Содержание
Зависимость мощности от силы тока, формула мощности, физический смысл
Пример HTML-страницы
Первое упоминание об электричестве встречается в опытах древнегреческого философа Фалеса. Именно он первым обнаружил, что предметы при трении притягиваются. Одноименный термин был введен в начале 17-го века английским физиком Гилбертом, после опытов, проведенных с магнитами. Отцом же науки об электричестве считается французский ученый Кулон – именно после открытия закона, получившего его имя, электротехника начала свою победную поступь, которая продолжается до сих пор. Этот закон утверждает, что два точечных заряда в безвоздушной среде взаимодействуют с силой, прямо пропорциональной их модулям и обратно – расстоянию между ними, возведенному в квадрат.
Выясним, что же представляет собой понятие электричество?
Если коротко, то это – направленное движение потока заряженных частиц. Тела, через которые они проходят, называются проводниками. Каждый проводник имеет определенное сопротивление электрическому току, которое раз
И, перед тем, как перейти к основным законам, несколько слов о заряженных частицах: они бывают, условно говоря, положительными и отрицательными. Одноименные заряды отталкиваются, а разноименные – притягиваются.
А теперь, перейдем к главному.
Основа-основ науки об электричестве – закон Ома.
Эксперимент, который провел этот немецкий физик, привел его к следующему убеждению: сила тока I, проходящего через металлический проводник, пропорциональна напряжению на его концах, или I = U/R
Здесь напряжением называется разность, образно говоря, «давлений», созданных двумя точками электрической цепи. Измеряют его в вольтах. Электрический ток представляет собой число электронов, которые пропускает участок электрической цепи и измеряется в амперах. Сопротивлением считается свойство цепи помешать этому движению. В честь упомянутого физика, его измеряют в омах. Иначе говоря, проводник, через который проходит ток в 1 ампер при напряжении в 1 вольт, обладает сопротивлением в 1 ом.
Вся остальная электротехника «пляшет» от этого.
О мощности электрического тока
В физике мощностью считают скорость выполнения работы. Неважно, какой. Чем эта операция проводится быстрее, тем большей считается мощность того, кто ее исполняет, будь то человек, механическое устройство или что-то еще.
Так же и в случае с электрическим током: ее мощность представляет собой отношение работы, произведенной движущимися электрическими зарядами к промежутку времени, которое для этого понадобилось.
Проще говоря, для того, чтобы получить электрическую мощность в 1 ватт, когда источник тока имеет напряжение 1 вольт, необходимо пропустить через проводник ток в 1 ампер. Другими словами, мощность (P) можно посчитать, перемножив друг на друга электрическое напряжение и ток:
P = U*I.
Запомнив эту нехитрую формулу, на практике можно рассчитать мощность. Например, если известны значения тока и сопротивления, а о напряжении сведений нет, можем воспользоваться законом Ома, подставив в формулу вместо него I*R. Получится, что мощность равна квадрату электрического тока, помноженному на сопротивление.
Этот закон точно так же придет на помощь, если известны величины напряжения и сопротивления. В этом случае подставив вместо значения тока I = U/R, получим значение мощности, равное квадрату напряжения, поделенному на сопротивление.
Вот так – ничего сложного!
физические формулы, использующие мощность и напряжение
При выборе какого-либо электрического оборудования одним из важных параметров, на который обращается внимание, является мощность изделия. Этот параметр неразрывно связан с силой тока и напряжением. Чтобы рассчитать силу тока, напряжение или мощность в электрической цепи, используются несложные формулы. Но чтобы осмысленно проводить такие вычисления, желательно понимать физическую природу возникновения этих величин.
- Физическое понятие величин
- Сила тока
- Разность потенциалов
- Электрическая мощность
- Закон Ома для цепи
- Практический расчёт
Физическое понятие величин
Любая электрическая цепь характеризуется рядом параметров. Наиболее важными из них являются сила тока, напряжение, мощность и сопротивление. Эти характеристики связаны между собой и зависят друг от друга. Явление, объединяющее их, называется электричеством.
Это понятие было введено ещё в 1600 году английским физиком Уильямом Гилбертом, изучающим магнитные и электрические явления. Исследуя магнетизм в природе, учёный установил, что некоторые тела при трении начинают обладать силой притяжения по отношению к другим предметам, в частности, к янтарю. Поэтому он и назвал открытое явление ēlectricus, что в переводе с латинского обозначает «янтарный».
Продолжая его исследования, немецкий физик Отто фон Герике в 1663 году изобрёл электрическую машину, которая представляла собой металлический стержень с одетым на него серным шаром. В результате он выяснил, что материалы могут не только притягивать вещества, но и отталкивать. Но только через восемьдесят лет американец Бенджамин Франклин создал теорию электричества, введя такие термины, как отрицательный и положительный заряд.
Дальнейшее развитие электричество получило после опытов Шарля Кулона и открытия им закона взаимодействия зарядов. Заключался он в следующем: сила влияния двух точечных зарядов друг на друга в вакууме прямо пропорциональна их произведению и обратно пропорциональна расстоянию между ними в квадрате. После этого благодаря экспериментам таких учёных, как Джоуль, Ленц, Ом, Ампер, Фарадей, Максвелл были введены понятия ток, напряжение и электромагнетизм.
Так, в 1897 году англичанин Джозеф Томсон установил, что носителями зарядов являются электроны. Ранее, в 1880 году, электротехник из России Дмитрий Лачинов сформулировал необходимые условия для передачи электричества на расстояния.
После этих открытий были выработаны фундаментальные определения электричества. Сегодня под ним понимаются свойства материалов образовывать вокруг себя электрическое поле, оказывающее воздействие на располагающиеся рядом другие заряженные частицы. Заряды условно принято разделять на положительные и отрицательные. При их перемещении возникает магнитное поле, при этом одинакового знака заряды притягиваются, а разного — отталкиваются.
Сила тока
Ток — это упорядоченное движение носителей заряда, происходящее под влиянием электрического поля. В качестве положительно заряженных частиц выступают электроны, а отрицательных — дырки. Математически это явление описывается с помощью формулы I = Q*T, где I — ток проводимости (А), Q — заряд частицы (Кл), T — время ©.
То есть электрическим током называется количество зарядов, прошедших через поперечное сечение вещества. Но эта формулировка верна только для тока постоянной величины, в то время как для изменяемого во времени она будет выглядеть I (T) = dQ/dT.
Плотность движения носителей заряда в материале, то есть количество электричества, проходящего за условно принятое время, называется силой тока. Согласно Международной системе (СИ) его единицей измерения является ампер. Один ампер равен перемещению электрического заряда, равного одному кулону, через поперечное сечение за одну секунду.
Носители заряда могут двигаться как упорядоченно, так и хаотично. При их движении возникает электрическое поле, обозначаемое латинской буквой E. Значение, определяющееся отношением тока к поперечному сечению проводника, называется плотностью тока. За единицу её измерения принимается А/мм2.
По своему виду ток различают на следующие типы:
- Переноса. Характеризуется движением зарядов, осуществляемым в свободном пространстве. Этот тип характерен для газоразрядных приборов.
- Смещения. Возникает в диэлектриках и определяется упорядоченным перемещением связанных заряженных частиц.
- Полный. Определяется суммарным значением тока: проводимости, переноса и смещения.
- Постоянный. Это такой вид, который может изменять величину, но не изменяет направление движения, то есть свой знак.
- Переменный. Такого вида ток может изменяться как по величине, так и по направлению (знаку).
Переменный вид разделяется по форме и может быть синусоидальным и несинусоидальным. Для расчёта силы тока синусоидальной формы используется формула Is = Ia*sin ωt, где Ia — максимальное значение тока (A), ω — угловая скорость, равная 2πf (Гц).
Физические тела, в которых возможно протекание тока, называют проводниками, а в тех, где возникают препятствия его прохождению — диэлектриками. Промежуточное состояние между ними занимают полупроводники.
Разность потенциалов
Напряжением принято называть физическую величину, характеризующую электрическое поле. Она показывает, какую работу понадобится совершить полю для того, чтобы переместить единичный заряд из одной точки в другую. При этом принимается, что этот перенос не влияет на распределение зарядов в источнике поля. Согласно Международной системе единиц напряжение измеряется в вольтах.
Работа по переносу складывается из двух величин — электрических и сторонних. Если сторонние силы не действуют, то напряжение на участке цепи равно разности потенциалов и вычисляется по формуле U = φ1-φ2. При этом потенциал определяется отношением напряжённости электрического поля к заряду. Для его расчёта используют формулу φ = W/q.
Другими словами, это характеристика поля в определённой точке, не зависящей от величины заряда, находящегося в нём. То есть напряжение в общем случае определяется работой электростатического поля, возникающего при движении заряда вдоль его силовых линий. Математически его можно рассчитать по формуле U = A/q, где А — совершаемая работа по перемещению (Дж), q — энергия заряда (Кл).
Применительно к сети переменного тока для напряжения используются следующие понятия:
- Мгновенное. Это значение физической величины, измеренное в конкретный момент времени: U = U (t). Для синусоидального сигнала мгновенное напряжение находится с помощью выражения U (t) = Ua sin (ὤt + φ).
- Амплитудное. Характеризуется наибольшей величиной мгновенного значения без учёта знака: Ua = max (U (t)).
- Среднее. Определяется за полный период сигнала по формуле Us = 1/T ʃ U (t)*dt. Для синусоидальной формы это значение равно нулю.
Проводя расчёт напряжения, редко используется понятие электрического потенциала. Связано это с тем, что условно принято за одну из точек потенциала принимать землю.
Это значение берётся равным нулю, а все остальные потенциалы считаются относительно неё. Говоря, что напряжение в определённой точке составляет 300 вольт, имеется в виду разность потенциалов между этой точкой и землёй, равная этому значению.
Электрическая мощность
Электрическая мощность характеризует скорость передачи электрической энергии или её преобразование. Единицей её измерения является ватт. Для того чтобы посчитать мощность на определённом участке цепи, необходимо перемножить значение напряжения и силы тока на этом участке. Исходя из определения электрического напряжения, можно сказать, что заряд при движении совершает работу, численно равную ей на участке цепи. Если же умножить работу на количество зарядов, то можно найти общее значение работы, которую совершили заряды на этом участке.
Исходя из физического определения, что мощность — это работа за единицу времени, получается выражение P = A/Δt, где A — работа, совершаемая зарядом при перемещении от начальной точки к конечной (Дж), Δt — время, затраченное на полное перемещение заряда ©.
Для всех зарядов в цепи мощность можно найти благодаря формуле P = (U/ Δt) * Q, где Q — общее число зарядов.
Так как ток представляет собой заряд, протекающий в единицу времени (I = Q/ Δt), то получается, что мощность равна произведению тока на напряжение, то есть P = U*I (Вт).
В цепи с постоянным током его сила и напряжение всегда имеют постоянное значение в определённой точке, поэтому для любого момента времени мощность можно вычислить по формуле P = I*U = I2*R = U2/R, где R — сопротивление прохождению тока в электрической цепи (Ом). Если же в этой сети находится источник электродвижущей силы, то мощность находится как P = I*E+ I2*r, где Е — электродвижущая сила или ЭДС (В), r — внутреннее сопротивление источника ЭДС (Ом).
Для цепи, в которой её параметры изменяются по какому-то циклу, мощность в определённой точке интегрируется по времени. При этом существуют следующие виды мощности:
- Активная. Для её нахождения используется расчёт, учитывающий угол сдвига фаз φ. Находится согласно формуле P = U*I*cos φ.
- Реактивная. Характеризуется нагрузками, создаваемыми электрическими устройствами в виде колебаний энергии электромагнитного поля. Её вычисление осуществляется по формуле P = U*I*sin φ.
- Полная. Определяется произведением действующих значений тока и напряжения, связана с другими видами мощности выражением S= √(P 2 +Q 2).
Закон Ома для цепи
Проводя расчёты мощности по напряжению и току на практике, часто используют закон Ома. Он устанавливает связь между током, сопротивлением и напряжением. Этот закон был открыт путём проведения Симоном Омом ряда экспериментов и сформулирован им в 1826 году. Он выяснил, что величина тока на участке цепи прямо пропорциональна разности потенциалов и обратно пропорциональна сопротивлению этого участка.
Закон Ома можно записать в следующем виде: I = U/R, где I — значение силы тока (А), U — разность потенциалов (В), R — сопротивление цепи прохождению тока (Ом).
Для полной же цепи эту формулу можно записать так: I = E/(R+ r0), где E — ЭДС источника питания (В), r0 — внутреннее сопротивление источника напряжения (Ом).
Таким образом, для участка цепи будет справедливо выражение P = U2/R = I2R, а для полной цепи — P = (E/(R+ R0))2*R. Именно эти две формулы и используются чаще всего для расчётов электрических сетей или мощности необходимого оборудования.
Различные компоненты электрической сети в определённый момент времени потребляют разную величину тока. Поэтому очень важно правильно рассчитать, какое количество энергии подводится в тот или иной момент в определённое место цепи, чтобы не допустить перегрузок на линии и возникновения аварийных ситуаций.
Этим и занимаются разработчики схем, упрощая их до состояния, когда можно рассчитать необходимую мощность, используя закон Ома.
Практический расчёт
Например, пусть понадобится узнать, на какой ток необходимо приобрести устанавливаемый на участок цепи автоматический выключатель. При этом известно, что в линию, на которой он будет установлен, одновременно будут включаться холодильник с максимальной мощностью потребления энергии один киловатт, бойлер (два киловатта) и люстра, потребляющая 90 ватт. В месте установки используется однофазная сеть, рассчитанная на рабочее напряжение 220 вольт.
На первом этапе расчёта понадобится суммировать всю мощность подключаемых к линии электроприборов. Так, P общ. = 1000 + 2000 + 90 +220 = 3310 Вт. Используя формулу P = I*U, находится необходимое значение тока: I = P/U = 3310/220 = 15,04 А.
Из стандартного ряда выключателей наиболее близкое значение имеет автомат на 16 А. Поскольку необходимо покупать устройство защиты с небольшим запасом, то для рассматриваемого примера подойдёт выключатель, рассчитанный на 20 ампер.
Благодаря таким вычислениям можно рассчитать любой параметр электрической цепи, но это при учёте достаточного количества вводных данных.
Калькулятор мощности, напряжения, тока и сопротивления
Этот калькулятор основан на простом законе Ома. Как мы уже поделились Закон Ома (P, I, V, R) Калькулятор В котором вы также можете рассчитать трехфазный ток. Но мы разработали его специально для цепей постоянного тока (а также для работы с однофазными цепями переменного тока без коэффициента мощности… (Мы поделимся другим калькулятором для расчета коэффициента мощности). , 4, 5 и 6 ленточные резисторы Расчет
Калькулятор мощности, напряжения, тока и сопротивления
Введите любые два из следующих значений и нажмите кнопку расчета. В результате отобразятся рассчитанные значения.
Мощность (Вт): | ||
Напряжение (В): | ||
Ток (А): | ||
Сопротивление (Ом): | ||
Формулы мощности, напряжения, тока и сопротивления
Ниже приведены возможные формулы и уравнения для этого калькулятора
(1) Формулы электрической мощности в цепях постоянного тока
(2) Формула электрического потенциала или напряжения в цепях постоянного тока
- В = I x R
- В = П/Я
- В = √ (П х Р)
(3) Формулы электрического тока в цепи постоянного тока
- I=V/R
- Я = P/V
- I = √P/R
(4) Формулы электрического сопротивления
- R = V/I
- R = P/I 2
- Р = В 2 /P
*Где
-
- I = ток в амперах (А)
- В = напряжение в вольтах (В)
- P = мощность в ваттах (Вт)
- R = сопротивление в Ом (Ом)
Связанные электрические калькуляторы:
- Калькулятор мощности, напряжения, тока и сопротивления (P, V, I, R)
- Калькулятор автоматического выключателя Калькулятор с примерами
- Усовершенствованный калькулятор падения напряжения
- Калькулятор размеров электрических проводов и кабелей (медь и алюминий)
- AWG/SWG в мм/мм2, дюймы/дюйм3 и тысячные милы Калькулятор и преобразование
- «SWG» — таблица размеров и размер SWG
- «AWG» — таблица размеров AWG и таблица
- Конденсаторная батарея в кВАр и мкФ Калькулятор для коррекции коэффициента мощности
- — как найти конденсатор PF в мкФ и квар?
- Правило делителя напряжения – Калькулятор, примеры и приложения
- Калькулятор цветового кода резистора — 3, 4, 5 и 6 полос
- Калькулятор требуемой величины резистора для схемы светодиода
- IC 555 Калькулятор таймера с формулами и уравнениями
- Калькулятор срока службы батареи
- Еще больше онлайн-калькуляторов для электротехники/электроники
Калькулятор стандартного калибра проводов
Калькулятор американского калибра проводов
Калькулятор коррекции коэффициента мощности
URL скопирован
Показать полную статью
Связанные статьи
Кнопка «Вернуться к началу»
Формула силы | Формула электроэнергии в цепях постоянного и переменного тока
Мы используем электроэнергию, предоставляемую нашей коммунальной компанией, для обеспечения нас светом, теплом, работающими приборами и т. д. Поскольку электрический потенциал (напряжение) и ток являются двумя величинами, доступными нам, когда коммунальная служба поставляет электрическую энергию, эти два параметра являются основными параметрами, определяющими электрическую мощность. В этом руководстве давайте подробно рассмотрим электрическую мощность, формулу электрической мощности в цепях переменного и постоянного тока.
Краткое описание
Что такое электроэнергия?
Электрическая энергия является одной из широко используемых форм энергии в нашей повседневной жизни, будь то питание от сети переменного тока или батареи. Наша коммунальная компания поставляет эту электрическую энергию в виде электрического потенциала и тока, а скорость, с которой электрическая энергия передается в электрической цепи, называется электрической мощностью.
С точки зрения физики, Энергия — это способность выполнять Работу, а скорость выполнения этой Работы известна как Сила.
Итак, если P — мощность, W — работа, а t — время, то
Power P = работа, выполненная в единицу времени = W/t
Единицами мощности являются ватты.
Мы знаем, что электрический потенциал — это количество работы, совершаемой при перемещении единичного заряда, а ток — это скорость движения заряда.
Используя приведенное выше утверждение, мы можем переписать предыдущее уравнение мощности как:
P = W/t = (W/Q) × (Q/t) Вт
Первый член (W/Q) представляет электрический потенциал (V), а второй член (Q/t) представляет ток (I).
Итак, электрическая мощность P = V × I.
Формула электрической мощности в цепях переменного и постоянного тока
В зависимости от типа тока в цепи, т. е. переменного тока или постоянного тока, электрическая мощность может быть дополнительно классифицирована на переменный ток. Мощность и мощность постоянного тока.
Давайте теперь рассмотрим различные формулы электроэнергии в цепях постоянного и переменного тока.
Формулы мощности в цепях постоянного тока
В простых цепях постоянного тока, т. е. электрических цепях с источником питания постоянного тока, формула мощности приведена ниже:
P = V × I
Мощность в резистивных цепях постоянного тока — это просто произведение напряжения и тока.
Мы можем вывести дополнительные формулы мощности, применив закон Ома. Согласно закону Ома, напряжение в цепи (или компоненте) является произведением сопротивления и тока.
V = I × R
Итак, если мы используем это уравнение в приведенной выше формуле мощности, мы получим
P = V × (V/R) = V 2 /R
P = (I×R ) × I = I 2 R
В зависимости от имеющихся величин можно использовать одну из трех формул мощности для расчета мощности постоянного тока.
Формулы мощности в цепях переменного тока
Измерить мощность в цепях постоянного тока очень просто, так как все, что вам нужно сделать, это перемножить напряжение и силу тока. Но то же самое невозможно в цепях переменного тока, поскольку значения напряжения и тока постоянно меняются как по величине, так и по направлению (знаку).
Значения переменного напряжения и тока обычно записываются как
В AC = В P × sin(ωt) и I AC = I P × sin(ωt)
Чтобы рассчитать мощность переменного тока, мы должны каким-то образом рассчитать средние значения напряжения и тока. Математически мы используем среднеквадратичное значение или среднеквадратичное значение для определения средних значений синусоидальных функций.
Если V RMS является среднеквадратичным значением напряжения переменного тока, а I RMS является среднеквадратичным значением переменного тока, то средняя мощность переменного тока равна
P AC (среднее значение) = V RMS × I RMS
Если f(t) является функцией времени t, то ее среднеквадратичное значение равно
Применяя приведенную выше формулу к нашим синусоидальным значениям переменного напряжения и тока, мы получаем: I RMS = I P /√ 2
Мощность, которую мы рассчитали ранее (P AC (Average)) на самом деле известна как полная мощность. Это не что иное, как произведение среднего (или эффективного) напряжения и тока, т. Е. Это максимальная средняя мощность, подаваемая на чисто резистивную нагрузку.
Но катушки индуктивности и конденсаторы имеют фазовые сдвиги и реактивное сопротивление. Итак, с катушками индуктивности и конденсаторами есть еще два способа определить мощность в цепях переменного тока. Это реальная мощность (активная мощность) и реактивная мощность.
Реальная мощность, также известная как активная мощность, представляет собой мощность, рассеиваемую в цепи из-за ее резистивных элементов.
Активная мощность = В СКЗ × I СКЗ × cos(θ), где θ — фазовый угол, на который напряжение опережает ток.
Реактивная мощность — это мощность, рассеиваемая в цепи за счет индуктивности и емкости (или реактивного сопротивления).
Задается как реактивная мощность = V RMS × I RMS × sin(θ)
Таким образом, мы можем сказать, что (полная мощность) 2 = (активная мощность) 2 + (реактивная мощность ) 2
Формулы мощности постоянного и переменного тока
В следующей таблице перечислены все формулы мощности для цепей переменного и постоянного тока.
Цепь | Мощность |
DC | Р = В × I |
Р = В 2 /Р | |
P = I 2 × R | |
Фактическая мощность однофазного переменного тока | ½ В P × I P × cos(θ) = V СКЗ × I СКЗ × cos(θ) |
Однофазная реактивная мощность переменного тока | ½ В P × I P × sin(θ) = V СКЗ × I СКЗ × sin(θ) |
Реальная мощность трехфазного переменного тока | 3 × V L-N × I L-N × cos(θ) = √3 × V L-L × I L-L × cos(θ) |
Реактивная мощность трехфазного переменного тока | 3 × V L-N × I L-N × sin(θ) = √3 × V L-L × I L-L × sin(θ) |
Заключение
Простое руководство по пониманию электроэнергии.
Добавить комментарий