Дискретный параметр это: Вид данных (непрерывный, дискретный) · Loginom Help

Содержание

Дискретные и непрерывные данные—ArcMap | Документация

Доступно с лицензией 3D Analyst.

  • Дискретные и непрерывные пространственные объекты
  • Постепенное изменение непрерывных данных
  • Дискретные или непрерывные?

Значения, присваиваемые ячейкам поверхности, могут быть представлены как дискретными, так и непрерывными данными. Пространственные объекты и поверхности в ArcGIS могут быть представлены дискретными и непрерывными данными.

Дискретные данные, также известные как категорийные или прерывистые, в основном используются для представления объектов как в векторных, так и в растровых системах хранения данных. Дискретные объекты имеют четко определяемые границы. Нетрудно точно определить, где начинается и где заканчивается такой объект. Озеро – это дискретный объект, окруженный ландшафтом. Место, где кончается вода и начинается суша, можно четко определить. К другим дискретным объектам относятся здания, дороги и земельные участки. Дискретные объекты обычно обозначаются существительным.

Непрерывные данные, или непрерывная поверхность, отображают явление, в котором каждая точка поверхности является мерой плотности, мерой отношения к некой фиксированной точке пространства или отношением к точке происхождения. Непрерывные данные также называются полями, не дискретными (непрерывными) данными или данными поверхности.

Один из типов непрерывной поверхности вычисляется на основе характеристик, определяющих поверхность, в которой каждая точка пространства вычисляется относительно фиксированной регистрационной точки. Сюда относится высота (фиксированная точка – уровень моря) и экспозиция (фиксированная точка – одно из направлений: север, восток, юг, запад).

Дискретные и непрерывные пространственные объекты

Большинство приложений ArcGIS используют дискретную географическую информацию, например, собственность земельных участков, классификацию почв, зонирование и землепользование. Эти типы данных отображаются с помощью номинальных, порядковых, интервальных и относительных значений. Поверхности представлены непрерывными данными, такими как высоты, количество осадков, концентрация загрязнений и т.д. Эти данные могут быть представлены в виде непрерывной поверхности, которая, в основном, не имеет резких переходов.

Дискретные объекты

Дискретные объекты не являются непрерывными и имеют четкие границы. Например, дорога имеет известную ширину и длину и представлена на карте в виде линии. Карта собственности на землю отражает границы между различными участками. Существуют четкие отличия в характеристиках (имя владельца, номер участка и тип собственности) между каждым пространственным объектом карты.

Примеры дискретных пространственных объектов показаны на карте землевладений.

Дискретные пространственные объекты карты также могут быть представлены в виде тематических данных. Эти данные или объекты легко отображаются на карте в виде точек, линий или полигонов. К настоящему моменту вы уже должны знать, как структура данных ArcGIS используется для отображения топологических отношений двумерных пространственных объектов. Объекты карты могут иметь атрибуты, использующиеся для их описания, присвоения символов и создания надписей. Кроме того, имеется возможность проведения дополнительного анализа для определения или выявления новых взаимосвязей между этими пространственными объектами.

Непрерывные пространственные объекты

Непрерывные пространственные объекты не имеют четких границ в пространстве. В основном переход между возможными значениями на непрерывной поверхности происходит без резкого изменения значений. Атрибут поверхности хранится как z-значение, единственная переменная, связанная с парой координат x,y. Например, значения высот являются непрерывными по всей поверхности. Любое представление поверхности является только образцом (поднабором) значений всей поверхности.

Постепенное изменение непрерывных данных

Второй тип непрерывной поверхности демонстрирует явление, постепенно меняющееся по мере удаления от точки-источника. В качестве примеров таких покрытий можно привести данные по движению жидкостей или воздуха. Эти поверхности характеризуются способом перемещения явления.

Один тип движения – это сквозная диффузия или любое другое перемещение, при котором явление движется от областей с высокой концентрацией к областям с низкой концентрацией до тех пор, пока не произойдет выравнивание. К характеристикам поверхности с таким вариантом перемещения относятся, например, концентрация соли, распределяющаяся по воде или земле, распространение нефтяного пятна или распределение огня от центра лесного пожара. Поверхности такого типа должны иметь источник. Концентрация у источника всегда выше, затем она снижается как функция расстояния и параметров среды распространения.

В приведенном выше примере поверхности с источником концентрация явления в любой точке является функцией проникающей способности.

Еще один тип движения определяется собственной характеристикой движущегося объекта или режимом движения. Например, распространение звуковой волны от точки взрыва бомбы является собственной характеристикой звука и параметров среды, в которой он распространяется. Способ перемещения также может ограничивать и прямо влиять на поверхность концентрации объектов, как в случае с распространением семян какого-либо растения. Все способы распространения – посредством пчел, человека, ветра или воды, влияют на поверхность концентрации распространения семян растения.

К другим примерам движения относятся: распределение популяций животных, расположение потенциальных покупателей магазина (автомобиль – средство передвижения, время в пути – лимитирующий фактор), распространение заболевания.

Дискретные или непрерывные?

При моделировании большого количества пространственных объектов, можно заметить, что границы между непрерывными и дискретными объектами часто размыты. При отображении пространственных объектов, создается континуум, предельные значения которого могут быть дискретными или непрерывными объектами. Большинство пространственных объектов укладываются в промежуток между предельными значениями.

Примерами объектов, которые создают континуум, могут быть типы почв, границы лесов, заболоченных участков, а также географические рынки, формирующиеся посредством телевизионной рекламы. При определении места объекта в непрерывно-дискретном континууме, ключевым фактором будет простота нахождения его границ. Не имеет значения, где именно находится объект в континууме, растр может отобразить его с большей или меньшей точностью.

Принимая решение на основе полученного результата, важно понимать особенности моделирования различных типов данных, как непрерывных, так и дискретных. Точное место постройки здания не должно основываться только на типе почвы. Площадь лесного участка не может являться основным фактором, определяющим количество населяющих его оленей. Маркетинговая программа не должна основываться только на данных о географическом рынке, зависящим от распространения телевизионной рекламы. Достоверность и точность границ во входных данных, имеет первостепенное значение.

Связанные разделы

Дискретные и непрерывные данные – в чем разница?

Дискретные и непрерывные данные – в чем разница?

Для такого простого слова «данные» – довольно сложная тема. Например, «любовь» или «новости». Есть структурированные и неструктурированные данные. Тогда у вас есть качественные и количественные данные.
Теперь мы хотели бы изучить еще два типа данных – дискретный и непрерывный – и помочь вам понять разницу. (Тогда ваша организация может использовать статистическое программное обеспечение, чтобы получить представление о обоих типах.)

Загрузить программу ВІ

Демонстрации решений

Оглавление

Для такого простого слова «данные» – довольно сложная тема. Например, «любовь» или «новости». Есть структурированные и неструктурированные данные. Тогда у вас есть качественные и количественные данные.

 

Теперь мы хотели бы изучить еще два типа данных – дискретный и непрерывный – и помочь вам понять разницу. (Тогда ваша организация может использовать статистическое программное обеспечение, чтобы получить представление о обоих типах.)

 

Посмотреть самое простое в использовании программное обеспечение для статистического анализа →

 

Чем больше вы понимаете об этих уникальных типах данных, тем больше вы сможете определить возможности, в которых каждый из них может пригодиться. Затем вы можете использовать эту информацию, чтобы принести пользу своему бренду, независимо от того, являетесь ли вы специалистом по обработке данных, аналитиком данных, инженером по обработке данных – или просто поклонником цифр.

Дискретные и непрерывные данные

При рассмотрении набора чисел они обычно являются дискретными (счетными) переменными или непрерывными (измеряемыми) переменными. То, как вы изучаете эти данные, должно отличаться в зависимости от того, к какой группе они относятся. Это, безусловно, повлияет и на то, как это будет измеряться.

В чем разница между дискретными и непрерывными данными?

Дискретные данные включают в себя круглые конкретные числа, которые определяются путем подсчета. Непрерывные данные включают комплексные числа, которые измеряются в течение определенного интервала времени.
Простой способ описать разницу между ними – визуализировать график точечной диаграммы в сравнении с линейным графиком.

Когда вы соберете набор круглых определенных чисел, они окажутся на своем месте на графике, похожем на те, что показаны слева. Дискретные данные относятся к отдельным счетным предметам.

 

Когда вы измеряете определенный поток данных со сложным диапазоном результатов, эти результаты будут обозначены линией в виде диапазона данных (см. Графики справа). Непрерывные данные относятся к изменениям с течением времени, включая концепции, которые не просто подсчитать, но требуют подробных измерений.

 

Подождите, пока мы немного раскроем эти термины для лучшего понимания.

Что такое дискретные данные?

Некоторые синонимы слова «дискретный» включают: разъединенный, отдельный и отдельный. Их можно легко применить к идее дискретных данных.

 

Мы собираем данные, чтобы найти взаимосвязи, тенденции и другие концепции. Например, если вы отслеживаете количество отжиманий, которые вы делаете каждый день в течение месяца, основной целью является оценка вашего прогресса и скорости улучшения.

 

С учетом сказанного, ваш дневной счет – это дискретное, изолированное число. Нет четкого диапазона того, сколько вы можете сделать за один день, поэтому отношения остаются неопределенными. Чем больше информации вы собираете с течением времени, тем больше идей вы можете сделать, например, что среднее количество отжиманий, которые вы делали на прошлой неделе, составляло 15 отжиманий в день, что на 5 отжиманий в день больше, чем неделей ранее. Между тем, сами числа отжиманий – это целые, круглые числа, которые нельзя разбить на более мелкие части.

 

Забавное практическое правило состоит в том, что во многих случаях дискретным данным может предшествовать «количество».

Примеры дискретных данных

Некоторые примеры дискретных данных, которые можно собрать:

  • Количество клиентов, купивших разные товары
  • Количество компьютеров в каждом отделе
  • Количество товаров, которые вы покупаете в продуктовом магазине каждую неделю.

Дискретные данные также могут быть качественными. Национальность, которую вы выбираете в форме, – это отдельные данные. Национальность каждого на вашей работе, если сгруппировать вместе с помощью программного обеспечения для работы с электронными таблицами, может быть ценной информацией при оценке вашей практики найма.

 

Посмотреть бесплатное программное обеспечение для электронных таблиц с самым высоким рейтингом →

 

Национальная перепись состоит из дискретных данных, как качественных, так и количественных. Подсчет и сбор этой идентифицирующей информации углубляет наше понимание населения. Это помогает нам делать прогнозы о будущем, документируя историю. Это отличный пример силы дискретных данных.

Что такое непрерывные данные?

Непрерывные данные относятся к нефиксированному количеству возможных измерений между двумя реалистичными точками.

 

Эти числа не всегда чистые и аккуратные, как те, которые содержатся в дискретных данных, поскольку они обычно собираются на основе точных измерений. Со временем измерение определенного объекта позволяет нам создать определенный диапазон, в соответствии с которым мы можем разумно ожидать сбора большего количества данных.

 

Непрерывные данные – это все о точности. Переменные в этих наборах данных часто имеют десятичные точки, а число справа растянуто, насколько это возможно. Этот уровень детализации имеет первостепенное значение для ученых, врачей и производителей, и это лишь некоторые из них.

Примеры непрерывных данных

Некоторые примеры непрерывных данных включают:

  • Вес новорожденных малышей
  • Суточная скорость ветра
  • Температура морозильной камеры

Когда вы думаете об экспериментах или исследованиях, включающих постоянные измерения, они, вероятно, в некоторой степени связаны с непрерывными переменными. Если где-нибудь в таблице у вас есть число вроде «2,86290», это не то число, которое вы могли бы легко вычислить сами – подумайте об измерительных устройствах, таких как секундомеры, весы, термометры и тому подобное.

 

Задача с использованием этих инструментов, вероятно, применима к непрерывным данным. Например, если мы отслеживаем каждого бегуна на Олимпийских играх, время будет отображаться на графике вдоль соответствующей линии. Несмотря на то, что с годами наши спортсмены становятся быстрее и сильнее, никогда не должно быть выбросов, искажающих остальные данные. (Даже Усэйн Болт всего на пару секунд быстрее, чем историческое поле, если говорить об этом.)

 

На этой линии есть бесконечные возможности (например, 5,77 секунды, 5,772 секунды, 5,7699 секунды и т. Д.), Но каждое новое измерение будет постоянно находиться где-то в пределах диапазона.

 

Не каждый пример непрерывных данных будет аккуратно попадать в прямую линию, но со временем диапазон станет более очевидным, и вы можете сделать ставку на новые точки данных, застрявшие внутри этих параметров.

Важность как непрерывных, так и дискретных данных

Тот факт, что мы поставили «против» в заголовке этого блога, не означает, что это соревнование (хотя мы не остановим вас от создания футболок «Team Discrete» или «Team Continuous»).

 

Дело в том, что оба типа одинаково ценны для сборщиков данных, и каждый день вы будете сталкиваться с моментами, которые приводят к измерениям, которые могут по праву способствовать любому типу данных. Любое всестороннее исследование формируется за счет объединения этих двух уникальных групп данных.

Почитать еще

Введение в анализ временных рядов

Хотя для анализа данных используются все многочисленные передовые инструменты и методы, такие как наука о

История развития моделей данных

Итак, прыгайте на борт и наслаждайтесь путешествиями во времени наших попыток справиться с временностью в

Машинное обучение

Глубокое обучение – это продвинутая форма машинного обучения. Глубокое обучение относится к способности компьютерных систем, известных

Правила эффективного прогнозирования

Интуиция очень важна. С ее помощью было создано большое количество хороших прогнозов. Но нужно всегда

Выборка. Типы выборок

Суммарная численность объектов наблюдения (люди, домохозяйства, предприятия, населенные пункты и т. д.), обладающих определенным набором признаков

Обзор самых популярных алгоритмов машинного обучения

Существует такое понятие, как «No Free Lunch» теорема. Её суть заключается в том, что нет

Обзор основных видов сегментации

Загрузить программу ВІ Демонстрации решений Аналитика бизнеса Оглавление Сегментация бренда Сегментация помогает принимать более эффективные

Алгоритмы машинного обучения

В одной из статей мы познакомились с основами машинного обученияи, хотя кратко, но очень лаконично, мы

Полное руководство по анализу текста

Напоминание – это количество правильных результатов, разделенное на количество результатов, которые должны были быть возвращены. Загрузить

Читайте о всех решениях

Какие бы задачи перед Вами не стояли, мы сможем предложить лучшие инструменты и решения

Смотреть

Несколько видео о наших продуктах