Индуктивность это физическая: Явление самоиндукции — урок. Физика, 8 класс.

ИНДУКТИВНОСТЬ | это… Что такое ИНДУКТИВНОСТЬ?

в электродинамике (коэффициент самоиндукции) (от лат. inductio — наведение, побуждение) — параметр электрич. цепи, определяющий величину эдс самоиндукции, наводимой в цепи при изменении протекающего по ней тока и (или) при её деформации. Термин «И.» употребляется также для обозначения элемента цени (двухполюсника), определяющего её индуктивные свойства (синоним — катушка самоиндукции).И. является количеств. характеристикой эффекта самоиндукции, открытого независимо Дж. Генри (J. Henry) в 1832 и М. Фарадеем (М. Faraday) в 1835. При изменении тока в цепи и (или) при её деформации происходит изменение магн. поля, к-рое, в соответствии с законом индукции, приводит к возникновениювихревого электрич. поля E(r, t )с отличной от нуля циркуляцией

по замкнутым контурам li;пронизываемым магн. потоком Ф i. Внутри проводника вихревое поле Е взаимодействует с порождающим его током и оказывает противодействие изменению магн. ) циркуляция вектора E вдоль этой линии тока, jn — нормальная к Snp составляющая j. В более сложных ситуациях, когда линии тока замыкаются после неск. обходов по контуру или вообще не являются замкнутыми кривыми, процедура усреднения требует уточнений, однако во всех случаях она должнаудовлетворять энергетич. соотношению: =E сиI ( Р— суммарная мощность взаимодействия поля с током).Усреднённый магн. поток в случае квазистацнонарных процессов пропорц. току:

Ф=L.I (в СИ), Ф=1/c(LI)(в системе СГС). (1)

Коэф. L и Lназ. И. Величина L измеряется в генри, L в см.

E си=-d/dt(LI) (в СИ), E=-(1/с 2)(d/dt)(LI)(2) (в системе СГС).

Производная по времени от И. определяет ту часть E си, к-рая связана с деформацией проводящего контура; в случае недеформируемых цепей и квазистационарных процессов И. может быть вынесена из-под знака дифференцирования. энергия, запасённая в создаваемом им магн. поле, записывается в форме, аналогичной выражению для кинетич. энергии.

Wm=1/2LI2 (в СИ), Wm=1/2c2LI2 (в системе СГС). (3)

Соотношение (3) позволяет различать И. внутреннюю Li, определяющую энергию магн. поля, сосредоточенного в проводниках, и внешнюю Le, связанную с внеш. магн. полем (L=Li+Le, L=Li+Le). В важном частном случае токовой цепи, выполненной из проводов, толщина к-рых мала по сравнению с радиусамиих изгибов или расстояниями между соседними проводами, можно считать, что структура токов и ближнего магн. поля такая же, как и для прямого провода того же сечения (подобные проводники наз. квазилинейными). В приближении заданной структуры токов, не зависящей от способа их возбуждения, И. определяется только геометрией проводящей цепи (толщиной и длиной проводов и их формой). Для квазилинейного провода кругового сечения Li=(m0/8p)mil (l — длина провода, mi — магн. проницаемость проводника), а внешняя И. может быть представлена как индуктивность взаимная двух параллельных бесконечно тонких проводящих нитей, одна из к-рых (l1) совпадает с осевой линией проводника, а другая (l2) совмещена с его поверхностью:

где r1, r2 — радиус-векторы точек на контурах ll,l2,m е магн. проницаемость окружающей среды [для аналогия, соотношений в системе СГС L «(m0/4p)L]. Из (4) видно, что Le логарифмически расходится при стремлении радиуса провода к нулю, поэтому идеализацией бесконечно тонкого провода нельзя пользоваться при описании явлений самоиндукции. Приближённые вычисления интеграла в (4) с учётом внутренней И. дают:

где l и а — длина и радиус провода. Это выражение обладает логарифмич. точностью — его относит. погрешность порядка величины l/ln(l/a). Примеры типичных электрич. цепей и выражения для их И. приведены на рис. 1 и 2.

Рис. 1. Круговой виток. Индуктивность витка (проводящего тора): L=m0R(ln(8R/r)-2+1/4mi), Гн, r<<R.

Особое значение в электротехнике и радиотехнике имеют проволочные катушки с достаточно плотной намоткой — соленоиды (рис. 3), применяемые для увеличения И. Поскольку И. цепей, в к-рые включены соленоиды, ими в основном и определяются, принято говорить об И. соленоида. Под величиной И. идеальногосоленоида понимают И. эфф. проводящей поверхности (совпадающей с его каркасом), по к-рой протекают азимутальные поверхностные токи с плотностью j пов=Ik (I — ток в соленоиде, k — число витков на единице длины).

Понятие И. допускает обобщение на быстропеременные гармонич. ехр(iwt)-процессы, при описании к-рых нельзя пренебрегать запаздыванием эл.-магп. взаимодействий, скин-эффектом в проводниках, дисперсией среды. Комплексные амплитуды тока Iw и эдс самоиндукции Ew связаны соотношением:

И. L(w) зависит от частоты (как правило, уменьшается с её ростом). Эфф. сопротивление RL(w) определяет часть энергетич. потерь, в т. ч. потери на излучение, и связано с L(w) Крамерса — Кронига соотношением:

где интеграл берётся в смысле гл. значения. На низких частотах сопротивлением RL(w) можно пренебречь, тогда Ew и Iw сдвинуты по фазе на p/2. Соотношение (3) для высокочастотных процессов преобразуется к виду:

где Wmw усреднённая по периоду колебаний энергия ближних (квазистационарных) магн. полей (полная магн. энергия поля не определена из-за линейно растущей во времени энергии поля излучения).Если в цепи действует гармонич. сторонняя эдс , то во втором законе Кирхгофа величина Ew может быть перенесена (со сменой знака) в правую часть равенства:

где С ёмкость, включённая в цепь. Соотношение (9) позволяет трактовать величину ZL=iwLкак индуктивную часть импеданса цепи (при атом ZC=-i/w С —ёмкостная, a ZR=R— активная части полного импеданса Z=ZL+ZC+ZR). Принято считать, что импеданс двухполюсника имеет индуктивный характер, если его мнимая часть больше нуля [если рассматриваются ехр (-iwt)-процессы, то меньше нуля]. В технике довольно часто И. наз. любой двухполюсник, импеданс к-рого имеет индуктивный характер п в опредсл. диапазоне частот линейно зависит от w. Если индуктивные элементы выполнены в виде катушек самоиндукции, то считать их двухполюсниками можно, вообще говоря, только в том случае, когда взаимодействие через магн. поля между ними и с др. элементами цепи пренебрежимо мало. Тогда их импедансы можно складывать в соответствии с правилами Кирхгофа: при последовательном соединении , а при параллельном При описании сильноточных цепей часто требуется обобщение понятия И. на случай нелинейных систем. Если неподвижный проводящий контур помещён всреду, в к-рой вектор магн. индукции В и напряжённость магн. поля Н связаны нелинейным локальным соотношением: B(r, t)=B[H(r, t)], то сцепленный с контуром магн. поток можно считать однозначной ф-цией тока Ф=Ф(I). В соответствии с законом индукции Фарадея, эдс самоиндукции в контуре равна:

Величина L Д(I)=d Ф /dIназ. дифференциальной (или иногда динамической) И. Выражение для запасённой энергии пост. тока приобретает вид:

B линейном приближении (при I «0) L Д «L и выражения (10), (11) переходят в (2) и (3) соответственно. Лит.: Тамм И. Е., Основы теории электричества9 изд., М., 1976; Калантаров П. Л., Цейтлин Л. А. Расчет индуктивностей, 3 изд., Л., 1986; Ландау Л. Д. Лифшиц Е. М., Электродинамика сплошных сред, 2 изд. М., 1982. М. А. Миллер, Г. В. Пермитин


Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия.
Главный редактор А. М. Прохоров.
1988.

Явление самоиндукции — определение, формулы, примеры

Покажем, как применять знание физики в жизни

Начать учиться

Быть самостоятельным — это хорошо. Вот и электрический ток решил, что он сам со всем разберется. А нам в этой статье предстоит разобраться в явлении самоиндукции.

Магнитный поток

Прежде чем говорить об электромагнитной индукции и самоиндукции, нам нужно определить сущность магнитного потока.

Представьте, что вы взяли в руки обруч и вышли на улицу в ливень. Потоки воды будут проходить через обруч.

Если держать обруч горизонтально, то через него пройдет много воды. А если начать его поворачивать — уже меньше, потому что он расположен не под прямым углом к вертикали.

Теперь давайте поставим обруч вертикально — ни одной капли не пройдет сквозь него (если ветер не подует, конечно).

Магнитный поток очень похож на поток воды, проходящей через обруч, только считаем мы величину прошедшего через площадь магнитного поля, а не дождя.

Магнитным потоком через площадь ​S​ контура называют скалярную физическую величину, равную произведению:

  • модуля вектора магнитной индукции ​B​,
  • площади поверхности ​S​, которую пронизывает поток,
  • и косинуса угла ​α​ между направлением вектора магнитной индукции и вектора нормали (перпендикуляра к плоскости данной поверхности).

Магнитный поток

Ф — магнитный поток [Вб]

B — магнитная индукция [Тл]

S — площадь пронизываемой поверхности [м2]

n — вектор нормали (перпендикуляр к поверхности) [-]

Магнитный поток можно наглядно представить как величину, пропорциональную числу магнитных линий, проходящих через данную площадь.

В зависимости от угла ​α магнитный поток может быть положительным (α < 90°) или отрицательным (α > 90°). Если α = 90°, то магнитный поток равен 0.

Изменить магнитный поток можно, меняя площадь контура, модуль индукции поля или расположение контура в магнитном поле (поворачивая его).

В случае неоднородного магнитного поля и неплоского контура магнитный поток находят как сумму магнитных потоков, пронизывающих площадь каждого из участков, на которые можно разбить данную поверхность.

Практикующий детский психолог Екатерина Мурашова

Бесплатный курс для современных мам и пап от Екатерины Мурашовой. Запишитесь и участвуйте в розыгрыше 8 уроков

Электромагнитная индукция

Электромагнитная индукция — явление возникновения тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего его.

Явление электромагнитной индукции открыл Майкл Фарадей в ходе серии опытов.

Опыт раз. На одну непроводящую основу намотали две катушки таким образом, что витки одной катушки были расположены между витками второй. Витки первой катушки были замкнуты на гальванометр, а второй — подключены к источнику тока.

При замыкании ключа и протекании тока по второй катушке в первой возникал импульс тока. При размыкании ключа также наблюдался импульс тока, но ток через гальванометр тек в противоположном направлении.

Опыт два. Первую катушку подключили к источнику тока, а вторую — к гальванометру. При этом вторая катушка перемещалась относительно первой. При приближении или удалении катушки фиксировался ток.

Опыт три. Катушку замкнули на гальванометр, а магнит передвигали относительно катушки.

Вот что показали эти опыты:

  1. Индукционный ток возникает только при изменении линий магнитной индукции.
  2. Направление тока различается при увеличении числа линий и при их уменьшении.
  3. Сила индукционного тока зависит от скорости изменения магнитного потока. При этом как само поле может изменяться, так и контур может перемещаться в неоднородном магнитном поле.

Почему возникает индукционный ток?

Ток в цепи может существовать, когда на свободные заряды действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура равна электродвижущей силе (ЭДС).

Значит, при изменении числа магнитных линий через поверхность, ограниченную контуром, в нем появляется ЭДС, которую называют ЭДС индукции.

Самоиндукция

Представим себе любую электрическую цепь, параметры которой можно менять. Если мы изменим силу тока в этой цепи — например, подкрутим реостат или подключим другой источник тока — произойдет изменение магнитного поля. В результате этого изменения в цепи возникнет дополнительный индукционный ток за счет электромагнитной индукции, о которой мы говорили выше. Такое явление называется самоиндукцией, а возникающий при этом ток — током самоиндукции.

Формула магнитного потока для самоиндукции

Ф = LI

Ф — собственный магнитный поток [Вб]

L — индуктивность контура [Гн]

I — сила тока в контуре [А]

Онлайн-подготовка к ОГЭ по физике поможет снять стресс перед экзаменом и получить высокий балл.

Самоиндукция — это возникновение в проводящем контуре ЭДС, создаваемой вследствие изменения силы тока в самом контуре.

Самоиндукция чем-то напоминает инерцию: как в механике нельзя мгновенно остановить движущееся тело, так и ток не может мгновенно приобрести определенное значение за счет самоиндукции.

Представим цепь, состоящую из двух одинаковых ламп, параллельно подключенных к источнику тока. Если мы последовательно со второй лампой включим в эту цепь катушку, то при замыкании цепи произойдет следующее:

  • первая лампа загорится практически сразу,
  • вторая лампа загорится с заметным запаздыванием.

При размыкании цепи сила тока быстро уменьшается, и возникающая ЭДС самоиндукции препятствует уменьшению магнитного потока. При этом индуцированный ток направлен так же, как и исходный. ЭДС самоиндукции может во многом раз превысить внешнюю ЭДС. Поэтому электрические лампочки так часто перегорают при отключении света.

ЭДС самоиндукции

ξis — ЭДС самоиндукции [В]

ΔФ/Δt — скорость изменения магнитного потока [Вб/с]

ΔI/Δt — скорость изменения силы тока в контуре [А/с]

L — индуктивность [Гн]

Знак минуса в формуле закона электромагнитной индукции указывает на то, что ЭДС индукции препятствует изменению магнитного потока, который вызывает ЭДС. При решении расчетных задач знак минуса не учитывается.

Индуктивность

Индуктивность — это способность катушки, контура или проводника с током накапливать магнитное поле. Она характеризует способность проводника сопротивляться электрическому току. Проще всего это делать с помощью катушки, потому что катушка состоит из витков, которые представляют собой контуры. Вспомните про магнитный поток и обруч под дождем — в контуре создается магнитный поток. Где поток, там и электромагнитная индукция.

Индуктивность контура зависит от его формы и размеров, от магнитных свойств окружающей среды и не зависит от силы тока в контуре.

Можно ли увеличивать индуктивность катушки?

Конечно! Можно увеличить число витков, например. Или поместить в центр катушки железный сердечник.

Как работает катушка

Вокруг каждого проводника, по которому протекает ток, образуется магнитное поле. Если поместить проводник в переменное поле — в нем возникнет ток.

Магнитные поля каждого витка катушки складываются. Поэтому вокруг катушки, по которой протекает ток, возникает сильное магнитное поле. При изменении силы тока в катушке будет изменяться и магнитный поток вокруг нее.

Задачка раз

На рисунке приведен график зависимости силы тока от времени в электрической цепи, индуктивность которой 1 мГн. Определите модуль ЭДС самоиндукции в интервале времени от 15 до 20 с. Ответ выразите в мкВ.

Решение

За время от 15 до 20 с сила тока изменилась от 20 до 0 мА. Модуль ЭДС самоиндукции равен:

Ответ: модуль ЭДС самоиндукции с 15 до 20 секунд равен 4 мкВ.

Задачка два

По проволочной катушке протекает постоянный электрический ток силой 2 А. При этом поток вектора магнитной индукции через контур, ограниченный витками катушки, равен 4 мВб. Электрический ток какой силы должен протекать по катушке для того, чтобы поток вектора магнитной индукции через указанный контур был равен 6 мВб?

Решение

При протекании тока через катушку индуктивности возникает магнитный поток, численно равный Ф = LI.

Отсюда индуктивность катушки равна:

Тогда для достижения значений потока вектора магнитной индукции в 6 мВб ток будет равен:

Ответ: для достижения значений потока вектора магнитной индукции в 6 мВб необходим ток в 3 А.

Карина Хачатурян

К предыдущей статье

Закон Кеплера

К следующей статье

162.8K

Закон всемирного тяготения

Получите индивидуальный план обучения физике на бесплатном вводном уроке

На вводном уроке с методистом

  1. Выявим пробелы в знаниях и дадим советы по обучению

  2. Расскажем, как проходят занятия

  3. Подберём курс

Индуктивность | Физика

Цели обучения

К концу этого раздела вы сможете:

  • Вычислять индуктивность катушки индуктивности.
  • Рассчитайте энергию, запасенную в катушке индуктивности.
  • Рассчитайте ЭДС, создаваемую катушкой индуктивности.

Катушки индуктивности

Индукция — это процесс, при котором ЭДС индуцируется изменением магнитного потока. До сих пор обсуждалось множество примеров, некоторые из которых более эффективны, чем другие. Трансформаторы, например, спроектированы таким образом, чтобы быть особенно эффективными при наведении желаемого напряжения и тока с очень небольшой потерей энергии в другие формы. Существует ли полезная физическая величина, связанная с тем, насколько «эффективно» данное устройство? Ответ положительный, и эта физическая величина называется 9.0019 индуктивность . Взаимная индуктивность — это действие закона индукции Фарадея для одного устройства на другое, например, первичная катушка при передаче энергии вторичной обмотке в трансформаторе. См. рис. 1, где простые катушки наводят друг в друге ЭДС.

Рисунок 1. Эти катушки могут индуцировать ЭДС друг в друге, как неэффективный трансформатор. Их взаимная индуктивность М указывает на эффективность связи между ними. Здесь видно, что изменение тока в катушке 1 индуцирует ЭДС в катушке 2. (Обратите внимание, что » E 2 индуцируемая» представляет ЭДС индукции в катушке 2.)

Во многих случаях, когда геометрия устройств фиксирована, поток изменяется при изменении тока. Поэтому мы сосредоточимся на скорости изменения тока, ∆ I / ∆ t , как на причине индукции. Изменение тока I 1 в одном устройстве, катушка 1 на рисунке, индуцирует ЭДС 2 в другом. Мы выражаем это в форме уравнения как

[латекс] {\ текст {ЭДС}} _ {2} = — М \ гидроразрыва {\ Delta {I} _ {1}} {\ Delta t} \\ [/латекс] ,

, где M определяется как взаимная индуктивность между двумя устройствами. Знак минус является выражением закона Ленца. Чем больше взаимная индуктивность M , тем эффективнее связь. Например, катушки на Рисунке 1 имеют небольшой размер M по сравнению с катушками трансформатора на Рисунке 3 от компании Transformers. Единицами для M являются (В ⋅ с) / A = Ω ⋅ с, который назван Генри (H) в честь Джозефа Генри. То есть 1 Гн = 1 Ом⋅с. Природа здесь симметрична. Если мы изменим текущий I 2 в катушке 2, мы индуцируем ЭДС 1 в катушке 1, которая определяется как

[латекс]{\текст{ЭДС}}_{1}=-M\frac{\Delta { I}_{2}}{\Delta t}\\[/latex],

, где M то же, что и для обратного процесса. Трансформаторы работают в обратном направлении с той же эффективностью или взаимной индуктивностью M . Большая взаимная индуктивность M может быть или не быть желательной. Мы хотим, чтобы трансформатор имел большую взаимную индуктивность. Но такой прибор, как электрическая сушилка для белья, может индуцировать на своем корпусе опасную ЭДС, если взаимная индуктивность между его катушками и корпусом велика. Один из способов уменьшить взаимную индуктивность M предназначен для противодействия катушкам, чтобы нейтрализовать создаваемое магнитное поле. (См. рис. 2.)

Рис. 2. Нагревательные спирали электрической сушилки для белья можно намотать встречно, так что их магнитные поля компенсируют друг друга, что значительно снижает взаимную индуктивность с корпусом сушилки.

Самоиндукция , также существует действие закона Фарадея об индукции устройства на себя. Когда, например, ток через катушку увеличивается, магнитное поле и поток также увеличиваются, индуцируя противо-ЭДС, как того требует закон Ленца. И наоборот, если ток уменьшается, индуцируется ЭДС, препятствующая уменьшению. Большинство устройств имеют фиксированную геометрию, поэтому изменение потока полностью связано с изменением тока Δ I через устройство. ЭДС индукции связана с физической геометрией устройства и скоростью изменения тока. Он определяется как

[латекс]\текст{ЭДС}=-L\frac{\Delta I}{\Delta t}[/латекс],

, где л — собственная индуктивность устройства. Устройство, обладающее значительной собственной индуктивностью, называется катушкой индуктивности и обозначено символом на рис. 3.

Рис. 3.

Знак минус является выражением закона Ленца, указывающим, что ЭДС противодействует изменению тока. Единицами самоиндукции являются генри (Гн), как и для взаимной индуктивности. Чем больше собственная индуктивность L устройства, тем больше его сопротивление любому изменению тока через него. Например, большая катушка с множеством витков и железным сердечником имеет большую L и не позволит току быстро меняться. Чтобы избежать этого эффекта, необходимо получить небольшую катушку L , например, путем встречной обмотки катушек, как показано на рис. 2. Катушка индуктивности 1 Гн является большой катушкой индуктивности. Чтобы проиллюстрировать это, рассмотрим устройство с л = 1,0 Гн, через которое протекает ток 10 А. Что произойдет, если мы попытаемся отключить ток быстро, возможно, всего за 1,0 мс? ЭДС, определяемая как ЭДС = − L I t ), будет противиться изменению. Таким образом, будет индуцироваться ЭДС, определяемая как ЭДС = — л I / t ) = (1,0 Гн)[(10 А)/(1,0 мс)] = 10 000 В. Положительный знак означает, что это большое напряжение идет в том же направлении, что и ток, противодействуя его уменьшению. Такие большие ЭДС могут вызывать искрение, повреждая коммутационное оборудование, поэтому может потребоваться более медленное изменение тока. Есть применение такому большому наведенному напряжению. Вспышки камеры используют батарею, две катушки индуктивности, которые функционируют как трансформатор, и систему переключения или осциллятор для создания больших напряжений. (Помните, что нам нужно изменяющееся магнитное поле, вызванное изменяющимся током, чтобы индуцировать напряжение в другой катушке.) Система генератора будет делать это много раз, когда напряжение батареи увеличится до более чем одной тысячи вольт. (Вы можете услышать пронзительный вой трансформатора во время зарядки конденсатора.) Конденсатор сохраняет высокое напряжение для последующего использования при питании вспышки. (См. рис. 4.)

Рис. 4. Благодаря быстрому переключению катушки индуктивности батареи напряжением 1,5 В можно использовать для наведения ЭДС в несколько тысяч вольт. Это напряжение можно использовать для хранения заряда в конденсаторе для последующего использования, например, во вспышке фотоаппарата.

Можно рассчитать L для индуктора, зная его геометрию (размер и форму) и зная создаваемое им магнитное поле. В большинстве случаев это сложно из-за сложности создаваемого поля. Итак, в этом тексте индуктивность L обычно заданное количество. Единственным исключением является соленоид, потому что он имеет очень однородное поле внутри, почти нулевое поле снаружи и простую форму. Поучительно вывести уравнение для его индуктивности. Начнем с того, что заметим, что ЭДС индукции определяется по закону индукции Фарадея как ЭДС = — Н Φ / t ) и, по определению самоиндукции, как ЭДС = — л I / Δ t ). Приравнивание этих выходов

[латекс]\текст{ЭДС}=-N\frac{\Delta \Phi }{\Delta t}=-L\frac{\Delta I}{\Delta t}\\[/latex]

Решение для L дает

[латекс] L=N\frac{\Delta \Phi }{\Delta I}\\[/latex]

Это уравнение для собственной индуктивности L устройства всегда справедливо. Это означает, что собственная индуктивность L зависит от того, насколько эффективен ток в создании потока; тем эффективнее, чем больше Δ Φ / Δ I . Воспользуемся этим последним уравнением, чтобы найти выражение для индуктивности соленоида. Так как район A соленоида фиксирован, изменение потока Δ Φ = Δ( B A ) = A Δ B . Чтобы найти Δ B , заметим, что магнитное поле соленоида определяется как [латекс] B = {\ mu } _ {0} {nI} = {\ mu } _ {0} \ frac {NI} { \ell}\\[/латекс]. (Здесь N / , где N — количество витков, а — длина соленоида. ) Изменяется только ток, так что [латекс]\Delta \Phi =A\ Дельта B = {\ mu } _ {0} \ text {NA} \ frac {\ Delta I} {\ ell} \\ [/latex]. Подставляя Δ 9{2}A}{\ell}\text{(соленоид)}\\[/латекс].

Это собственная индуктивность соленоида с площадью поперечного сечения A и длиной . Обратите внимание, что индуктивность зависит только от физических характеристик соленоида, соответствующих его определению.

Пример 1. Расчет собственной индуктивности соленоида среднего размера

Рассчитайте собственную индуктивность соленоида длиной 10,0 см и диаметром 4,00 см с 200 витками.

Стратегия 9{2}A}{\ell }\\[/latex]

Площадь поперечного сечения в этом примере  A = πr 2 = (3,14…)(0,0200 м) 2 = 1,26 × 10 −3 м 2 , N равно 200, а длина ℓ равна 0,100 м. Мы знаем, что проницаемость свободного пространства составляет мк 0 = 4π × 10 −7 Тл ⋅ м/А. {2}\right)}{0,100 \text{ м}}\\ & =& 0,632 \text{ мГн}\end{массив}\\[/latex].

Обсуждение

Этот соленоид средних размеров. Его индуктивность около миллигенри также считается умеренной.

Одно из распространенных приложений индуктивности используется в светофорах, которые могут определить, когда транспортные средства ожидают на перекрестке. Электрическая цепь с индуктором размещена на дороге под местом остановки ожидающего автомобиля. Кузов автомобиля увеличивает индуктивность, и схема меняется, посылая сигнал светофору изменить цвет. Точно так же металлоискатели, используемые для обеспечения безопасности в аэропортах, используют ту же технику. Катушка или индуктор в корпусе металлоискателя действует как передатчик и приемник. Импульсный сигнал в катушке передатчика индуцирует сигнал в приемнике. На самоиндукцию цепи влияет любой металлический предмет на пути. Такие детекторы могут быть настроены на чувствительность, а также могут указывать примерное местонахождение обнаруженного на человеке металла. (Но они не смогут обнаружить пластиковую взрывчатку, подобную той, что была обнаружена на «подрывнике в нижнем белье».) См. рис. 5.

Рисунок 5. Знакомые ворота безопасности в аэропорту могут не только обнаруживать металлы, но и указывать их приблизительную высоту над полом. (кредит: Alexbuirds, Wikimedia Commons)

Энергия, запасенная в индукторе

Из закона Ленца мы знаем, что индуктивности противодействуют изменениям тока. Есть альтернативный взгляд на эту оппозицию, основанный на энергии. Энергия хранится в магнитном поле. Требуется время, чтобы накопить энергию, и также нужно время, чтобы истощить энергию; следовательно, существует оппозиция быстрым изменениям. В индукторе магнитное поле прямо пропорционально току и индуктивности устройства. Можно показать, что 9{2}\right)=0,284 \text{ J}\end{array}\\[/latex]

Обсуждение

Этого количества энергии, безусловно, достаточно, чтобы вызвать искру, если ток внезапно отключится. Он не может быть построен мгновенно, если только потребляемая мощность не бесконечна.

Резюме раздела

  • Индуктивность — это свойство устройства, которое показывает, насколько эффективно оно индуцирует ЭДС в другом устройстве.
  • Взаимная индуктивность — это действие двух устройств, индуцирующих ЭДС друг в друге.
  • Изменение тока Δ I 1 t в одном индуцирует ЭДС 2  во втором:

    [латекс]{\текст{ЭДС}}_{2}=-M\frac{\Delta {I}_{1}}{\Delta t}\\[/latex],

    , где определяется как взаимная индуктивность между двумя устройствами, а знак минус соответствует закону Ленца.

  • Симметрично изменение тока Δ I 2 /Δt через второе устройство индуцирует ЭДС 1  в первом:

    [латекс] {\ текст {ЭДС}} _ {1} = — М \ гидроразрыва {\ Delta {I} _ {2}} {\ Delta t} \\ [/ латекс],

    , где M  такая же взаимная индуктивность, как и в обратном процессе.

  • Текущие изменения в устройстве индуцируют ЭДС в самом устройстве.
  • Самоиндукция — это эффект устройства, индуцирующего ЭДС само по себе.
  • Прибор называется индуктором, а ЭДС, индуцируемая в нем изменением тока через него, равна

    [латекс]\текст{ЭДС}=-L\frac{\Delta I}{\Delta t}\\[/latex],

    , где L — собственная индуктивность индуктора, а Δ I / Δ t — скорость изменения тока через него. Знак минус указывает на то, что ЭДС противодействует изменению тока, как того требует закон Ленца.

  • Единицей собственной и взаимной индуктивности является генри (Гн), где 1 Гн = 1 Ом⋅с.
  • Собственная индуктивность L катушки индуктивности пропорциональна тому, насколько поток изменяется с током. Для катушки индуктивности N ,
    9{2}\\[/латекс].

Концептуальные вопросы

  1. Как бы вы поместили две одинаковые плоские катушки в контакт, чтобы они имели наибольшую взаимную индуктивность? В мере?
  2. Как бы вы придали проводу заданной длины такую ​​форму, чтобы обеспечить наибольшую самоиндукцию? В мере?
  3. Проверить, как было сделано без доказательства в Примере 1 (выше), что единицы T ⋅ m 2 / = Ω ⋅ s = H.

Задачи и упражнения

1. Две катушки расположены близко друг к другу в физической лаборатории, чтобы продемонстрировать закон индукции Фарадея. Ток 5,00 А в одном отключается за 1,00 мс, индуцируя ЭДС 9,00 В в другом. Чему равна их взаимная индуктивность?

2. Если две катушки, расположенные рядом друг с другом, имеют взаимную индуктивность 5,00 мГн, какое напряжение индуцируется в одной, когда ток 2,00 А в другой отключается через 30,0 мс?

3. Ток 4,00 А через катушку индуктивности 7,50 мГн отключается за 8,33 мс. Какая ЭДС индуцирует противодействие этому?

4. Устройство включено, и через него через 0,100 мс проходит ток 3,00 А. Чему равна собственная индуктивность прибора, если ей противодействует ЭДС наведенного напряжения 150 В?

5. Начиная с [latex]{\text{emf}}_{2}=-M\frac{\Delta {I}_{1}}{\Delta t}\\[/latex], покажите, что единицы индуктивности (В ⋅ с)/A = Ом ⋅ с.

6. Вспышки фотокамеры заряжают конденсатор до высокого напряжения, быстро включая и выключая ток через катушку индуктивности. За какое время необходимо включить или выключить ток 0,100 А через катушку индуктивности 2,00 мГн, чтобы индуцировать ЭДС 500 В?

7. Большой исследовательский соленоид имеет собственную индуктивность 25,0 Гн. а) Какая ЭДС наведения препятствует его отключению, если ток 100 А через него отключается за 80,0 мс? б) Сколько энергии запасается в катушке индуктивности при полном токе? в) С какой скоростью в ваттах должна рассеиваться энергия, чтобы ток выключился за 80,0 мс? (d) Принимая во внимание ответ на последнюю часть, удивительно ли, что так быстро закрыть его сложно?

8. (a) Рассчитайте собственную индуктивность соленоида длиной 50,0 см и диаметром 10,0 см, имеющего 1000 витков. б) Сколько энергии запасается в этом индукторе при протекании через него тока силой 20,0 А? в) Как быстро его можно выключить, если ЭДС индукции не может превышать 3,00 В?

9. Прецизионный лабораторный резистор изготовлен из витка проволоки диаметром 1,50 см и длиной 4,00 см и имеет 500 витков. а) Чему равна его собственная индуктивность? б) Какая средняя ЭДС индуцируется, если ток 12,0 А через него включается за 5,00 мс (одна четвертая периода для переменного тока частотой 50 Гц)? в) Какова его индуктивность, если его укоротить наполовину и намотать встречно (два слоя по 250 витков в противоположных направлениях)?

10. Нагревательные спирали в фене имеют диаметр 0,800 см, общую длину 1,00 м и общее количество витков 400. а) Какова их полная собственная индуктивность, если предположить, что они действуют как одиночный соленоид? б) Сколько энергии запасается в них при токе 6,00 А? (c) Какая средняя ЭДС препятствует их отключению, если это делается за 5,00 мс (одна четвертая часть цикла для переменного тока с частотой 50 Гц)?

11. Когда ток 20,0 А через индуктор отключается за 1,50 мс, индуцируется ЭДС 800 В, противодействующая изменению. Каково значение собственной индуктивности?

12. Как быстро может быть отключен ток 150 А через дроссель 0,250 Гн, если ЭДС индукции не может превышать 75,0 В?

13. Интегрированные концепции  Очень большой сверхпроводящий соленоид, такой как тот, который используется в МРТ-сканировании, сохраняет 1,00 МДж энергии в своем магнитном поле при токе 100 А. а) Найдите его индуктивность. (б) Если катушки «идут нормально», они приобретают сопротивление и начинают рассеивать тепловую энергию. Какой прирост температуры произойдёт, если вся накопленная энергия пойдет на нагрев магнита массой 1000 кг при средней удельной теплоемкости 200 Дж/кг · ºC?

14. Необоснованные результаты  Катушка индуктивности 25,0 Гн отключает ток 100 А за 1,00 мс. а) Какое напряжение индуцируется, чтобы противостоять этому? б) Что неразумного в этом результате? (c) Какое предположение или предпосылка являются ответственными?

Глоссарий

индуктивность
свойство устройства, описывающее, насколько эффективно оно создает ЭДС в другом устройстве
взаимная индуктивность
насколько эффективно пара устройств индуцирует ЭДС друг в друге 9{

Ответ

Проверено

264,6 тыс. + просмотров

Подсказка Индуктор представляет собой пассивный электрический компонент с двумя выводами, который накапливает энергию в виде магнитного поля, которое получается при протекании через него электрического тока. Индуктивность — это характерное свойство катушки индуктивности, которое можно описать как отношение индуцированного напряжения или ЭДС к скорости изменения электрического тока, вызывающего ее. Его единицей СИ является Генри $(H)$ .

Завершить Пошаговый ответ
Теперь мы знаем, что индуктивность бывает двух типов. Это самоиндукция и взаимная индуктивность.
Самоиндукция может быть определена как индукция напряжения в проводе с током, наблюдаемая, когда ток в проводе изменяется сам по себе. Другими словами, самоиндукция — это свойство, которое также является формой электромагнитной индукции. Магнитное поле самоиндукции, создаваемое изменяющимся током в самой цепи, включает в себя напряжение в той же цепи. { — 1}}$. 9{ — 1}}$ является единицей самоиндукции, а также взаимной индуктивности, в то время как единицей магнитного потока является только веберовская $(Вб)$.

Следовательно, вариант (D) является правильным ответом.

Примечание Электрические компоненты могут быть двух типов: пассивные и активные. Термин «пассивные электрические компоненты» означает те, которые не требуют внешнего источника питания для своей работы, в то время как активные компоненты, с другой стороны, активные компоненты полагаются на внешний источник питания для своей работы, например, транзисторы. Примером пассивного компонента является катушка индуктивности, резисторы.

Дата последнего обновления: 23 апреля 2023 г. 005

Расчет изменения энтропии, связанного с преобразованием химии класса 11 JEE_Main

Закон, сформулированный доктором Нернстом, представляет собой Первый закон термодинамики Химический класс 11 JEE_Main

Для реакции при rm0rm0rmC и нормальном давлении Химический класс 11 JEE_Main

Двигатель, работающий между rm15rm0rm0rmC и rm2rm5rm0rmC Химический класс 11 JEE_Main

Для реакции rm2Clg в rmCrmlrm2rmg знаки химического класса 11 JEE_Main

Изменение энтальпии перехода жидкой воды в химический класс 11 JEE_Main

Рассчитать изменение энтропии, связанное с преобразованием химического класса 11 JEE_Main

900 04 Закон, сформулированный Д-р Нернст – это Первый закон термодинамики.


Опубликовано

в

от

Метки:

Комментарии

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *