Амперметр подключают последовательно: Почему амперметр подключают последовательно

Содержание

Почему амперметр подключают последовательно

Амперметр, подключенный параллельно нагрузке, будет измерять ток, который течет через амперметр, а не через нагрузку.) Кроме того, максимально точными будут показания амперметра, внутреннее сопротивление которого стремится к нулю. Если мы попробуем подключить амперметр параллельно нагрузке, то ток, идущий по пути наименьшего сопротивления, пойдет через амперметр, практически минуя нагрузку. Получаем, тем самым, короткое замыкание в цепи и, как следствие, выход амперметра из строя (в лучшем случае. а если напряжение источника питания достаточно велико, то этот процесс может сопровождаться различными световыми и шумовыми эффектами, типа фейерверка.)

Поэтому амперметр подключается только последовательно с нагрузкой.

Другое дело — вольтметр. Его-то как раз подключают параллельно нагрузке. Обладая большим внутренним сопротивлением (стремящимся, в идеале, к бесконечности) вольтметр при параллельном подключении к нагрузке не влияет на параметры электрической цепи

Последовательное соединение:

Параллельное соединение:

Формулы для последовательного и параллельного соединения проводников позволяют во многих случаях рассчитывать сопротивление сложной цепи, состоящей из многих резисторов. На рис. приведен пример такой сложной цепи и указана последовательность вычислений

.

Вольтметр предназначен для измерения разности потенциалов, приложенной к его клеммам. Он подключается параллельно участку цепи, на котором производится измерение разности потенциалов. Для того, чтобы вольтметр не вносил заметного перераспределения токов при подключении к измеряемой цепи, его внутреннее сопротивление должно быть велико по сравнению с сопротивлением того участка цепи, к которому он подключен.

Амперметр предназначен для измерения силы тока в цепи. Амперметр включается последовательно в разрыв электрической цепи, чтобы через него проходил весь измеряемый ток. Внутреннее сопротивление амперметра должно быть достаточно малым по сравнению с полным сопротивлением всей цепи.

Для увеличения предела измерения силы тока параллельно амперметру подключают проводник – шунт. Для увеличения предела измерения напряжения вольтметром последовательно с ним включают добавочное сопротивление.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения:
Учись учиться, не учась!
11131 — | 8278 — или читать все.

Амперметр – прибор, дополняющий вольтметр. Используется там, где нет возможности установить полноценный ваттметр либо воспользоваться мультиметром. Его назначение – облегчить обслуживание и ремонт электроустановок, находящихся под постоянной нагрузкой, вовремя выявить готовящиеся поломки и принять скорейшие меры к их устранению. Например, амперметр позволяет оценить состояние аккумулятора в автомобиле и спрогнозировать, когда потребуется замена изношенной аккумуляторной батареи на новую.

Устройство

У стрелочных амперметров основа прибора – простейший электромагнитный (или иного типа) гальванометр или электроизмерительная головка.

Электромагнитный амперметр

Сам по себе гальванометр работает как нечто среднее между милливольтметром и микроамперметром. Включать его в цепь без нагрузки и балластных сопротивлений нельзя – обмотка катушек не рассчитана на значительную силу тока, что нужна силовым электроустановкам и потребителям, подключённым к ним: с большой долей вероятности его обмотка сгорит. Аналоговый гальванометр устроен следующим образом. В поле постоянных магнитов вращается катушка, по которой в момент подключения прибора начинает идти ток. Вырабатывая собственное магнитное поле, катушка поворачивается на определённый угол – пропорционально пропускаемому через неё току. А поворачиваться её заставляет вращательный момент, образующийся при взаимодействии поля постоянного магнита и поля катушки.

Вместе с катушкой поворачивается и стрелка, жёстко закреплённая на ней. Вся эта конструкция закреплена на неподвижной оси, расположенной в центре магнитного зазора. Плоская пружина, прикреплённая одним концом к жёсткой основе (каркасу) прибора, а другой – к оси со стрелкой, при выключении гальванометра из электрической цепи заставляет стрелку вернуться в исходное положение.

Помимо возвращающей пружины, на противовесе стрелки находится балансир – металлическая нить из мягкого и достаточно эластичного металла (например, платины), уравновешивающая стрелку и не дающая её концу задевать за шкалу – алюминиевую пластину с проградуированными делениями, закреплённую в качестве плоской рамки на лицевой части внутренностей гальванометра. В ряде случаев, чтобы не тратить дорогую платину, на противовес стрелки напаивается капля какого-нибудь легкоплавкого сплава (точно в миллиграммах или в сотнях микрограммов). Если балансир порвётся – результаты измерений будут неточными и прерывистыми либо вообще никакими. Правила обращения с гальванометрическим амперметром строго-настрого запрещают его бросать, подвергать жёсткой вибрации и сильным ударам – измерительные головки ломаются очень легко.

Применение мультиметра

В большинстве случаев для проведения измерений удобно пользоваться специализированными приборами. Существует большое количество разновидностей, при использовании которых возможно последовательное и параллельное соединение в цепь. Схема включения вольтметра подразумевает только параллельное его соединение.

В некоторых случаях можно воспользоваться мультиметром. Этот измерительный прибор работает по универсальному принципу. С его помощью можно измерять различные электрические величины, в том числе постоянное и переменное напряжение. Чтобы это сделать, необходимо предпринять следующие шаги:

  1. Установить переключатель в соответствующий режим для измерения постоянного или переменного напряжения.
  2. Выбрать диапазон измерений. Для этого надо указать на ближайшее значение, превосходящее ожидаемое.
  3. Подключить чёрный и красный щупы. Первый вставляется в гнездо COM, второй — в соседнее с обозначением V.
  4. Щупы подключаются параллельно измеряемой детали с соблюдением правильной полярности.
  5. На дисплее отображается результат измерения.

После окончания работы, ручку переключения режимов следует перевести в положение «Выключено». Преимуществом использования мультиметра является его универсальность и простота применения.

Схемы подключения

Имея представление о сопротивлении шунта амперметра, вы уже знаете, как его правильно подключить.

Включение в цепь

Прибор всегда включается последовательно, а не параллельно нагрузке. Если вы рискнёте подключить прибор параллельно – сработает предохранитель, и прибор отключится. При токе от нескольких ампер сгорают катушка гальванометра и шунт. Сгоревшая стрелочная головка восстановлению не подлежит. Вначале обесточьте линию. При низкой ЭДС — до 12 В — источника питания можно обойтись и без обесточивания. Включите амперметр в разрыв цепи. Убедитесь, что пропускная способность амперметра по току (например, прибор рассчитан на 10 А) общая токовая нагрузка не превышает предел измерений, на который и рассчитан амперметр. Если прибор не «двусторонний» (например, -10 и +10 А с нулём посередине) – соблюдайте полярность. После включения он покажет, сколько (мили) ампер в час потребляет ваш электроприбор или электрическая цепь.

Как подключать вольтметр и производить измерения?

Вольтметры всегда должны быть подключены параллельно с электрическим устройством или элементом, на котором измеряется электрическое напряжение (рисунок 2).

Рис. 2. Способ измерения электрического напряжения на концах элемента R

Ключевая мысль состоит в том, что зажимы вольтметра присоединяют к тем точкам электрической цепи, между которыми надо измерить электрическое напряжение.

Однако следует помнить, что при таком соединении часть тока IV будет протекать через вольтметр, а не через проверяемый элемент R. Таким образом, мы имеем дело с ситуацией, когда действие измерения физической величины изменяет значение этой величины. Это не единственный подобный пример в физике.

Как видно из предыдущих рассуждений, для измерения истинного значения электрического напряжения на концах элемент цепи, нам понадобится вольтметр с бесконечным сопротивлением. Тогда через измерительный прибор не будет протекать электрический ток, поэтому измерения будут неискаженными. На практике бесконечное электрическое сопротивление в вольтметре реализовать невозможно. Тем не менее, в настоящее время продаются вольтметры с чрезвычайно высоким внутренним сопротивлением, превышающим 100 ТОМ.

Стоит отметить, что считанное значение напряжения всегда меньше истинного значения. Это пример систематической ошибки измерения.

Истинное значение напряжения на концах элемента R на рис. 2, согласно закона Ома для участка электрической цепи, составляет: U = I*R

Но, так как вольтметр имеет внутреннее сопротивление, то он показывает значение: UV = IV * RV = IR * R .

После простых преобразований получаем, что реальное значение электрического напряжения на концах проверяемого элемента цепи R имеет значение: U = UV * (1 + R/RV )

Эта формула подтверждает наше предыдущее утверждение о том, что идеальный вольтметр должен иметь бесконечное внутреннее сопротивление. Поскольку коэффициент сопротивления в этой формуле стремится к бесконечности, измеренное значение UV стремится к истинному значению U. Поскольку в реальности не существует прибора, удовлетворяющего этому идеальному условию, при проведении измерений необходимо выбирать вольтметр таким образом, чтобы величина вносимой им ошибки находилась в пределах предполагаемой погрешности измерений.

Вывод: Чем выше внутреннее сопротивление вольтметра, тем меньше погрешность измерения; поэтому вольтметры всегда имеют очень высокое электрическое сопротивление.

Как и у амперметра, у одного зажима вольтметра ставят знак «+«. Этот зажим необходимо обязательно соединять с проводом, идущим от положительного полюса источника тока. Иначе стрелка прибора будет отклоняться в обратную сторону. А отрицательный зажим, соответственно, соединяют с проводом, идущим от отрицательного полюса источника тока.

Расширение диапазона измерений.

У аналоговых вольтметров диапазон измерения в принципе ограничен концом шкалы; если на измерительный прибор подается более высокое напряжение, то, с одной стороны, стрелка прибора не может отклониться дальше, а с другой стороны, даже сам прибор может быть поврежден (выйти из строя). Чтобы расширить диапазон измерений в большую сторону, необходимо использовать подходящую электрическую схему, обеспечивающую подачу на вольтметр только части измеряемого напряжения.

Этого можно достичь, объединив вольтметр с последовательно подключенным резистором (эти резисторы ещё называют — «добавочными резисторами»). Например, если вольтметр с диапазоном измерения 50 мВ имеет внутреннее сопротивление 100 Ом, то последовательный резистор со значением 900 Ом вызывает падение напряжения на вольтметре только на 1/10. Таким образом, диапазон измерений увеличивается в 10 раз, поэтому вольтметры теперь могут измерять напряжение до 500 мВ.

Верхние пределы расширения диапазона измерения практически отсутствуют. Если последовательный резистор в вышеприведенном примере имеет значение 99 900 Ом, то общее сопротивление равно 100 000 Ом, и на вольтметре падает только 1/1000 от приложенного напряжения. Соответственно, можно измерить в 1000 раз большее напряжение, т.е. максимум 50 В.

Более наглядно посмотреть, как подключаются добавочные резисторы в электрическую цепь вы можете видеть на рисунке 3 ниже.

Рис. 3. Расширение диапазона измерений вольтметра

Если мы хотим использовать вольтметр с диапазоном до UV для измерения напряжения до U1 , мы можем написать: U1 = I*RP + UV ,

В тоже время: UV = I*RV , тогда

после преобразований получаем, что сопротивление добавочного сопротивления должно иметь значение:

RP = (U1 / UV — 1) * RV

Мы также можем уменьшить диапазон измерения вольтметра. Для этого мы используем делители напряжения как на рис. 4.

Рис. 4. Делитель напряжения для уменьшения диапазона измерения вольтметра с UV до U1

При использовании цифровых измерительных приборов, измерение выполняется электронным способом и отображается на дисплее в цифровом виде. Однако проблема погрешности измерений и принцип расширения диапазона измерений идентичны для аналоговых и цифровых измерительных приборов.

Определение постоянного и переменного тока

Для постоянного тока не требуется никаких особых схем – есть миллиамперметр, мощный шунт с сопротивлением в сотые и тысячные доли Ома. Они включаются между собой параллельно – и вся установка помещена в разрыв цепи. Для переменного же тока требуется способ с трансформатором тока, включённым по вышеописанной схеме. Чтобы стрелка не колебалась около нуля шкалы с частотой в 50 и более герц, используют диодный выпрямитель. Это один диод или диодный мост. Номинал диода по напряжению должен быть достаточно высок. Таким образом вы избежите электрического пробоя и последующего выхода прибора из строя.

Как работает вольтметр?

Существует два типа вольтметров: аналоговые, показывающие значение путем наклона стрелки механического прибора, и все чаще используемые в настоящее время цифровые, оснащенные сложными электронными схемами.

Аналоговые вольтметры обычно представляют собой амперметры с последовательно соединенным резистором RV с очень большим значением электрического сопротивления. То есть, по сути, они измеряют ток IV, протекающий через него, а шкала показывает значение, которое является результатом расчета: UV = IV * RV .

Цифровые приборы, как правило, имеют обратную конструкцию (то есть они являются именно вольтметрами, а не амперметрами). Это связано с тем, что изготовить цифровой измеритель напряжения относительно просто. Если мы подключим его параллельно резистору с малым сопротивлением, то получим амперметр. Значение индикатора может быть рассчитано по уравнению: UV = IV * RV .

Существует, однако, тип аналогового вольтметра, принцип действия которого не основан на принципе работы амперметра. Это электростатический вольтметр. На практике это конденсатор с одной неподвижной обкладкой и другой подвижной. Электрическое взаимодействие обкладок вызывает перемещение указателя, прикрепленного к движущейся части. С помощью такого вольтметра можно можно измерять даже очень высокие электрические напряжения, а значение его внутреннего сопротивление почти бесконечно.

Амперметр. Назначение, типы амперметров их устройство и принцип работы, как пользоваться и подключать

Обновлено: 27. 05.2023

Амперметр — это электроизмерительный прибор, который предназначен для измерения силы электрического тока в каком-нибудь участке электрической цепи. Эта величина задается единицах, называемых амперами, отсюда и название прибора — “Амперметр”. На практике значения электрического тока измеряются в различных диапазонах — от микроампер (мкА) до килоампер (кА).

Амперметр — это тот же гальванометр, только приспособленный для измерения силы тока, его шкала проградуирована в амперах.

На схемах амперметр изображают кружком с буквой А в центре.

Для измерения силы тока можно использовать и мультиметр. Перед измерением необходимо прочитать инструкцию к конкретной модели мультиметра, чтобы его правильно настроить и подключить в электрическую цепь.

Как работает амперметр?

Существует два типа амперметров: аналоговые, показывающие значение путем отклонения стрелки механического устройства, и все чаще использующиеся в настоящее время цифровые приборы, оснащенные сложными электронными схемами.

При изготовлении аналоговых амперметров необходимо использовать эффекты, зависящие от величины электрического тока. Чаще всего они связаны с созданием магнитного поля проводником, в котором течет электрический ток. Чем выше сила тока, тем больше эффект, производимый данным явлением.

Каждый аналоговый амперметр имеет подвижную и неподвижную части. К подвижной части прикреплена стрелка, которая перемещается по шкале и позволяет считывать показания прибора. Чтобы избежать ошибок при снятии показаний, которые вызваны эффектом параллакса, следует смотреть на стрелку под прямым углом к ​​шкале, чему способствует зеркало, расположенное рядом со шкалой (см. рисунок 1).

Рис. 1. Индикаторный микроамперметр с зеркалом, установленным для уменьшения эффекта параллакса при снятии показаний

Типы амперметров их устройство и принцип работы

Каждый тип амперметра использует различные физические явления, связанные с протеканием электрического тока через проводник. Некоторые из них перечислены ниже.

Магнитоэлектрический амперметр

  • На проводник с электрическим током, помещенный в магнитное поле, действует электродинамическая сила, величина которой зависит от абсолютной величины электрического тока, длины проводника и величины магнитной индукции.

Конструкция магнитоэлектрического амперметра, основанного на этом явлении, показана на рис. 2. Вращающаяся катушка, через которую протекает измеряемый электрический ток, отмечена красным цветом. Части катушки, перпендикулярные плоскости рисунка, используются в качестве проводника.

Магнитное поле создается постоянным магнитом, сформированным таким образом, чтобы поле было радиальным. Таким образом, каждый фрагмент взаимодействующего проводника всегда перпендикулярен вектору индукции магнитного поля, независимо от положения катушки с указателем.

Рис. 2. Схема работы магнитоэлектрического амперметра. Красный цвет — это катушка в которой течет ток, зеленый — пружина.

Формула, описывающая силу магнитного взаимодействия, действующую на прямолинейный проводник с током, помещенным в магнитное поле, имеет вид: F = I * L * B (1), где:

  • L — вектор вдоль проводника с величиной, равной его длине, и направлением — таким же как и направление протекания электрического тока;
  • B — вектор индукции магнитного поля.

Согласно этой формуле, на токоведущие проводники перпендикулярно плоскости (см. рисунок 2) действует сила, направление которой перпендикулярно как этим проводникам, так и вектору индукции магнитного поля. Эта сила вызывает вращение катушки. Значение силы, согласно формуле (1), равно F = I * l * B * sin α (2), где:

где α — угол между направлениями вектора L и вектора индукции магнитного поля B . Как было сказано выше, этот угол всегда равен 90 0 , если магнитное поле радиальное.

Пружина, обозначенная зеленым цветом на рисунке 2, противодействует вращению катушки таким образом, что устанавливается равновесное положение в зависимости от силы тока, значение которой можно определить по стрелке, расположенной над шкалой амперметра.

Таким образом, описанный амперметр показывает направление протекания электрического тока. Его можно использовать только для постоянного или однонаправленного тока. Такова, в частности, конструкция гальванометров.

Электродинамический амперметр

  • Две катушки, по которым течет электрический ток, взаимодействуют друг с другом с помощью магнитного взаимодействия.

Электродинамический амперметр состоит из двух катушек — подвижной и неподвижной (см. рисунок 3).

Рис. 3. Устройство электродинамического амперметра. 1 — неподвижная катушка, 2 — подвижная катушка, 3 — пружина

Если через обе катушки протекает электрический ток, значение которого мы хотим измерить, магнитные поля будут взаимодействовать, вызывая отклонение подвижной катушки и прикрепленного к ней указателя (стрелки). Этот эффект не зависит от направления протекания электрического тока. Электродинамический амперметр может использоваться для измерения постоянного и переменного тока, включая быстро меняющийся ток. Это точные устройства, но дорогие. Чаще всего они используются в лабораториях в качестве эталонных измерительных приборов.

Индукционный амперметр

  • В металлическом вращающемся диске вихревые токи индуцируются под воздействием магнитных полей, создаваемых катушками, в которых протекает переменный электрический ток.

Электрические токи I1 и I2 (см. рисунок 4), протекающие в катушках электромагнитов, создают пульсирующие магнитные потоки, которые вызывают вихревые токи в диске, помещенном в воздушный зазор электромагнитов.

Вихревые токи также создают магнитное поле, которое отталкивающе взаимодействует с полем катушки, заставляя диск вращаться.

Рис. 4. Устройство индукционного амперметра

Индуктивный амперметр можно использовать только для измерения переменного тока, т.к. постоянный ток не будет вызывать вихревые токи в диске. Этот тип конструкции в настоящее время используются только в качестве счетчиков электроэнергии.

Как пользоваться и подключать амперметр к цепи?

Для измерения силы тока в простейшей электрической цепи мы должны обязательно разорвать цепь в любом месте и в этот разрыв подключить прибор (см. рисунок 5). Такое подключение называют последовательным. То есть, например, для измерения силы тока в проводнике амперметр подключают последовательно с этим проводником — в этом случае через проводник и амперметр идёт одинаковый ток.

Рис. 5. Способ подключения амперметра в электрической цепи

В цепи, состоящей из источника тока и ряда проводников, соединённых так, что конец одного проводника соединяется с началом другого, сила тока во всех участках одинакова. Это следует из того, что заряд, проходящий через любое поперечное сечение проводников цепи за 1 с, одинаков. Когда в электрической цепи существует ток, то заряд нигде в проводниках цепи не накапливается, подобно тому как нигде в отдельных частях трубы не собирается вода, когда она течёт по трубе. Поэтому при измерении силы тока амперметр можно включать в любое место цепи, состоящей из ряда последовательно соединённых проводников, так как сила тока во всех точках цепи одинакова. Если включить один амперметр в электрическую цепь до лампы, другой после неё, то оба они покажут одинаковую силу тока.

Внимание! Нельзя присоединять амперметр к зажимам источника без какого-либо приёмника тока, соединённого последовательно с амперметром. Можно испортить амперметр!

Для каждого амперметра существует верхний предел измерения (предельная сила тока), то есть по шкале амперметра видно, на какую наибольшую силу тока он рассчитан. Включение амперметра в электрическую цепь с большей силой тока недопустимо, так как он может выйти из строя.

При включении прибора необходимо соблюдать полярность, т. е. клемму прибора, отмеченную знаком “+”, нужно подключать только к проводу, идущему от клеммы со знаком “+” источника тока. При правильном включении прибора электрический ток через амперметр должен идти от клеммы « + » к клемме « — » .

При включении в цепь амперметр, как всякий измерительный прибор, не должен влиять на измеряемую величину. Поэтому он устроен так, что при включении его в цепь сила тока в ней почти не изменяется. Как мы уже знаем, любые измерительные электроприборы обладают определенным электрическим сопротивлением. При включении последовательно в электрическую цепь амперметра его электрическое сопротивление добавляется к полному электрическому сопротивлению электрической цепи. Это вызывает нежелательное уменьшение силы тока. Чтобы этого не случилось, сопротивление амперметра должно быть мало. Идеальным был бы амперметр без сопротивления (R = 0), но на практике этого достичь невозможно.

Как увеличить диапазон измерения амперметра?

Чтобы измерение тока было как можно более точным, нам необходимо использовать соответствующий диапазон измерений. Попытка считывания значений в несколько мА, когда шкала перекрывает измерения до 100 А закончится тем, что мы даже не заметим отклонения стрелки амперметра.

Разработчики амперметров используют различные технические решения для того, чтобы иметь возможность измерять силу тока в различных диапазонах. В некоторых случаях мы можем сами изменить диапазон измерения прибора. Если мы добавим к нему дополнительный резистор (так называемый шунт), как показано на рис. 6, мы сможем измерять более высокие токи, не подвергая хрупкую структуру амперметра разрушению.

Рис. 6. Расширение диапазона магнитоэлектрического амперметра путем добавления шунтирующего резистора

Предположим, что мы хотим увеличить диапазон измерения амперметра в n раз. Полный ток I, протекающий через устройство (рис. 6), тогда равен n*IA . Тогда уравнения первого и второго правил Кирхгофа будут следующими:

Следовательно, сопротивление шунтирующего резистора можно будет рассчитать так:

По конструктивным соображениям шунтирующий резистор используется только для магнитоэлектрического амперметра.

Амперметр — это электроизмерительный прибор, предназначенный для фиксации силы постоянного либо переменного тока, протекающего в цепи — то есть устройство для измерения тока.

Амперметр подключается последовательно, с тем участком электроцепи, где предполагается измерять ток. Так как ток, который он измеряет зависит от сопротивления элементов цепи, то сопротивление амперметра должно быть максимально низким (очень маленьким). Это позволяет уменьшить влияние устройства для измерения тока на измеряемую цепь и повысить их точность.

Шкалу прибора градуируют в мкА, мА, А и кА, и в зависимости от требуемой точности и пределов измерения выбирают подходящий прибор. Увеличение измеряемой силы тока добиваются путем включения в цепь шунтов, трансформаторов тока, магнитных усилителей. Это позволяет увеличить предел измеряемой величины тока.

Схемы подключения амперметра

Рисунок — Схема прямого включения амперметра

Рисунок — Схема косвенного включения амперметра через шунт и трансформатор тока

Сфера применения амперметров

Приборы для измерения тока нашли применение в различных сферах. Их активно используют на крупных предприятиях, связанных с генерацией и распределением электрической, тепловой энергии.

Для определения значения тока в электрической цепи, применяют специальные приборы — амперметры. Амперметр включается последовательно в исследуемую цепь, и, в силу крайне малого собственного внутреннего сопротивления, данный измерительный прибор не вносит сколь-нибудь существенных изменений в электрические параметры цепи.

Шкала прибора градуирована в амперах, килоамперах, миллиамперах или микроамперах. Для расширений пределов измерений, амперметр может быть включен в цепь через трансформатор или параллельно шунту, когда лишь малая доля измеряемого тока проходит через прибор, а основной ток цепи течет через шунт.

Сегодня есть два особо популярных типа амперметров — механические амперметры — магнитоэлектрические и электродинамические, и электронные — линейные и трансформаторные.

В классическом магнитоэлектрическом амперметре со стрелкой и градуированной шкалой, через подвижную катушку прибора проходит определенная часть измеряемого тока, обратнопропорциональная сопротивлению катушки, включенной параллельно калиброванному шунту малого сопротивления.

Ток (прямой или выпрямленный) проходящий через катушку приводит к повороту стрелки магнитоэлектрического амперметра, и угол наклона стрелки оказывается пропорционален величине измеряемого тока.

Ток через катушку амперметра создает на ней крутящий момент благодаря взаимодействию собственного магнитного поля с магнитным полем установленного стационарно постоянного магнита. И поскольку стрелка соединена с катушкой-рамкой, она наклоняется на соответствующий угол и указывает значение тока на шкале.

Электродинамический амперметр устроен несколько более сложным образом. В нем есть две катушки — одна неподвижная, а вторая — подвижная. Катушки соединены между собой последовательно или параллельно. Когда токи проходят через катушки, то их магнитные поля взаимодействуют, в итоге подвижная катушка, с которой соединена стрелка, отклоняется на угол, пропорциональный величине измеряемого тока.

В приборах, предназначенных для измерения значительных токов, основной ток всегда проходит через шунт малого сопротивления, а катушка соединенная со стрелкой, принимает на себя только малую долю тока, выступая в роли проводящего ответвления от основного пути тока. Соотношения токов через измерительную рамку и через шунт обычно принимаются такими: 1 к 1000, 1 к 100 или 1 к 10.

Часто для измерения значительных токов или при работе с высоковольтными цепями, применяют включение амперметра через измерительный трансформатор тока. В этом случае ток, пропорциональный току в первичной обмотке, измеряется во вторичной обмотке, а шкала градуируется соответственно измеряемому в первичной обмотке току. Вторичная обмотка измерительного трансформатора тока всегда шунтирована резистором, иначе наведенная на ней ЭДС могла бы оказаться опасно высокой.

При включении измерительного трансформатора тока в цепь высокого напряжения, корпус амперметра и вторичную цепь измерительного трансформатора обязательно заземляют, чтобы подстраховаться на случай пробоя изоляции.

На базе трансформаторов тока или датчиков Холла изготавливают амперметры типа «токовые клещи». Применение датчика Холла позволяет измерять постоянный ток, а трансформаторов тока — переменный ток.

Клещи на базе трансформатора тока — для измерения переменного тока, — проще в изготовлении и стоят они дешевле. Разъемный магнитопровод представляет собой сердечник трансформатора тока, на котором намотана вторичная обмотка, шунтированная резистором. Первичной обмоткой выступает провод, который клещами обхватывают для измерения тока в нем.

Электронная схема вычисляет в соответствии с законом Ома, исходя из напряжения на шунтирующем резисторе и коэффициента трансформации, ток в исследуемой цепи.

Токоизмерительные клещи UNI-T UTM 1202A:

Клещи на базе датчика Холла (для измерения постоянного тока) используют эффект Холла, когда создаваемое постоянным током магнитное поле приводит к появлению пропорциональной ЭДС Холла на схеме датчика.

Преимущество токовых клещей с датчиком Холла в том, что они обладают высоким быстродействием, и позволяют отслеживать кратковременные броски тока.

Наконец, в простых цифровых мультиметрах с функцией измерения тока, применяется линейная схема измерения с шунтом. Здесь нет подвижной рамки со стрелкой, вместо этого электроника измеряет падение напряжения на шунте известного сопротивления, сравнивает его с эталонным значением, и подсчитывает значение тока. Результат измерения тока отображается на цифровом дисплее.

Читайте также:



      

  • RGB подсветка: что это, где применяется, как подобрать светодиодную ленту, что значит цвет свечения


  •   

  • Как выбрать энергосберегающие лампы для дома. Какие энергосберегающие лампы лучше и как их выбирать


  •   

  • ВАХ диода: применение характеристики для поиска сложных неисправностей полупроводниковых элементов

21.4 Вольтметры и амперметры постоянного тока – College Physics

Резюме

  • Объясните, почему вольтметр должен быть подключен параллельно цепи.
  • Нарисуйте схему, показывающую правильное подключение амперметра к цепи.
  • Опишите, как можно использовать гальванометр как вольтметр или амперметр.
  • Найдите сопротивление, которое нужно включить последовательно с гальванометром, чтобы его можно было использовать как вольтметр с заданными показаниями.
  • Объясните, почему измерение напряжения или тока в цепи никогда не может быть точным.

Вольтметры измеряют напряжение, тогда как амперметры измеряют ток. Некоторые счетчики в автомобильных приборных панелях, цифровых камерах, сотовых телефонах и тюнерах-усилителях являются вольтметрами или амперметрами. (См. рис. 1.) Внутренняя конструкция простейших из этих счетчиков и то, как они подключены к системе, которую они контролируют, дают дополнительные сведения о применении последовательных и параллельных соединений.

Рисунок 1. Датчики уровня топлива и температуры (крайний правый и крайний левый, соответственно) в этом Volkswagen 1996 года — это вольтметры, которые регистрируют выходное напряжение «передатчиков», которое, как мы надеемся, пропорционально количеству бензина в баке и температура двигателя. (кредит: Кристиан Гирсинг)

вольтметров подключены параллельно к любому устройству, напряжение которого нужно измерить. Параллельное соединение используется потому, что параллельные объекты испытывают одинаковую разность потенциалов. (См. рис. 2, где вольтметр обозначен символом V.)

Амперметры

подключаются последовательно к устройству, ток которого нужно измерить. Последовательное соединение используется потому, что последовательно соединенные объекты имеют одинаковый ток, проходящий через них. (См. рис. 3, где амперметр обозначен символом А.)

Рисунок 2. (a) Для измерения разности потенциалов в этой последовательной цепи вольтметр (V) помещают параллельно источнику напряжения или одному из резисторов. Обратите внимание, что напряжение на клеммах измеряется между точками a и b. Невозможно подключить вольтметр непосредственно через ЭДС без учета его внутреннего сопротивления, р . (b) Используемый цифровой вольтметр. (кредит: Messtechniker, Wikimedia Commons) Рис. 3. Амперметр (А) подключен последовательно для измерения тока. Весь ток в этой цепи протекает через счетчик. Амперметр будет иметь такое же показание, если он будет расположен между точками d и e или между точками f и a, как показано на рисунке. (Обратите внимание, что заглавная буква E обозначает ЭДС, а r обозначает внутреннее сопротивление источника разности потенциалов.)

Аналоговые счетчики имеют стрелку, которая поворачивается, чтобы указывать на числа на шкале, в отличие от цифровых счетчиков , которые имеют числовые показания, подобные ручному калькулятору. Сердцем большинства аналоговых счетчиков является устройство, называемое гальванометром , обозначаемым буквой G. Ток, протекающий через гальванометр $latex \boldsymbol{I_{\textbf{G}}}$, вызывает пропорциональное отклонение стрелки. (Это отклонение происходит из-за силы магнитного поля, действующей на проводник с током.)

Двумя важнейшими характеристиками данного гальванометра являются его сопротивление и чувствительность к току. Чувствительность по току — это ток, который дает полное отклонение стрелки гальванометра, максимальный ток, который может измерить прибор. Например, гальванометр с токовой чувствительностью $latex \boldsymbol{50 \;\mu \textbf{A}} $ имеет максимальное отклонение стрелки, когда $latex \boldsymbol{50 \;\mu \textbf{A} } $ проходит через него, читается наполовину, когда $latex \boldsymbol{25 \;\mu \textbf{A}} $ проходит через него, и так далее.

Если такой гальванометр имеет сопротивление $латекс \boldsymbol{25 – \;\Omega}$, то напряжение всего $латекс \boldsymbol{V = IR = (50 \;\mu \textbf{A}) (25 \;\Omega) = 1,25 \;\textbf{мВ}} $ дает полномасштабное показание. Подключая резисторы к этому гальванометру различными способами, вы можете использовать его как вольтметр или амперметр, который может измерять широкий диапазон напряжений или токов.

Гальванометр как вольтметр

На рис. 4 показано, как можно использовать гальванометр в качестве вольтметра, подключив его последовательно с большим сопротивлением $latex \boldsymbol{R} $. Значение сопротивления $latex \boldsymbol{R} $ определяется максимальным измеряемым напряжением. Предположим, вы хотите, чтобы напряжение 10 В вызывало полное отклонение вольтметра, содержащего $латексный \boldsymbol{25 – \;\Omega} $ гальванометр с $латексным \boldsymbol{50 – \;\mu \textbf{A}} $ чувствительность. Тогда 10 В, подаваемые на счетчик, должны давать ток $latex \boldsymbol{50 \;\mu \textbf{A}} $. Общее сопротивление должно быть

$latex \boldsymbol{R_{\textbf{tot}} = R + r =} $ $latex \boldsymbol{=} $ $latex \boldsymbol{=200 \;\textbf{k} \Omega \;\textbf{ , или}} $

$латекс \boldsymbol{R = R_{\textbf{tot}} – r = 200 \;\textbf{k} \Omega – 25 \;\Omega \примерно 200 \;\textbf{k} \Omega} $

($latex \boldsymbol{R} $ настолько велик, что сопротивлением гальванометра, $latex \boldsymbol{r} $, можно пренебречь). латекс \boldsymbol{25 – \;\mu \textbf{A}} $ ток через счетчик, поэтому показание вольтметра пропорционально напряжению, как и требуется.

Этот вольтметр бесполезен при напряжении менее половины вольта, потому что отклонение измерителя будет небольшим и его трудно будет точно считывать. Для других диапазонов напряжения последовательно с гальванометром включают другие сопротивления. Многие счетчики имеют выбор шкалы. Этот выбор включает последовательное включение соответствующего сопротивления с гальванометром.

Рисунок 4. Большое сопротивление R , включенное последовательно с гальванометром G, дает вольтметр, отклонение которого на полную шкалу зависит от выбора Р . Чем больше измеряемое напряжение, тем больше должно быть R . (Обратите внимание, что r представляет собой внутреннее сопротивление гальванометра.)

Гальванометр как амперметр

Тот же гальванометр можно также превратить в амперметр, поместив его параллельно с небольшим сопротивлением $латекс \boldsymbol{R} $, часто называемым шунтовым сопротивлением , как показано на рисунке 5. Поскольку шунтирующее сопротивление мало, через него проходит большая часть тока, что позволяет амперметру измерять токи, намного большие, чем те, которые вызывают полное отклонение гальванометра.

Допустим, например, нужен амперметр, дающий полное отклонение на 1,0 А, и содержащий тот же $латексный \boldsymbol{25 – \;\Omega} $ гальванометр с его $латексным \boldsymbol{50 – \; \mu \textbf{A}} $ чувствительность. Поскольку $latex \boldsymbol{R} $ и $latex \boldsymbol{r} $ соединены параллельно, напряжение на них одинаково.

Эти капли $latex \boldsymbol{IR} $ являются $latex \boldsymbol{IR = I_Gr} $, так что $latex \boldsymbol{IR = \frac{I_G}{I} = \frac{R}{r}} $ . Находя $latex \boldsymbol{R} $ и учитывая, что $latex \boldsymbol{I_G} $ есть $latex \boldsymbol{50 \;\mu \textbf{A}} $, а $latex \boldsymbol{I} $ есть 0,9{-3} \;\Омега}. $

Рис. 5. Небольшое шунтирующее сопротивление R , помещенное параллельно с гальванометром G, дает амперметр, отклонение на полную шкалу которого зависит от выбора R . Чем больше измеряемый ток, тем меньше должны быть R . Большая часть тока ( I ), протекающего через счетчик, шунтируется через R для защиты гальванометра. (Обратите внимание, что r представляет собой внутреннее сопротивление гальванометра.) Амперметры также могут иметь несколько шкал для большей гибкости в применении. Различные масштабы достигаются включением различных шунтирующих сопротивлений параллельно гальванометру — чем больше максимальный измеряемый ток, тем меньше должно быть шунтирующее сопротивление.

Когда вы используете вольтметр или амперметр, вы подключаете другой резистор к существующей цепи и, таким образом, изменяете схему. В идеале вольтметры и амперметры не оказывают заметного влияния на цепь, но полезно изучить обстоятельства, при которых они влияют или не влияют.

Сначала рассмотрим вольтметр, который всегда ставится параллельно измеряемому устройству. Через вольтметр протекает очень небольшой ток, если его сопротивление на несколько порядков больше, чем сопротивление устройства, и поэтому на цепь не оказывается заметного влияния. (См. рис. 6(а).) (Большое сопротивление, соединенное параллельно с малым, имеет суммарное сопротивление, практически равное малому. ) Если, однако, сопротивление вольтметра сравнимо с сопротивлением измеряемого устройства, то два параллельно имеют меньшее сопротивление, заметно влияя на цепь. (См. рис. 6(b).) Напряжение на устройстве не такое, как если бы вольтметр не был включен в цепь.

Рисунок 6. (a) Вольтметр, сопротивление которого значительно превышает сопротивление устройства ( R Вольтметр >> R ), с которым он соединен параллельно, создает параллельное сопротивление, практически такое же, как и устройство, и не оказывает заметного влияния измеряемая цепь. (b) Здесь вольтметр имеет то же сопротивление, что и устройство ( R Вольтметр ≅ R ), так что параллельное сопротивление вдвое меньше, чем при неподключенном вольтметре. Это пример существенного изменения схемы, которого следует избегать.

Амперметр включен последовательно в измеряемую ветвь цепи, так что его сопротивление добавляется к этой ветви. Обычно сопротивление амперметра очень мало по сравнению с сопротивлениями устройств в цепи, поэтому лишнее сопротивление незначительно. (См. рис. 7(a).) Однако, если используются очень малые сопротивления нагрузки или если сопротивление амперметра не такое низкое, как должно быть, то общее последовательное сопротивление будет значительно больше, а ток в ответвлении составит измеряемое уменьшается. (См. рис. 7(b).)

При неправильном подключении амперметра может возникнуть практическая проблема. Если бы он был подключен параллельно резистору для измерения тока в нем, вы могли бы повредить счетчик; низкое сопротивление амперметра позволило бы большей части тока в цепи проходить через гальванометр, и этот ток был бы больше, поскольку эффективное сопротивление меньше.

Рисунок 7. (a) Обычно амперметр имеет настолько малое сопротивление, что общее последовательное сопротивление в измеряемой ветви не увеличивается заметно. Схема практически не изменилась по сравнению с отсутствием амперметра. (b) Здесь сопротивление амперметра такое же, как сопротивление ответвления, так что общее сопротивление удваивается, а ток вдвое меньше, чем без амперметра. Этого значительного изменения схемы следует избегать.

Одним из решений проблемы помех вольтметров и амперметров в измеряемых цепях является использование гальванометров с большей чувствительностью. Это позволяет создавать вольтметры с большим сопротивлением и амперметры с меньшим сопротивлением, чем при использовании менее чувствительных гальванометров.

Существуют практические пределы чувствительности гальванометра, но можно получить аналоговые измерители, точность измерений которых составляет несколько процентов. Обратите внимание, что неточность возникает из-за изменения схемы, а не из-за неисправности счетчика.

Connections: Limits to Knowledge

Выполнение измерения изменяет измеряемую систему таким образом, что возникает неопределенность в измерении. Для макроскопических систем, таких как схемы, обсуждаемые в этом модуле, изменение обычно можно сделать пренебрежимо малым, но полностью устранить его нельзя. Для субмикроскопических систем, таких как атомы, ядра и более мелкие частицы, измерение изменяет систему таким образом, что ее нельзя сделать произвольно малой. Это фактически ограничивает знание системы — даже ограничивает то, что природа может знать о себе. Мы увидим глубокие последствия этого, когда принцип неопределенности Гейзенберга будет обсуждаться в модулях по квантовой механике. 96} $.

PhET Explorations: набор для построения схемы (только DC), виртуальная лаборатория

Стимулируйте нейрон и следите за происходящим. Делайте паузы, перематывайте назад и двигайтесь вперед во времени, чтобы наблюдать за движением ионов через мембрану нейрона.

Рис. 8. Комплект для построения схемы (только для постоянного тока), виртуальная лаборатория

  • Вольтметры измеряют напряжение, а амперметры измеряют ток.
  • Вольтметр размещается параллельно источнику напряжения для получения полного напряжения и должен иметь большое сопротивление, чтобы ограничить его влияние на цепь.
  • Амперметр включен последовательно, чтобы получить полный ток, протекающий через ветвь, и должен иметь небольшое сопротивление, чтобы ограничить его влияние на цепь.
  • Оба могут быть основаны на комбинации резистора и гальванометра, устройства, которое дает аналоговое считывание тока.
  • Стандартные вольтметры и амперметры изменяют измеряемую цепь и, таким образом, имеют ограниченную точность.

Задача Упражнения

1: Какова чувствительность гальванометра (т. е. какой ток дает полное отклонение) внутри вольтметра, имеющего $latex \boldsymbol{1.00 – \;\textbf{M} \ Сопротивление Omega} $ по шкале 30,0 В?

2: Какова чувствительность гальванометра (то есть какой ток дает полное отклонение) внутри вольтметра, имеющего $latex \boldsymbol{25.0 – \;\textbf{k} \Omega} $ сопротивление по шкале 100 В?

3: Найдите сопротивление, которое необходимо включить последовательно с гальванометром $latex \boldsymbol{25,0 – \;\Omega} $, имеющим $latex \boldsymbol{50,0 – \;\mu \textbf{A}} $ чувствительность (такая же, как обсуждаемая в тексте), чтобы можно было использовать его в качестве вольтметра с полным отсчетом 0,100 В.

4: Найдите сопротивление, которое нужно включить последовательно с гальванометром $latex \boldsymbol{25,0 – \;\Omega} $, имеющим $latex \boldsymbol{50,0 – \;\mu \textbf{A}} $ чувствительность (такая же, как рассмотренная в тексте), позволяющая использовать его в качестве вольтметра с полным отсчетом 3000 В. Включите принципиальную схему с вашим решением.

5: Найдите сопротивление, которое необходимо подключить параллельно гальванометру $latex \boldsymbol{25,0 – \;\Omega} $ с чувствительностью $latex \boldsymbol{50,0 – \;\textbf{A}} $ (такой же, как обсуждаемый в тексте), чтобы его можно было использовать в качестве амперметра с полным отсчетом 10,0 А. Включите принципиальную схему с вашим решением.

6: Найдите сопротивление, которое необходимо подключить параллельно гальванометру $latex \boldsymbol{25,0 – \;\Omega} $, имеющему $latex \boldsymbol{50,0 – \;\mu \textbf{A}} $ чувствительность (такая же, как рассмотренная в тексте), чтобы можно было использовать его в качестве амперметра с полным отсчетом 300 мА.

7: Найдите сопротивление, которое нужно включить последовательно с $латексным \boldsymbol{10.0 – \;\Omega} $ гальванометром, имеющим $латексный \boldsymbol{100 – \;\mu \textbf{A}} $ чувствительность, чтобы его можно было использовать в качестве вольтметра с: (а) показанием полной шкалы 300 В и (б) показанием полной шкалы 0,300 В.

8: Найдите сопротивление, которое необходимо подключить параллельно $латексному \boldsymbol{10.0 – \;\Omega} $ гальванометру, имеющему $латексный \boldsymbol{100 – \;\mu \textbf{A}} $ чувствительность, чтобы его можно было использовать в качестве амперметра с: (a) показанием полной шкалы 20,0 А и (b) полномасштабным показанием 100 мА.

9: Предположим, вы измеряете напряжение на клеммах щелочного элемента на 1,585 В, имеющего внутреннее сопротивление $latex \boldsymbol{0,100 \;\Omega} $, поместив $latex \boldsymbol{1,00 – \;\textbf {k} \Omega} $ вольтметр на его клеммах. (См. рис. {-5} \;\Omega} $ по шкале 3,00-A и содержит $latex \boldsymbol{10,0 – \ ;\Omega} $ гальванометр. Какова чувствительность гальванометра?

12: Вольтметр $latex \boldsymbol{1.00 – \;\textbf{M} \Omega} $ устанавливается параллельно $latex \boldsymbol{75.0 – \;\textbf{k} \Omega} $ резистор в цепи. а) Нарисуйте схему соединения. б) Чему равно сопротивление комбинации? (c) Если напряжение на комбинации остается таким же, как и на одном резисторе $latex \boldsymbol{75,0 – \;\textbf{k} \Omega} $, на сколько процентов увеличится ток? (d) Если ток через комбинацию остается таким же, как и через резистор $latex \boldsymbol{75,0 – \;\textbf{k} \Omega} $, на сколько процентов уменьшается напряжение? (e) Являются ли существенными изменения, обнаруженные в частях (c) и (d)? Обсуждать.

13: Латексный \boldsymbol{0,0200 – \;\Omega} $ амперметр включен в цепь последовательно с $латексным \boldsymbol{10,00 – \;\Omega} $ резистором. а) Нарисуйте схему соединения. (b) Рассчитайте сопротивление комбинации. (c) Если напряжение остается таким же на всей комбинации, как и на одном резисторе $latex \boldsymbol{10.00 – \;\Omega} $, на сколько процентов уменьшится ток? (d) Если ток поддерживается таким же через комбинацию, как и через резистор $latex \boldsymbol{10.00 – \;\Omega} $, на сколько процентов увеличится напряжение? (e) Являются ли существенными изменения, обнаруженные в частях (c) и (d)? Обсуждать.

14: Необоснованные результаты

Предположим, у вас есть гальванометр $latex \boldsymbol{40,0 – \;\Omega} $ с чувствительностью $latex \boldsymbol{25,0 – \;\mu \textbf{A}} $. а) Какое сопротивление вы бы включили с ним последовательно, чтобы его можно было использовать в качестве вольтметра с полным отклонением 0,500 мВ? б) Что неразумного в этом результате? (c) Какие предположения ответственны?

15: Необоснованные результаты

(a) Какое сопротивление вы бы подключили параллельно $латексному \boldsymbol{40,0 – \;\Omega} $ гальванометру, имеющему
$latex \boldsymbol{25. 0 – \;\mu \textbf{A}} $ чувствительность, позволяющая использовать его в качестве амперметра с полным отклонением для $latex \boldsymbol{10.0 – \;\mu \textbf {А}} $? б) Что неразумного в этом результате? (c) Какие предположения ответственны?

Глоссарий

Вольтметр
прибор для измерения напряжения
амперметр
прибор для измерения силы тока
аналоговый счетчик
измерительный прибор, дающий показания в виде движения стрелки по маркированному калибру
цифровой счетчик
измерительный прибор, дающий показания в цифровой форме
гальванометр
аналоговое измерительное устройство, обозначенное буквой G, которое измеряет ток, используя отклонение стрелки, вызванное силой магнитного поля, действующей на проводник с током
чувствительность по току
максимальный ток, который может считывать гальванометр
полное отклонение
максимальное отклонение стрелки гальванометра, также известное как токовая чувствительность; гальванометр с полным отклонением $latex \boldsymbol{50 \;\mu \textbf{A}} $ имеет максимальное отклонение своей стрелки, когда $latex \boldsymbol{50 \;\mu \textbf{A}} $ течет через него
Шунтирующее сопротивление
маленькое сопротивление $латекс \boldsymbol{R}$, помещенное параллельно гальванометру G для получения амперметра; чем больше измеряемый ток, тем меньше должен быть $latex \boldsymbol{R} $; большая часть тока, протекающего через счетчик, шунтируется через $латекс \boldsymbol{R} $ для защиты гальванометра

 

Амперметр всегда включают в цепь последовательно, потому что А.

его сопротивление очень высокое B. его сопротивление очень низкое C. он не потребляет ток из цепи D. его сопротивление бесконечность

Ответ

Проверено

228.6k+ просмотров

Подсказка: Амперметр — это измерительный прибор, используемый для измерения тока в цепи. Электрические токи измеряются в амперах; поэтому прибор, используемый для измерения электрического тока в амперах, называется амперметром. Мы изучим конструкцию и работу амперметра, чтобы найти причину, по которой он всегда подключается последовательно в цепи.

Полный пошаговый ответ:
Счетчик связан с системой измерения. Метр – это прибор, который может измерять определенную величину. Как мы знаем, единицей электрического тока является Ампер, Амперметр означает Амперметр, который измеряет значение ампера. Ампер — это единица силы тока, поэтому амперметр — это измеритель или прибор, который измеряет электрический ток в цепи.
Амперметр — это прибор для измерения постоянного или переменного электрического тока, проходящего по цепи, в амперах. Амперметр имеет возможность измерять широкий диапазон значений тока, потому что при высоких значениях электрического тока только небольшая часть тока проходит через механизм счетчика, так как шунт, включенный параллельно счетчику, несет большую часть этого тока. .

Принцип работы амперметра:
Основной принцип работы амперметра заключается в том, что он должен иметь очень низкое сопротивление, а также индуктивное сопротивление. Он имеет очень низкий импеданс, чтобы иметь очень низкое падение напряжения на себе при использовании в цепи, и должен быть подключен последовательно, потому что ток в последовательной цепи остается одинаковым.
Кроме того, из-за очень низкого импеданса потери мощности через амперметр будут низкими, и если он подключен параллельно, он станет короткозамкнутым путем, и весь ток будет протекать через амперметр, и в результате большой силы тока прибор может повреждать. Поэтому по этой причине амперметр должен быть включен в цепь последовательно.
Амперметр всегда подключают последовательно в цепи, потому что его сопротивление очень низкое.


Опубликовано

в

от

Метки:

Комментарии

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *