивление цепи.

Рисунок 4. Полное сопротивление цепи содержащей R, L и C. а) — схема цепи; б) — треугольник сопротивлений.

Реактивное сопротивление этой цепи состоит из индуктивного и емкостного сопротивлений. Так как эти два вида реактивного сопротивления противоположны друг другу по своему характеру, то общее реактивное сопротивление цепи будет равно их разности, т. е.

                           (4)

 

 

Общее реактивное сопротивление цепи может иметь индуктивный или емкостный характер, в зависимости от того, какое из этих двух сопротивлений (XL или XC преобладает).

После того как мы по формуле (4) определили общее реактивное сопротивление цепи, определение полного сопротивления не представит затруднений. Полное сопротивление будет равно корню квадратному из суммы квадратов активного и реактивного сопротивлений, т. е.

                                     (5)

 

 

Или

                         (6)

 

 

 

Способ построения треугольника сопротивлений для этого случая изображен на рис. 4 б.

Полное сопротивление цепи при параллельном соединении активного и реактивного сопротивления.

Полное сопротивление цепи при параллельном соединении активного и реактивного элемента.

Для того чтобы вычислить полное сопротивление цепи, составленной из активного и индуктивного сопротивлений, соединенных между собой параллельно(рис. 5,а), нужно сначала вычислить проводимость каждой из параллельных ветвей, потом определить полную проводимость всей цепи между точками А и В и затем вычислить полное сопротивление цепи между этими точками.

Рисунок 5. Полное сопротивление цепи при параллельном соединении активного и реактивных элементов. а) — параллельное соединение R и L; б) — параллельное соединение R и C.

Проводимость активной ветви, как известно, равна 1/R, аналогично проводимость индуктивной ветви равна 1/ωL , а полная проводимость равна 1/Z

Полная проводимость равна корню квадратному из суммы квадратов активной и реактивной проводимости, т. е.

                       (7)

 

 

 

 

Приводя к общему знаменателю подкоренное выражение, получим:

  (8)

 

 

 

 

 откуда:

                              (9)

 

 

 

 

Формула (9) служит для вычисления полного сопротивления цепи, изображенной на рис. 5а.

Нахождение полного сопротивления для этого случая может быть произведено и геометрическим путем. Для этого нужно построить в соответствующем масштабе треугольник сопротивлений, и затем произведение длин катетов разделить на длину гипотенузы. Полученный результат и будет соответствовать полному сопротивлению.

Аналогично случаю, рассмотренному выше, полное сопротивление при параллельном соединении R и С (рис 5б) будет равно:

                             (10)

 

 

 

 

 

 Полное сопротивление может быть найдено также и в этом случае путем построения треугольника сопротивлений.

В радиотехнике наиболее часто встречается случай па¬раллельного соединения индуктивности и емкости, например колебательный контур для настройки приемников и передатчиков. Так как катушка индуктивности всегда обладает кроме индуктивного еще и активным сопротивлением, то эквивалентная (равноценная) схема колебательного контура будет содержать в индуктивной ветви активное сопротивление (рис 7).

Рисунок 6. Эквивалентная схема колебательного контура.

Формула полного сопротивления для этого случая будет:

                   (11)

 

 

 

 Так как обычно активное сопротивление катушки (R) бывает очень мало по сравнению с ее индуктивным сопротивлением (ωL), то мы имеем право формулу (11) переписать в следующем виде:

 (12)

 

 

 В колебательном контуре обычно подбирают величины L и С таким образом, чтобы индуктивное сопротивление равнялось емкостному, т. е. чтобы соблюдалось условие

                                     (13)

 

 

 При соблюдении этого условия полное сопротивление колебательного контура будет равно:

                                     (14)

 где L—индуктивность катушки в Гн;

С—емкость конденсатора в Ф;

R—активное сопротивление катушки в Ом.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

Добавить комментарий

Как рассчитать резисторы последовательно и параллельно – Kitronik Ltd

Резисторы серии

Когда резисторы соединены один за другим, это называется последовательным соединением. Это показано ниже. Чтобы рассчитать общее общее сопротивление нескольких резисторов, соединенных таким образом, нужно сложить отдельные сопротивления. Это делается по следующей формуле: Rобщ = R1 + R2 + R3 и так далее. Пример: Чтобы рассчитать общее сопротивление для этих трех последовательно соединенных резисторов.

Rобщ = R1 + R2 + R3 = 100 + 82 + 1 Ом = 183 Ом

Задача 1:

Вычислите общее сопротивление следующего резистора, включенного последовательно.

Всего  = _______________
 = _______________

Всего  = _______________
 = _______________

Всего  = _______________
 = _______________

Параллельные резисторы

Когда резисторы соединены друг с другом (бок о бок), это называется параллельным соединением. Это показано ниже.

Два резистора параллельно

Чтобы рассчитать общее общее сопротивление двух резисторов, соединенных таким образом, вы можете использовать следующую формулу:

Пример: Чтобы рассчитать общее сопротивление для этих двух резисторов, включенных параллельно.


Задача 2:

Рассчитайте общее сопротивление следующего резистора, включенного параллельно.

Три или более резистора, соединенных параллельно

Чтобы рассчитать общее сопротивление трех или более резисторов, соединенных таким образом, вы можете использовать следующую формулу: Пример: Чтобы рассчитать общее сопротивление этих трех резисторов, соединенных параллельно


Задача 3:

Рассчитайте общее сопротивление следующего резистора, включенного параллельно.


Ответы

Задача 1

1 = 1492 Ом 2 = 2242 Ом 3 = 4847 Ом

Задача 2

1 = 5 Ом 2 = 9,57 Ом 3 = 248,12 Ом

Задача 3

1 = 5,95 Ом 2 = 23,76 Ом   Скачать pdf-версию этой страницы здесь Узнать больше об авторе подробнее »

©Kitronik Ltd – Вы можете распечатать эту страницу и дать ссылку на нее, но не должны копировать страницу или ее часть без Предварительное письменное согласие Китроника.

Предлагаемое Kitronik дополнительное обучение

Как работает делитель напряжения / делитель напряжения

Два или более резистора при последовательном соединении образуют цепь делителя потенциала. В этом руководстве объясняется, как они работают, и напряжение на них. В учебник включены принципиальные схемы, формулы, рабочие примеры и несколько вопросов для проверки вашего понимания.

Метки:

Электронные принципы, Понимание компонентов, Понимание принципов

21.1: Резисторы последовательно и параллельно

  1. Последнее обновление
  2. Сохранить как PDF
  • Идентификатор страницы
    2688
    • OpenStax
    • OpenStax

    Цели обучения

    К концу этого раздела вы сможете:

    • Нарисовать цепь с параллельными и последовательными резисторами.
    • Рассчитайте падение напряжения тока на резисторе, используя закон Ома.
    • Сравните способ расчета общего сопротивления резисторов, включенных последовательно и параллельно.
    • Объясните, почему общее сопротивление параллельной цепи меньше наименьшего сопротивления любого из резисторов в этой цепи.
    • Рассчитайте общее сопротивление цепи, содержащей смесь резисторов, соединенных последовательно и параллельно.

    Большинство цепей имеют более одного компонента, называемого резистором , который ограничивает поток заряда в цепи. Мера этого предела потока заряда называется сопротивлением . Простейшими комбинациями резисторов являются последовательное и параллельное соединения, показанные на рисунке \(\PageIndex{1}\). Общее сопротивление комбинации резисторов зависит как от их отдельных значений, так и от того, как они соединены.

    Рисунок \(\PageIndex{1}\): (a) Последовательное соединение резисторов. (б) Параллельное соединение резисторов.

    Резисторы серии

    Когда резисторы серии относятся к серии ? Резисторы включены последовательно всякий раз, когда поток заряда, называемый током , должен проходить через устройства последовательно. Например, если ток течет через человека, держащего отвертку, в землю, то \(R_{1}\) на рисунке \(\PageIndex{1}\)(a) может быть сопротивлением стержня отвертки, \ (R_{2}\) сопротивление его ручки, \(R_{3}\) сопротивление тела человека и \(R_{4}\) сопротивление ее обуви.

    На рисунке \(\PageIndex {2}\) показаны резисторы, последовательно подключенные к источнику напряжения . Кажется разумным, что общее сопротивление представляет собой сумму отдельных сопротивлений, учитывая, что ток должен последовательно проходить через каждый резистор. (Этот факт был бы преимуществом для человека, желающего избежать поражения электрическим током, который мог бы уменьшить ток, надев высокоомную обувь на резиновой подошве. Это могло бы быть недостатком, если бы одним из сопротивлений был неисправный высокоомный шнур для устройство, которое уменьшило бы рабочий ток.) ​​

    Рисунок \(\PageIndex{2}\): Три резистора, последовательно соединенные с батареей (слева) и эквивалентное одиночное или последовательное сопротивление (справа).

    Чтобы убедиться в том, что последовательно включенные сопротивления действительно складываются, давайте рассмотрим потери электроэнергии, называемые падением напряжения , в каждом резисторе на рисунке \(\PageIndex {2}\).

    Согласно Закону Ома , падение напряжения \(В\) на резисторе при протекании через него тока рассчитывается по уравнению \(V=IR\), где \(I\) равно току в амперах (А) и \(R\) сопротивление в омах\((\Омега)\). Другой способ думать об этом состоит в том, что \(V\) — это напряжение, необходимое для того, чтобы ток \(I\) протекал через сопротивление \(R\).

    Таким образом, падение напряжения на \(R_{1}\) равно \(V_{1}=IR_{1}\), на \(V_{2}=IR_{2}\) и на \ (R_{3}\) равно \(V_{3}=IR_{3}\). Сумма этих напряжений равна выходному напряжению источника; то есть

    \[V=V_{1}+V_{2}+V_{3}.\]

    Это уравнение основано на законах сохранения энергии и заряда. Электрическая потенциальная энергия может быть описана уравнением \(\mathrm{PE}=qV\), где \(q\) — электрический заряд, а \(V\) — напряжение. Таким образом, энергия, подаваемая источником, равна \(qV), а энергия, рассеиваемая резисторами, равна

    \[qV_{1}+qV_{2}+qV_{3}.\]

    СОЕДИНЕНИЯ: ЗАКОНЫ СОХРАНЕНИЯ

    Выводы выражений для последовательного и параллельного сопротивления основаны на законах сохранения энергии и сохранения заряда, которые утверждают, что общий заряд и полная энергия постоянны в любом процессе. Эти два закона непосредственно связаны со всеми электрическими явлениями и будут многократно использоваться для объяснения как конкретных эффектов, так и общего поведения электричества.

    Эти энергии должны быть равны, потому что в цепи нет другого источника и другого назначения для энергии. Таким образом, \(qV=qV_{1}+qV_{2}+qV_{3}\). Заряд \(q\) отменяется, что дает \(V=V_{1}+V_{2}+V_{3}\), как указано. (Обратите внимание, что одинаковое количество заряда проходит через батарею и каждый резистор за заданный промежуток времени, поскольку нет емкости для накопления заряда, нет места для утечки заряда, и заряд сохраняется.)

    Теперь подстановка значений отдельных напряжений дает

    \[V=IR_{1}+IR_{2}+IR_{3}=I(R_{1}+R_{2}+R_{3}). \]

    Обратите внимание, что для эквивалентного одиночного последовательного сопротивления \(R_{\mathrm{S}}\) мы имеем

    \[V=IR _{\mathrm{S}}.\]

    Это означает, что общее или эквивалентное последовательное сопротивление \(R_{\mathrm{S}}\) трех резисторов равно \(R_{\mathrm{S}}=R_{1}+R_{2}+R_{3}\).

    Эта логика действительна в целом для любого количества последовательно соединенных резисторов; таким образом, полное сопротивление \(R_{\mathrm{S}}\) последовательного соединения равно

    \[R_{\mathrm{S}}=R_{1}+R_{2}+R_{3}+\dots ,\]

    как предложено. Поскольку весь ток должен проходить через каждый резистор, он испытывает сопротивление каждого из них, а последовательные сопротивления просто складываются.

    Пример \(\PageIndex{1}\): расчет сопротивления, тока, падения напряжения и рассеиваемой мощности: анализ последовательной цепи

    Предположим, что выходное напряжение батареи на рисунке \(\PageIndex{2}\) равно \(12,0\mathrm{V}\), а сопротивления равны \(R_{1}=1,00\Омега\), \(R_{2}=6,00\Омега\) и \(R_{3}= 13.0\Омега\). а) Чему равно полное сопротивление? б) Найдите силу тока. (c) Рассчитайте падение напряжения на каждом резисторе и покажите, что их сумма равна выходному напряжению источника. г) Рассчитайте мощность, рассеиваемую каждым резистором. (e) Найдите выходную мощность источника и покажите, что она равна полной мощности, рассеиваемой резисторами.

    Стратегия и решение для (a)

    Общее сопротивление представляет собой просто сумму отдельных сопротивлений, определяемую следующим уравнением:

    \[R_{\mathrm{S}}=R_{1}+R_ {2}+R_{3}\]

    \[=1,00\Омега + 6,00\Омега + 13,0\Омега\]

    \[=20,0 \Омега.\]

    Стратегия и решение для (b)

    Ток определяется по закону Ома \(V=IR\). Ввод значения приложенного напряжения и общего сопротивления дает ток для цепи:

    \[I=\dfrac{V}{R_{\mathrm{S}}}=\dfrac{12,0\Omega}{20,0\Omega}=0,600 \mathrm{A}.\]

    Стратегия и решение для (c)

    Падение напряжения или \(IR\) на резисторе определяется законом Ома. Ввод тока и значения первого сопротивления дает

    \[V_{1}=IR_{1}=(0,600\mathrm{A})(1,0\Omega)=0,600\mathrm{V}.\]

    Аналогично,

    \[V_{2}=IR_{2}=(0,600\mathrm{A})(6,0\Omega)=3,60\mathrm{V}\]

    и

    \[V_{3}= IR_{3}=(0,600\mathrm{A})(13,0\Omega)=7,80\mathrm{V}. \]

    Обсуждение для (c)

    Три капли \(IR\) добавляют к \(12.0\mathrm{V}\), как и предполагалось:

    \[V_{1}+V_{2}+V_ {3}=(0,600+3,60+7,80)\mathrm{V}=12,0\mathrm{V}.\]

    Стратегия и решение для (d)

    Самый простой способ расчета мощности в ваттах (Вт) рассеиваемая резистором в цепи постоянного тока, должна использовать закон 90 199 Джоуля 90 200, \(P=IV\), где \(P\) электрическая мощность. В этом случае через каждый резистор протекает одинаковый полный ток. Подставив закон Ома \(V=IR\) в закон Джоуля, мы получим мощность, рассеиваемую первым резистором, как 9{2}}{R}\), где \(V\) — падение напряжения на резисторе (не полное напряжение источника). Будут получены одинаковые значения.

    Стратегия и решение для (e)

    Самый простой способ рассчитать выходную мощность источника — использовать \(P=IV\), где \(V\) — напряжение источника. Это дает

    \[P=(0,600\mathrm{A})(12,0\mathrm{V})=7,20 \mathrm{W}. \]

    Обсуждение для (e)

    Обратите внимание, по совпадению, что общая мощность, рассеиваемая резисторами, также составляет 7,20 Вт, как и мощность, выдаваемая источником. то есть

    \[P_{1}+P_{2}+P_{3}=(0,360 +2,16+4,68)\mathrm{W}=7,20\mathrm{W}.\]

    Мощность – это энергия в единицу времени ( Вт), поэтому для сохранения энергии требуется, чтобы выходная мощность источника была равна общей мощности, рассеиваемой резисторами.

    ОСНОВНЫЕ ХАРАКТЕРИСТИКИ РЕЗИСТОРОВ В СЕРИИ

    1. Добавление последовательного сопротивления: \(R_{\mathrm{S}}=R_{1}+R_{2}+R_{3}+\dots\)
    2. Один и тот же ток протекает через каждый резистор последовательно.
    3. Отдельные последовательно соединенные резисторы не получают общее напряжение источника, а делят его.

    Резисторы, включенные параллельно

    На рисунке \(\PageIndex{3}\) показаны резисторы, соединенные параллельно , подключенные к источнику напряжения. Резисторы параллельны, когда каждый резистор подключен непосредственно к источнику напряжения соединительными проводами, имеющими незначительное сопротивление. Таким образом, к каждому резистору приложено полное напряжение источника.

    Каждый резистор потребляет такой же ток, как если бы он один был подключен к источнику напряжения (при условии, что источник напряжения не перегружен). Например, автомобильные фары, радиоприемник и т. д. соединены параллельно, так что они используют полное напряжение источника и могут работать совершенно независимо. То же самое верно и в вашем доме, или в любом здании. (См. рисунок \(\PageIndex{3}\)(b).)

    Рисунок \(\PageIndex{3}\): (a) Три резистора, подключенные параллельно к батарее, и эквивалентное одиночное или параллельное сопротивление. (b) Установка электроснабжения в доме. (кредит: Дмитрий Г, Wikimedia Commons)

    Чтобы найти выражение для эквивалентного параллельного сопротивления \(R_{\mathrm{p}}\), давайте рассмотрим протекающие токи и то, как они связаны с сопротивлением. Поскольку каждый резистор в цепи имеет полное напряжение, токи, протекающие через отдельные резисторы, равны \(I_{1}=\dfrac{V}{R_{1}}\), \(I_{2}=\dfrac{ V}{R_{2}}\) и \(I_{3}=\dfrac{V}{R_{3}}\). Сохранение заряда подразумевает, что полный ток \(I\), производимый источником, представляет собой сумму этих токов:

    \[I=I_{1}+I_{2}+I_{3}.\]

    Подстановка выражений для отдельных токов дает

    \[I=\dfrac{V}{R_{1}} +\dfrac{V}{R_{2}}+\dfrac{V}{R_{3}}=V(\dfrac{1}{R_{1}}+\dfrac{1}{R_{2}} +\dfrac{1}{R_{3}}).\]

    Обратите внимание, что закон Ома для эквивалентного единичного сопротивления дает

    \[I=\dfrac{V}{R_{\mathrm{p}}}= V(\dfrac{1}{R_{\mathrm{p}}}).\]

    Члены в скобках в последних двух уравнениях должны быть равны. Обобщая на любое количество резисторов, общее сопротивление \(R_{\mathrm{p}}\) параллельного соединения связано с отдельными сопротивлениями как

    \[\dfrac{1}{R_{\mathrm{p}}}=\dfrac{1}{R_{1}}+\dfrac{1}{R_{2}}+\dfrac{1}{ R_{3}}+\dots\]

    Это соотношение приводит к тому, что общее сопротивление \(R_{\mathrm{p}}\) меньше, чем наименьшее из отдельных сопротивлений. (Это видно в следующем примере.) Когда резисторы соединены параллельно, от источника протекает больший ток, чем для любого из них по отдельности, и поэтому общее сопротивление ниже.

    Пример \(\PageIndex{2}\): расчет сопротивления, тока, рассеиваемой мощности и выходной мощности: анализ параллельной цепи

    Пусть выходное напряжение батареи и сопротивления при параллельном соединении на рисунке \(\PageIndex{3}\) будут такими же, как при рассмотренном ранее последовательном соединении: \(V=12.0\mathrm{V},\: R_ {1}=1,00\Омега\: R_{2}=6,00\Омега\) и \(R_{3}=13,0\Омега\). а) Чему равно полное сопротивление? б) Найдите полный ток. (c) Рассчитайте токи в каждом резисторе и покажите, что их сумма равна общему выходному току источника. г) Рассчитайте мощность, рассеиваемую каждым резистором. (e) Найдите выходную мощность источника и покажите, что она равна полной мощности, рассеиваемой резисторами.

    Стратегия и решение для (a)

    Общее сопротивление для параллельной комбинации резисторов определяется с помощью приведенного ниже уравнения. Ввод известных значений дает

    \[\dfrac{1}{R_{\mathrm{p}}}=\dfrac{1}{R_{1}}+\dfrac{1}{R_{2}}+\dfrac {1}{R_{3}}=\dfrac{1}{1.00\Omega}+\dfrac{1}{6.00\Omega}+\dfrac{1}{13.0\Omega}.\]

    Таким образом,

    \[\dfrac{1}{R_{\mathrm{p}}}=\dfrac{1,00}{\Omega}+\dfrac{0,1667}{\Omega}+\dfrac{0,07692}{\Omega}=\ dfrac{1.2436}{\Omega}.\]

    (Обратите внимание, что в этих вычислениях каждый промежуточный ответ показан с дополнительной цифрой.)

    Мы должны инвертировать это, чтобы найти полное сопротивление \(R_{\mathrm{p}}\). Это дает

    \[R_{\mathrm{p}}=\dfrac{1}{1,2436}\Omega=0,8041\Omega.\]

    Общее сопротивление с правильным количеством значащих цифр равно \(R_{\ матрм{р}}=0,804\Омега\).

    Обсуждение для (a)

    \(R_{\mathrm{p}}\), как и предполагалось, меньше наименьшего индивидуального сопротивления.

    Стратегия и решение для (b)

    Полный ток можно найти из закона Ома, подставив \(R_{\mathrm{p}}\) вместо полного сопротивления. Это дает

    \[I=\dfrac{V}{R_{\mathrm{p}}}=\dfrac{12,0\mathrm{V}}{0,8041 \Omega}=14,92 \mathrm{A}.\]

    Обсуждение для (б)

    Ток \(i\) для каждого устройства намного больше, чем для тех же устройств, соединенных последовательно (см. предыдущий пример). Цепь с параллельными соединениями имеет меньшее общее сопротивление, чем резисторы, соединенные последовательно.

    Стратегия и решение для (c)

    Отдельные токи легко рассчитать по закону Ома, поскольку на каждый резистор подается полное напряжение. Таким образом,

    \[I_{1}=\dfrac{V}{R_{1}}=\dfrac{12.0\mathrm{V}}{1.00\Omega}=12.0\mathrm{A}.\]

    Аналогично,

    \[I_{2}=\dfrac{V}{R_{2}}=\dfrac{12.0\mathrm{V}}{6.00\Omega}=2.00\mathrm{A}\]

    и

    \[I_{3}=\dfrac{V}{R_{3}}=\dfrac{12.0\mathrm{V}}{13.0\Omega}=0,92\mathrm{A}.\]

    9{2}}{13.0\Omega}=11.1\mathrm{W}.\]

    Обсуждение для (d)

    Мощность, рассеиваемая каждым резистором при параллельном подключении, значительно выше, чем при последовательном подключении к одному и тому же напряжению. источник.

    Стратегия и решение для (e)

    Общая мощность также может быть рассчитана несколькими способами. Выбор \(P=IV\) и ввод общего тока дает

    \[P=IV=(14,92\mathrm{A})(12,0\mathrm{V})=179\mathrm{W}.\]

    Обсуждение для (д)

    Суммарная мощность, рассеиваемая резисторами, также составляет 179 Вт:

    \[P_{1}+P_{2}+P_{3}=144\mathrm{W}+24.0\mathrm{W}+11.1\mathrm {W}=179\mathrm{W}.\]

    Это согласуется с законом сохранения энергии.

    Общее обсуждение

    Обратите внимание, что и токи, и мощности при параллельном соединении больше, чем у тех же устройств, соединенных последовательно.

    ОСНОВНЫЕ ХАРАКТЕРИСТИКИ РЕЗИСТОРОВ, ПОДКЛЮЧЕННЫХ ПАРАЛЛЕЛЬНО

    1. Параллельное сопротивление находится из \(\dfrac{1}{R_{\mathrm{p}}}=\dfrac{1}{R_{1}}+\dfrac{1 }{R_{2}}+\dfrac{1}{R_{3}}+\dots\), и оно меньше любого отдельного сопротивления в комбинации.
    2. К каждому параллельно подключенному резистору приложено одинаковое полное напряжение источника. (Системы распределения электроэнергии чаще всего используют параллельные соединения для питания множества устройств, обслуживаемых одним и тем же напряжением, и позволяют им работать независимо.)
    3. Параллельные резисторы не получают суммарный ток каждый; они его делят.

    Комбинации последовательного и параллельного соединения

    Более сложные соединения резисторов иногда представляют собой просто комбинации последовательного и параллельного соединения. Они часто встречаются, особенно когда учитывается сопротивление проводов. В этом случае сопротивление провода включено последовательно с другими сопротивлениями, включенными параллельно.

    Комбинации последовательного и параллельного соединений можно привести к одному эквивалентному сопротивлению с помощью метода, показанного на рисунке \(\PageIndex{4}\). Различные части идентифицируются как последовательные или параллельные, сокращаются до их эквивалентов и далее сокращаются до тех пор, пока не останется единственное сопротивление. Процесс скорее трудоемкий, чем сложный.

    Рисунок \(\PageIndex{4}\): Эта комбинация семи резисторов имеет как последовательные, так и параллельные части. Каждое идентифицируется и приводится к эквивалентному сопротивлению, а затем они уменьшаются до тех пор, пока не будет достигнуто единое эквивалентное сопротивление.

    Простейшая комбинация последовательного и параллельного сопротивлений, показанная на рисунке \(\PageIndex{5}\), также является наиболее поучительной, поскольку она встречается во многих приложениях. Например, \(R_{1}\) может быть сопротивлением проводов от автомобильного аккумулятора до его электрических устройств, которые включены параллельно. \(R_{2}\) и \(R_{3}\) могут быть стартером и освещением салона. Ранее мы предполагали, что сопротивление провода пренебрежимо мало, но когда это не так, оно имеет важные последствия, как показывает следующий пример.

    Пример \(\PageIndex{3}\): расчет сопротивления, падения \(IR\), тока и рассеиваемой мощности: объединение последовательных и параллельных цепей

    На рисунке \(\PageIndex{5}\) показаны резисторы из предыдущие два примера подключены по-другому — комбинация последовательного и параллельного. Мы можем рассматривать \(R_1\) как сопротивление проводов, ведущих к \(R_2\) и \(R_3\). а) Найдите полное сопротивление. (б) Что такое падение \(IR\) в \(R_1\)? (c) Найдите ток от \(I_2\) до \(R_2\). (d) Какая мощность рассеивается \(R_2\)?

    Рисунок \(\PageIndex{5}\). Эти три резистора подключены к источнику напряжения так, что \(R_2\) и \(R_3\) параллельны друг другу, а эта комбинация последовательно с \(R_1\).

    Стратегия и решение для (a)

    Чтобы найти общее сопротивление, заметим, что \(R_2\) и \(R_3\) параллельны, а их комбинация \(R_p\) последовательно с \(R_1 \). Таким образом, полное (эквивалентное) сопротивление этой комбинации равно \[R_{tot} = R_1 + R_2.\]

    Сначала находим \(R_p\), используя уравнение для параллельных резисторов и вводя известные значения: \[\ dfrac{1}{R_p} = \dfrac{1}{R_2} + \dfrac{1}{6,00 \, \Omega} + \dfrac{1}{13,0 \, \Omega} = \dfrac{0,2436}{\ Омега}.\]

    Инвертирование дает \[R_p = \dfrac{1}{0,2436}\Omega = 4,11 \, \Omega. \] Таким образом, общее сопротивление равно \[R_{tot} = R_1 + R_p = 1,00 \Omega + 4,11 \Omega. = 5,11 \, \Омега.\]

    Обсуждение для (а)

    Суммарное сопротивление этой комбинации является промежуточным между чисто последовательными и чисто параллельными значениями (\(20,0 \, \Омега\) и \(0,804 \, \Omega\) соответственно), найденные для тех же резисторов в двух предыдущих примерах.

    Стратегия и решение для (b)

    Чтобы найти падение \(IR\) в \(R_1\), заметим, что полный ток \(I\) протекает через \(R_1\). Таким образом, его \(IR\) падение равно \[V_1 = IR_1.\]. Мы должны найти \(I\), прежде чем мы сможем вычислить \(V_1\). Полный ток \(I\) находится по закону Ома для цепи. То есть \[I = \dfrac{V}{R_{tot}} = \dfrac{12,0 \, V}{5,11 \, \Omega} = 2,35 \, A.\]. Вводя это в выражение выше, мы получить \[V_1 = IR_1 = (2,35 \, A)(1,00 \, \Omega) = 2,35 \, V.\]

    Обсуждение для (б)

    Напряжение на \(R_2\) и \(R_3\) меньше общего напряжения на величину \(V_1\). Когда сопротивление проводов велико, это может существенно повлиять на работу устройств, представленных \(R_2\) и \(R_3\).

    Стратегия и решение для (c)

    Чтобы найти ток через \(R_2\), мы должны сначала найти приложенное к нему напряжение. Мы называем это напряжение \(V_p\), потому что оно применяется к параллельной комбинации резисторов. Напряжение, подаваемое как на \(R_2\), так и на \(R_3\), уменьшается на величину \(V_1\), поэтому оно равно \[V_p = V — V_1 = 12,0 \, V — 2,35 \, V = 9.65 \, В.\] Теперь ток \(I_2\) через сопротивление \(R_2\) находится по закону Ома: \[I_2 = \dfrac{V_p}{R_2} = \dfrac{9,65 \, V} {6,00 \, \Omega} = 1,61 \, A.\]

    Обсуждение для (c)

    Ток меньше 2,00 А, которые протекали через \(R_2\), когда он был подключен параллельно к батарея в предыдущем примере с параллельной схемой.

    Стратегия и решение для (d)

    Мощность, рассеиваемая \(R_2\), определяется выражением \[P_2 = (I_2)^2 R_2 = (1 61 \, A)^2(6,00 \, \ омега) = 15,5\, Вт. \]

    Обсуждение для (d)

    Мощность меньше 24,0 Вт, рассеиваемых этим резистором при параллельном подключении к источнику 12,0 В.

    Практические выводы

    Одним из следствий последнего примера является то, что сопротивление в проводах уменьшает ток и мощность, подаваемые на резистор. Если сопротивление провода относительно велико, как в изношенном (или очень длинном) удлинителе, то эти потери могут быть значительными. Если потребляется большой ток, падение \(IR\) в проводах также может быть значительным.

    Например, когда вы роетесь в холодильнике и включается двигатель, освещение холодильника на мгновение гаснет. Точно так же вы можете увидеть тусклый свет в салоне, когда вы запускаете двигатель вашего автомобиля (хотя это может быть связано с сопротивлением внутри самой батареи).

    То, что происходит в таких сильноточных ситуациях, показано на рисунке \(\PageIndex{6}\). Устройство, представленное \(R_3\), имеет очень низкое сопротивление, поэтому при его включении протекает большой ток. Этот увеличенный ток вызывает большее падение \(IR\) в проводах, представленных \(R_1\), уменьшая напряжение на лампочке (которое равно \(R_2\)), которая затем заметно тускнеет.

    Рисунок \(\PageIndex{6}\): Почему при включении крупного электроприбора свет тускнеет? Ответ заключается в том, что большой ток, потребляемый двигателем электроприбора, вызывает значительное (IR) падение напряжения в проводах и снижает напряжение на лампе.

    Упражнение \(\PageIndex{1}\)

    Можно ли любую произвольную комбинацию резисторов разбить на последовательные и параллельные комбинации? Посмотрите, сможете ли вы нарисовать принципиальную схему резисторов, которые нельзя разбить на комбинации последовательных и параллельных соединений.

    Ответить

    Нет, существует множество способов соединения резисторов, которые не являются комбинацией последовательного и параллельного соединения, включая контуры и соединения. В таких случаях правила Кирхгофа, которые будут представлены в Правилах Кирхгофа, позволят вам проанализировать схему.

    Стратегии решения проблем для последовательных и параллельных резисторов

    1. Нарисуйте четкую принципиальную схему, обозначив все резисторы и источники напряжения. Этот шаг включает в себя список известных проблем, поскольку они помечены на вашей принципиальной схеме.
    2. Определите, что именно нужно определить в задаче (идентифицируйте неизвестные). Письменный список полезен.
    3. Определите, подключены ли резисторы последовательно, параллельно или как последовательно, так и параллельно. Изучите принципиальную схему, чтобы сделать эту оценку. Резисторы включены последовательно, если через них должен последовательно проходить один и тот же ток.
    4. Используйте соответствующий список основных функций для последовательных или параллельных соединений, чтобы найти неизвестные. Есть один список для серий и другой для параллельных. Если в вашей задаче сочетаются последовательные и параллельные соединения, уменьшите ее пошагово, рассмотрев отдельные группы последовательных или параллельных соединений, как это делается в этом модуле и в примерах. Специальное примечание: при нахождении \(R_p\) необходимо соблюдать осторожность.
    5. Проверьте, разумны ли и последовательны ли ответы. Единицы и численные результаты должны быть разумными. Например, общее последовательное сопротивление должно быть больше, тогда как общее параллельное сопротивление должно быть меньше. Мощность должна быть больше для тех же устройств, соединенных параллельно, по сравнению с последовательными и т.д.

    Резюме

    • Общее сопротивление электрической цепи с последовательно соединенными резисторами представляет собой сумму отдельных сопротивлений: \(R_s = R_1 + R_2 + R_3 + ….\)
    • Через каждый резистор в последовательной цепи протекает одинаковый ток.
    • Падение напряжения или рассеиваемая мощность на каждом отдельном резисторе в серии различны, и их общая сумма составляет входную мощность источника питания.
    • Общее сопротивление электрической цепи с параллельно соединенными резисторами меньше наименьшего сопротивления любого из компонентов и может быть определено по формуле: \(\dfrac{1}{R_p} = \dfrac{1}{R_1 } +\dfrac{1}{R_2} + \dfrac{1}{R_3} + . …\)
    • К каждому резистору в параллельной цепи приложено одинаковое полное напряжение источника.
    • Ток, протекающий через каждый резистор в параллельной цепи, различен в зависимости от сопротивления.
    • Если более сложное соединение резисторов представляет собой комбинацию последовательного и параллельного сопротивления, его можно свести к единому эквивалентному сопротивлению, обозначив различные его части как последовательные или параллельные, сведя каждую к эквиваленту и продолжая до тех пор, пока в конечном итоге не будет достигнуто единое сопротивление. .

    Глоссарий

    Серия
    последовательность резисторов или других компонентов, включенных в цепь один за другим
    резистор
    компонент, обеспечивающий сопротивление току, протекающему по электрической цепи
    сопротивление
    , вызывающий потерю электроэнергии в цепи
    Закон Ома
    соотношение между током, напряжением и сопротивлением в электрической цепи: V=IR
    напряжение
    электрическая потенциальная энергия на единицу заряда; электрическое давление, создаваемое источником питания, например батареей
    падение напряжения
    потеря электроэнергии при протекании тока через резистор, провод или другой компонент
    текущий
    поток заряда через электрическую цепь мимо заданной точки измерения
    Закон Джоуля
    Соотношение между потенциальной электрической мощностью, напряжением и сопротивлением в электрической цепи, определяемое как: \(P_e = IV\)
    параллельный
    соединение резисторов или других компонентов в электрической цепи таким образом, что каждый компонент получает одинаковое напряжение от источника питания; часто изображается на диаграмме в виде лестницы, где каждый компонент находится на ступеньке лестницы

    Эта страница под названием 21.


    Опубликовано

    в

    от

    Метки:

    Комментарии

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *