Содержание
что это такое, причины возникновения, свойства
Наблюдать искровые разряды приходилось каждому, в том числе и людям, далёким от познаний в электротехнике. Гигантскими искровыми разрядами сопровождаются грозы. Высвобождение огромной энергии, сконцентрированной в электрическом разряде молнии (см. рис. 1), сопровождается ослепительной вспышкой раскалённого ствола. Одним из видов искровых разрядов, созданных человечеством, является дуговой разряд, или попросту, электрическая дуга.
Рис. 1. Грозовой разряд
На сегодняшний день причины возникновение и свойства электрической дуги детально изучено наукой. Физики установили, что в области её горения возникает огромная концентрация зарядов, которые образуют плазму ствола. Температуры столба достигает нескольких тысяч градусов.
Что такое электрическая дуга?
Это загадочное явление впервые описал русский учёный В. Петров. Он создавал электрическую дугу, используя батарею, состоящую из тысяч медных и цинковых пластин. Изучая процесс зажигания дуги постоянным током, учёный пришёл к выводу, что воздушный промежуток между электродами при определённых условиях приобретает электропроводимость.
Одним из условий возникновения электрического пробоя является достаточно высокая разность потенциалов на концах электродов. Чем выше напряжение, тем больший газовый промежуток может преодолеть разряд. При этом образуется электропроводный газовый столб, который сильно разогревается во время горения дуги.
Рис. 2. Электрическая дуга
Возникает резонный вопрос: «Почему воздух, являющийся отличным изолятором в обычном состоянии, вдруг становится проводником?».
Объяснение может быть только одно – в стволе дуги образуются носители зарядов, способные перемещаться под действием электрического поля. Поскольку в воздухе, в отличие от металлов, нет свободных электронов, то вывод напрашивается только один – ионизация газов (см. рис. 3). То есть, запуск процесса насыщения газа ионами, являющимися носителями электрического заряда.
Рис. 3. Физика электрической дуги
Ионизация воздуха происходит под действием различного вида излучений, включая рентгеновское и космическое облучение. Поэтому в воздухе всегда находятся небольшое количество ионов. Но поскольку ионы почти сразу рекомбинируются (превращаются в нейтральные атомы и молекулы), то концентрация заряженных частиц всегда мизерная. Получить вспышку дуги при такой концентрации невозможно.
Для возникновения дугового разряда нужен лавинообразный процесс ионизации. Его можно вызвать путём сильного нагревания газа, которое происходит при зажигании.
При размыкании контактов происходит эмиссия электронов, скапливающихся на очень маленьком пространстве. Под действием напряжённости электрического поля отрицательные заряды устремляются к электроду с положительным знаком.
При достижении напряжения пробоя, между электродами возникает искровой разряд, разогревающий область между электродами. Если ток достаточно большой, то количество тепла будет достаточно для запуска лавинообразного процесса ионизации воздуха.
На участке, который называют дуговым промежутком, образуется ствол, называемый столбом дуги и состоящий из горячей проводимой плазмы. По этому стволу протекает ток, поддерживающий разогревание плазмы. Так происходит процесс зажигания дугового разряда.
Насыщение плазменного ствола ионами разных знаков приводит к значительному увеличению плотности тока, а также к рекомбинации части ионов. Разогревание плазмы приводит также к увеличению давления в стволе. Поэтому часть ионов улетучивает в окружающее пространство.
Если не поддерживать образование новых зарядов, то произойдёт гашение дуги. Как мы уже выяснили, устойчивому горению сопутствуют 2 фактора: наличие напряжения между электродами и поддержание высокой температуры плазмы. Исключение одного из них, приведёт к гашению дуги.
Таким образом, можем сформулировать определение электрической дуги. А именно электрическая дуга – это вид искрового разряда, сопровождающегося большой плотностью тока, длительностью горения, малым падением напряжения на промежутке ствола, характеризующегося повышенным давлением газа, в котором поддерживается высокая температура.
Электрическая дуга отличается от обычного разряда большей длительностью горения.
Строение
Электрическая дуга состоит из трёх основных зон:
- катодной;
- анодной;
- плазменного столба.
В сварочных дугах размеры катодной и анодной зоны незначительные, по сравнению с длиной столба. Толщина этих зон составляет тысячные доли миллиметра. В зоне катодного падения напряжения (на конце отрицательного электрода) наблюдается наличие катодных пятен, которые образуются в результате сильного нагревания.
На рисунке 4 изображена схема строения дуги, создаваемой сварочным аппаратом.
Рис. 4. Строение сварочной дуги
Обратите внимание: с целью достижения наглядности, на картинке сильно преувеличены электродные зоны. В действительности их толщина измеряется в микронах.
Свойства
Высокая плотность тока в стволе электрической дуги определяет её главные свойства:
- Чрезвычайно
высокую температуру плазменного ствола и околоэлектродных зон. - Длительное
горение, при поддержании условий образования ионов.
Эти свойства необходимо учитывать при борьбе с возникновением электрической дуги, так и при её применении в некоторых сферах.
Полезное применение
Как это ни странно, но физики нашли применение этому электрическому явлению ещё на этапе развития науки об электричестве. Пример тому – лампочка Яблочкова. Она состояла из двух угольных электродов, между которыми зажигалась электрическая дуга.
У этой лампы были два недостатка. Электроды быстро изнашивались (выгорали), а спектр света смещался в ультрафиолетовую зону, что негативно влияло на зрение. По этим причинам дуговые лампы не нашли широкого применения и их быстро вытеснили лампы накаливания, существующие до сегодняшнего дня.
Исключение составляют дугоразрядные лампы, а также мощные прожектора, используемые преимущественно в военных целях.
Дуговой разряд стал массово применяться на практике с момента изобретения сварочного аппарата. Дуговую сварку применяют для сварки металлов. (см. рис. 5)
Рис. 5. Дуговая сварка
Используя проводимость плазмы, включая в сварочную цепь специальные сварочные электроды, достигают высокой температуры в сосредоточенном пятне. Регулируя сварочный ток, сварщик имеет возможность настроить аппарат на нужную температуру дугового разряда. Для защиты ствола от тепловых потерь, металлические электроды покрыты специальной смесью, обеспечивающей стабильность горения.
Электрическую дугу применяют в доменных печах для плавки металлов. Дуговая плавка удобна тем, что можно регулировать её температуру путём изменения параметров тока.
Наряду с полезным применением, в электротехнике часто приходится бороться с дуговыми разрядами. Не контролированный дуговой разряд может нанести существенный вред на линиях электропередач, в промышленных и бытовых сетях.
Рис. 6. Дуговой разряд на ЛЭП
Причины возникновения
Исходя из определения, можем назвать условия возникновения электрической дуги:
- наличие разнополярных электродов с большими токами;
- создание искрового разряда;
- поддержание напряжения на электродах;
- обеспечение условий для сохранения температуры ствола.
Искровой разряд возникает в двух случаях: при кратковременном соприкосновении электродов или при приближении к параметрам пробоя. Мощный электрический пробой всегда зажигает ствол.
При сохранении оптимальной длины дуги температура плазмы поддерживается самостоятельно. Однако, с увеличением промежутка между электродами, происходит интенсивный теплообмен ствола с окружающим воздухом. В конце концов, в стволе, вследствие падения температуры, образование ионов лавинообразно прекратится, в результате чего произойдёт гашение пламени.
Пробои часто случаются на высоковольтных ЛЭП. Они могут привести к разрушению изоляторов и к другим негативным последствиям. Длинная электрическая дуга довольно быстро гаснет, но даже за короткое время горения её разрушительная сила огромна.
Дуга имеет склонность к образованию при размыкании контактов. При этом контакты выключателя быстро выгорают, электрическая цепь остаётся замкнутой до момента исчезновения ствола. Это опасно не только для сетей, но и для человека.
Способы гашения
Следует отметить, что гашение дуги происходит и по разным причинам. Например, в результате остывания столба, падения напряжения или когда воздух между электродами вытесняется сторонними испарениями, препятствующими ионизации.
С целью недопущения образования дуг на высоковольтных проводах ЛЭП, их разносят на большое расстояние, что исключает вероятность пробоя. Если же пробой между проводами всё-таки случится, то длинный ствол быстро охладится и произойдёт гашение.
Для охлаждения ствола его иногда разбивают на несколько составляющих. Данный принцип часто используют в конструкциях воздушных выключателей, рассчитанных на напряжения до 1кВ.
Некоторые модели выключателей состоят из множества дугогасительных камер, способствующих быстрому охлаждению.
Быстрой ионизации можно достигнуть путём испарения некоторых материалов, окружающих пространство подвижных ножей. Испарение под высоким давлением сдувает плазму ствола, что приводит к гашению.
Существуют и другие способы: помещение контактов в масло, автодутьё, применение электромагнитного гашения и др.
Воздействие на человека и электрооборудование
Электрическая дуга представляет опасность для человека своим термическим воздействием, а также ультрафиолетовым действием излучающего света. Огромную опасность таит в себе высокое напряжение переменных токов. Если незащищённый человек окажется на критически близком расстоянии от токоведущих частей приборов, может произойти пробой электричества с образованием дуги. Тогда на тело, кроме воздействия тока, окажет действие термической составляющей.
Распространение дугового разряда по конструктивным частям оборудования грозит выжиганием электронных элементов, плат и соединений.
Видео по теме
https://www.youtube.com/watch?v=wuIIgOvi-EI
причины возникновения и способы применения
При коммутации электрических приборов или перенапряжений в цепи между токоведущими частями может появится электрическая дуга. Она может использоваться в полезных технологических целях и в то же время нести вред оборудованию. В настоящее время инженеры разработали ряд методов борьбы и использования в полезных целях электрической дуги. В этой статье мы рассмотрим, как она возникает, ее последствия и область применения.
- Образование дуги, её строение и свойства
- Почему возникает электрическая дуга
- Вред и борьба с ней
- Полезное применение
Образование дуги, её строение и свойства
Представим, что мы в лаборатории проводим эксперимент. У нас есть два проводника, например, металлических гвоздя. Расположим их острием друг к другу на небольшом расстоянии и подключим к гвоздям выводы регулируемого источника напряжения. Если постепенно увеличивать напряжение источника питания, то при определенном его значении мы увидим искры, после чего образуется устойчивое свечение подобное молнии.
Таким образом можно наблюдать процесс её образования. Свечение, которое образуется между электродами — это плазма. Фактически это и есть электрическая дуга или протекание электрического тока через газовую среду между электродами. На рисунке ниже вы видите её строение и вольт-амперную характеристику:
А здесь – приблизительные величины температур:
Почему возникает электрическая дуга
Всё очень просто, мы рассматривали в статье об электрическом поле, а также в статье о распределении зарядов в проводнике, что если любое проводящее тело (стальной гвоздь, например) внести в электрическое поле — на его поверхности начнут скапливаться заряды. При том, чем меньше радиус изгиба поверхности, тем их больше скапливается. Говоря простым языком — заряды скапливаются на острие гвоздя.
Между нашими электродами воздух — это газ. Под действием электрического поля происходит его ионизация. В результате всего этого возникают условия для образования электрической дуги.
Напряжение, при котором возникает дуга, зависит от конкретной среды и её состояния: давления, температуры и прочих факторов.
Интересно: по одной из версий это явление так называется из-за её формы. Дело в том, что в процессе горения разряда воздух или другой окружающий её газ разогревается и поднимается вверх, в результате чего происходит искажение прямолинейной формы и мы видим дугу или арку.
Для зажигания дуги нужно либо преодолеть напряжение пробоя среды между электродами, либо разорвать электрическую цепь. Если в цепи есть большая индуктивность, то, согласно законам коммутации, ток в ней не может прерваться мгновенно, он будет протекать и далее. В связи с этим будет возрастать напряжение между разъединенными контактами, а дуга будет гореть пока не исчезнет напряжение и не рассеется энергия, накопленная в магнитном поле катушки индуктивности.
Рассмотрим условия зажигания и горения:
Между электродами должен быть воздух или другой газ. Для преодоления напряжения пробоя среды потребуется высокое напряжение в десятки тысяч вольт – это зависит от расстояния между электродами и других факторов. Для поддержания горения дуги достаточно 50-60 Вольт и тока в 10 и больше Ампер. Конкретные величины зависят от окружающей среды, формы электродов и расстояния между ними.
Вред и борьба с ней
Мы рассмотрели причины возникновения электрической дуги, теперь давайте разберемся какой вред она наносит и способы её гашения. Электрическая дуга наносит вред коммутационной аппаратуре. Вы замечали, что, если включить мощный электроприбор в сеть и через какое-то время выдернуть вилку из розетки — происходит небольшая вспышка. Это дуга образуется между контактами вилки и розетки в результате разрыва электрической цепи.
Важно! Во время горения электрической дуги выделяется много тепла, температура её горения достигает значений более 3000 градусов Цельсия. В высоковольтных цепях длина дуги достигает метра и более. Возникает опасность как нанесения вреда здоровью людей, так и состоянию оборудования.
Тоже самое происходит и в выключателях освещения, другой коммутационной аппаратуре среди которых:
- автоматические выключатели;
- магнитные пускатели;
- контакторы и прочее.
В аппаратах, которые используются в сетях 0,4 кВ, в том числе и привычные 220 В, используют специальные средства защиты – дугогасительные камеры. Они нужны чтобы уменьшить вред, наносимый контактам.
В общем виде дугогасительная камера представляет собой набор проводящих перегородок особой конфигурации и формы, скрепленных стенками из диэлектрического материала.
При размыкании контактов образовавшаяся плазма изгибается в сторону камеры дугогашения, где разъединяется на небольшие участки. В результате она охлаждается и гасится.
В высоковольтных сетях используют масляные, вакуумные, газовые выключатели. В масляном выключателе гашение происходит коммутацией контактов в масляной ванне. При горении электрической дуги в масле оно разлагается на водород и газы. Вокруг контактов образуется газовый пузырь, который стремиться вырваться из камеры с большой скоростью и дуга охлаждается, так как водород обладает хорошей теплопроводностью.
В вакуумных выключателях не ионизируются газы и нет условий для горения дуги. Также есть выключатели, заполненные газом под высоким давлением. При образовании электрической дуги температура в них не повышается, повышается давление, а из-за этого уменьшается ионизация газов или происходит деионизация. Перспективным направлением считаются элегазовые выключатели.
Также возможна коммутация при нулевом значении переменного тока.
Полезное применение
Рассмотренное явление нашло и целый ряд полезных применений, например:
- Осветительные приборы. Например, дугоразрядные лампы (ДРЛ, ксеноновые и другие виды). Если добавить на электроды соли определенных металлов — цвет электрической дуги изменится.
- Электродуговая сварка. При касании электродом поверхности металла протекает высокий ток, который разогревает металл. Когда вы отрываете электрод, ток не может прерваться, разогретые поверхности эмитируют электроды и возникает дуга. При оплавлении металлических свариваемых поверхностей и расплавлении самого электрода возможно соединение двух частей или их разрезание. Есть различные виды сварки, например, с использованием электродов или газа — углекислого или аргона. Она используется повсеместно и внесла огромный вклад в жилое и промышленное строительство.
- Дуговая плавка. Электрическая дуга зависит от электрических параметров источников питания, таким образом можно регулировать её горение. Благодаря высокой температуре удается расплавить большое число металлов.
Напоследок рекомендуем просмотреть полезное видео по теме статьи:
Теперь вы знаете, что такое электрическая дуга, какие причины возникновения данного явления и возможные сферы применения. Надеемся, предоставленная информация была для вас понятной и полезной!
Материалы по теме:
- Причины возникновения короткого замыкания
- Кабель для сварочного аппарата
- Сварка проводов в распределительной коробке
высокое напряжение — как возникают электрические дуги?
спросил
Изменено
4 года, 4 месяца назад
Просмотрено
2к раз
\$\начало группы\$
У меня сложилось впечатление, что дуги образуются из-за высокого напряжения, что пробой воздуха обычно составляет 3 миллиона вольт на метр. Однако дуговые печи обычно используют низкое напряжение, от 30 до 40 вольт, и большую силу тока, обычно пару сотен ампер. Образуются ли дуги и от больших токов, или они образуются от больших токов или что?
- высоковольтные
- сила тока
- дуга
\$\конечная группа\$
3
\$\начало группы\$
Вам нужен закон Пашена
Закон Пашена представляет собой уравнение, которое дает напряжение пробоя, т.е.
напряжение, необходимое для запуска разряда или электрической дуги,
между двумя электродами в газе в зависимости от давления и зазора
длина.[2][3] Он назван в честь Фридриха Пашена, который его открыл.
эмпирически в 1889 г..[4]Пашен изучал напряжение пробоя различных газов между
параллельные металлические пластины, так как давление газа и расстояние зазора были
разнообразный:При постоянной длине промежутка напряжение, необходимое для образования дуги на
зазор уменьшался по мере того, как давление уменьшалось, а затем увеличивалось
постепенно, превышая свое первоначальное значение. При постоянном давлении,
напряжение, необходимое для возникновения дуги, уменьшилось по мере уменьшения размера зазора, но
только до точки. По мере дальнейшего уменьшения зазора требуемое напряжение
чтобы дуга начала подниматься и снова превысила свое первоначальное значение.
Для данного газа напряжение является функцией только произведения
давление и длина зазора.[2][3] Найденная им кривая зависимости напряжения от
произведение длины промежутка давления (справа) называется кривой Пашена. Он
нашел уравнение, соответствующее этим кривым, которое теперь называется уравнением Пашена.
закон.[3]
По сути, когда воздух ионизируется, он становится хорошим проводником. Прохождение через него сильного тока сохраняет его ионизированным.
\$\конечная группа\$
\$\начало группы\$
О дуговых печах можно прочитать здесь. Первое, что вы можете заметить, это то, что ваше описание применимо только к небольшим печам.
Современная сталеплавильная печь среднего размера будет иметь трансформатор с номинальным
около 60 000 000 вольт-ампер (60 МВА), при вторичном напряжении
между 400 и 900 вольт и вторичный ток свыше 44000
ампер.
Однако даже от 400 до 900 вольт недостаточно для создания дуги на любом разумном расстоянии, поэтому ваш вопрос остается в силе. И статья дает ответ:
Электроды опущены на лом, зажжена дуга
Другими словами, электроды находятся в прямом контакте с расплавляемым металлом, поэтому напряжение практически не имеет значения, если оно обеспечивает достаточный ток. На самом деле
Для этой первой части операции выбираются более низкие напряжения, чтобы
защитить крышу и стены от чрезмерного нагревания и повреждения от
дуги. Как только электроды достигли сильного расплава в основании
печь и дуги экранированы ломом, напряжение может быть
увеличился, а электроды слегка приподнялись, удлинив дуги и
увеличение мощности расплава.
\$\конечная группа\$
\$\начало группы\$
Дуги требуется высокое напряжение для запуска . Напряжение пробоя воздуха значительно зависит от влажности и других факторов, но составляет примерно 1 кВ на мм.
Однако это только для начала дуги. Газы в воздухе превращаются в плазму, проводящую электричество намного лучше, чем обычный воздух. В результате требуется гораздо меньшее напряжение, чтобы поддерживал дугу. Вот почему напряжение на дуге может быть низким, например, несколько десятков вольт или даже меньше, пока продолжает течь достаточный ток для поддержания плазмы. По сути, в дугу необходимо вложить достаточную мощность, чтобы сбалансировать потери из-за конвекции и излучения.
\$\конечная группа\$
Зарегистрируйтесь или войдите в систему
Зарегистрируйтесь с помощью Google
Зарегистрироваться через Facebook
Зарегистрируйтесь, используя электронную почту и пароль
Опубликовать как гость
Электронная почта
Требуется, но никогда не отображается
Опубликовать как гость
Электронная почта
Требуется, но не отображается
Нажимая «Опубликовать свой ответ», вы соглашаетесь с нашими условиями обслуживания, политикой конфиденциальности и политикой использования файлов cookie
.
Определение напряжения по длине дуги
спросил
Изменено
1 год, 10 месяцев назад
Просмотрено
1к раз
\$\начало группы\$
Драйвер диммера света Ludic science
Я смотрел это видео, сделанное ludic science, и в 3:14 он сказал, что при максимальном выходе высоковольтной катушки зажигания расстояние составляло 10 мм/1 см, что, как он утверждал, было 10- 12кв.м. Разве не является золотым стандартом пробивное напряжение воздуха 30 кВ/см? Может кто-нибудь объяснить?
- высоковольтные
- дуговые
\$\конечная группа\$
1
\$\начало группы\$
Существует большая разница в напряжении пробоя диэлектрика BDV для гладких параллельных поверхностей и точечных источников с острыми концами проводов из-за влияния силы градиента электрического поля на ионизацию.
Добавить комментарий