Ветряной обогреватель: Автомобильный обогреватель 12 В/24 В, автомобильный обогреватель, обогреватель для электрического обогрева, ветряная мельница, холодный и те…, арт. 1005003616092790, цена 24 р., фото и отзывы

Обогреватель ветровой компактный греет отлично | Festima.Ru

Товары для дома

Таблица

Список

Лента

продам ветpовoй обогреватeль в хoрoшем paбочем соcтoянии .гpeeт отлично беcшумнo мoжнo остaвлять рaбочим на нoчь. дoвoльнo быcтро oтaпливaет кoмнaту 24 кв мeтpa . .пoльзовался не чaстo когда отключaли отоплeние .ecть нескoлькo режимoв рaботы нaгревa рaдиатоpа и вентилятора.можно использовать даже летом как вентилятор воздуха.продаю не дорого так как есть ещё обогреватель и практически не пользуюсь.

Мы нашли это объявление 3 года назад

Нажмите Следить и система автоматически будет уведомлять Вас о новых предложениях со всех досок объявлений

Перейти к объявлению

Тип жалобы
ДругоеНарушение авторских правЗапрещенная информацияОбъявление неактульноПорнографияСпам

Комментарий

Показать оригинал

Адрес (Кликните по адресу для показа карты)

Сахалинская область, Поронайский городской округ, река Вся
Еще объявления

В рабочем состоянии Отлично работает. Характеристики на фото Целый, без повреждений. Немного потерт пластик — на работу не влияет

Бытовая техника

8 месяцев назад

Источник

состояние нормальное, рабочий

Бытовая техника

11 месяцев назад

Источник

Обогреватель, дует как теплом так и прохладным воздухом. Состояние нового, для кого приобретался переехал в теплый климак.

Бытовая техника

год назад

Источник

в рабочем состоянии.2000вт.

Бытовая техника

год назад

Источник

обогреватель ветродуй 3 режима вентилятор обогрев 1кв обогрев помощнее 2кв отличное состояние

Бытовая техника

год назад

Источник

Отличный обогреватель-ветродуй, полностью исправный, несколько режимов, для небольших помещений

Бытовая техника

год назад

Источник

Вентилятор( ветродуй) и обогреватель в хорошем состоянии Рабочий

Бытовая техника

год назад

Источник

Обогреватель с вентиляторо б/у, торг. Возможна бесплатная доставка по г. Саки и близко прилегающим населенным пунктам.

Бытовая техника

год назад

Источник

К сожалению характеристик не знаю 🙈 Состояние рабочее

Бытовая техника

2 года назад

Источник

В хорошем состоянии, есть 2 функции (обогрев и функция холодного воздуха).

Бытовая техника

2 года назад

Источник

Обогреватель в отличном рабочем состоянии, продаю в связи с переездом.

Бытовая техника

2 года назад

Источник

Обогреватель made in Italy, б/у в рабочем состоянии, 6 режимов обогрева, быстро нагевает помещение. Сборка Италия. Много интересного в моём профиле, заходите

Бытовая техника

2 года назад

Источник

В хорошем состоянии. Рабочие. Чистая Слобода.цена за оба

Бытовая техника

2 года назад

Источник

В хорошем состоянии. Рабочие. Чистая Слобода.цена за оба

Бытовая техника

2 года назад

Источник

новый тепловой обогреватель

Бытовая техника

2 года назад

Источник

рабочий характеристики и дефект на фото детали по телефону

Бытовая техника

2 года назад

Источник

Обогреватель (ветродуй)также можно использовать в качестве вентилятора без подогрева воздуха

Бытовая техника

Республика Крым, Ялта

2 года назад

Источник

Обогреватель made in Italy, б/у в рабочем состоянии, 6 режимов обогрева, быстро нагевает помещение. Сборка Италия. Много интересного в моём профиле, заходите

Бытовая техника

Москва, ул. Твардовского, 13к2

2 года назад

Источник

В хорошем состоянии. Рабочие. Чистая Слобода.

Бытовая техника

Новосибирск, Ленинский район, жилой массив Чистая Слобода

2 года назад

Источник

Обогреватель (ветродуй)также можно использовать в качестве вентилятора без подогрева воздуха

Бытовая техника

Республика Крым, Ялта

2 года назад

Источник

Внимание! Festima.Ru является поисковиком по объявлениям с популярных площадок.
Мы не производим реализацию товара, не храним изображения и персональные данные.
Все изображения принадлежат их авторам
Отказ от ответственности

Альтернативная энергия — обузданный ветер — Экология и промышленная безопасность


Ветряные мельницы до XIX века


Долгие столетия благодаря ветру человек передвигался по морям и океанам, используя для «ловли» воздушных потоков паруса. Примерно II-I веками до н.э. датируются первые известные ветряные мельницы, найденные в Египте возле города Александрия. Это были каменные мельницы барабанного типа. У них колесо с широкими лопастями монтировалось в специальном барабане таким образом, что половина колеса находилась снаружи, и ветер, давя на лопасти, вращал колесо, которое, в свою очередь, приводило в движение жернов.


Более совершенные ветряные мельницы крыльчатой конструкции в VII веке н.э. стали использовать персы, проживавшие на территории современного Ирана. С VIII-IX веков ветряные мельницы распространились по Европе и Руси. Поначалу эти мельницы мололи зерно, но постепенно человек начал применять их также для откачки воды и приведения в действие различных механизмов. В частности, голландцы таким образом осушали польдеры — участки земли, обнесенные дамбами.


Персидская ветряная мельница


До середины XVI столетия в Европе были распространены так называемые мельницы на козлах (иначе — немецкие мельницы). Их недостатками являлись ненадежность (опрокидывались бурей) и ограниченная производительность ввиду того, что козловые мельницы поворачивались вручную в сторону ветра с помощью козел (отсюда и название), а значит — строились не слишком большими.


Но в середине XVI века в Голландии изобрели мельницу, в которой двигалась лишь крыша с крыльями. Усовершенствованные мельницы стали называть шатровыми (или голландскими). Такие мельницы строили очень высокими, что позволяло закреплять на них более длинные крылья, тем самым увеличивая мощность. Сегодня самыми высокими в мире ветряными мельницами считаются голландские ветряки под названием «Север» и «Свобода», чья высота превышает 33 метров.


Мельница в голландском местечке Киндердейк


В свое время Голландия являлась «лидером» по количеству ветряных мельниц, которые использовались не только для помола зерен и откачки воды. Получили распространение красильные, масляные, лесопильные мельницы. Именно для лесопилки была построена в Петербурге ветряная мельница, конструкцию которой Петр I лично изучил у голландских мастеров. Даже бумагу изготавливали с помощью ветряных мельниц, и ныне в голландском местечке Заансе Сханс можно увидеть последнюю мельницу (под названием «Учитель») для производства бумаги. Не случайно очень долгое время бумага из Голландии считалась самой лучшей, и американская «Декларация Независимости» как раз и была напечатана на такой бумаге.


Новая жизнь ветряных мельниц


Появление более совершенных технологий, казалось, отправит ветряные мельницы в область туристических диковинок. Однако достаточно быстро люди разобрались, что таким «дедовским» способом, т.е. с помощью ветряков, можно получать энергию электричества.


В июле 1887 года шотландский академик и профессор Джеймс Блит (James Blyth) предпринял попытку создания ветровой установки для получения электричества. В 1891-м он получил патент на свое изобретение. 10-метровый ветряк с крыльями, обтянутыми тканью, был установлен в шотландском городе Marykirk и производил электроэнергию для освещения. Правда, коммерческого успеха Блит не добился.


Зимой 1887-1888-го, уже в Соединенных Штатах, Чарльз Ф. Браш (Charles F. Brush) создал ветряную турбину, которая питала электроэнергией его дом и лабораторию вплоть до 1900 года.


Ветряная турбина Чарльза Браша.


В 1890 году датский ученый и изобретатель Поль ля Кур (Poul la Cour) сконструировал ветряную электроустановку для производства водорода. Данная установка считается первым электроветряком современного типа. В первой половине прошлого века ветрогенераторы стали устанавливаться в тех местах, куда обычным путем электричество доставить было невозможно. С 20-х годов прошлого века ветрогенераторы начали появляться в США и Австралии.


В России в 1918 году получением электричества с помощью ветра заинтересовался профессор В. Залевский. Он создал теорию ветряной мельницы и сформулировал ряд принципов, которым должен отвечать ветрогнератор. В 1925-м профессор Н. Жуковский организовал отдел ветряных двигателей в Центральном аэрогидродинамическом институте.


В 30-х годах ХХ века руководство Советского Союза всерьез озаботилось использованием энергии ветра. Было налажено производство ветроустановок мощностью 3-4 кВт, причем выпускались они сериями. Самую первую ветроэлектрическую станцию в СССР установили в 1930 году в городе Курске. Мощность станции равнялась 8 кВт.


В 1931 году в СССР заработала самая крупная в мире Ялтинская ВЭС мощностью 100 кВт. Строительство и установка ветрогенераторов шло высокими темпами вплоть до начала 60-х. Достаточно сказать, что с 1950 по 1955 годы Союз выпускал до 9 тысяч ветроустановок ежегодно. Когда осваивалась целина в Казахстане, советские люди соорудили первую многоагрегатную ВЭС, работавшую совместно с дизелем; общая мощность данной установки составляла 400 кВт. Эта ВЭС стала примером для современных систем «ветро-дизель».


Однако к концу 60-х ветроэнергетика Советского Союза уступила место крупным ТЭС, ГЭС и АЭС, и серийное производство «ветряков» было свернуто. К ВЭС вернулись в 90-е годы ХХ века, не в пример США и Европе. Начало же современной ветроэнергетики принято отсчитывать от 1979 года.


Современное состояние ветроэнергетики


Любопытно, что примерно до середины 90-х годов прошлого века по суммарной мощности ветроэнергетических установок первенство держали США. Однако в 1996 году в Западной Европе оказалось 55% мировых мощностей ветроэлектростанций.


Изменились и сами электроветряки. До середины 90-х ХХ века в мире больше всего производили ветрогенераторов мощностью от 100 до 500 кВт. Затем наметилась тенденция к выпуску установок мощностью до 2000 кВт. Это поистине исполинские ветряки, высота которых превышает 100 метров.


Несмотря на постоянно увеличивающиеся темпы роста числа ветроэлектростанций, доля электроэнергии, получаемой силой ветра, составляет чуть более 1% от общей величины выработки электроэнергии в мире. Однако в отдельных странах эта доля существенно выше, например, в Дании она составляет более 20%, в Германии — 14,3% (по данным 2007 года), в Индии — около 3% (по данным 2005 года).


Потенциал ветровой энергии Российской Федерации составляет более 50 000 миллиардов кВт·ч/год. В переводе на язык экономики — это приблизительно 260 миллиардов кВт·ч/год, что равняется примерно 30% от электроэнергии, производимой всеми отечественными электростанциями.


На 2006 год установленная мощность ветровых электростанций в России равнялась примерно 15 МВт.


«Куликовская» ВЭС


Одна из самых мощных российских ветроэлектростанций размещается в районе поселка Куликово Зеленоградского района Калининградской области. Ее мощность — 5,1 МВт (ветропарк состоит из 21 ветроэнергетической установки, занимает примерно 20 гектар и способен обеспечить электричеством 145 квартир), а среднегодовая выработка — около 6 млн кВт·ч/год. Также стоит назвать Анадырскую ВЭС мощностью 2,5 МВт на Чукотке.


В ближайшие годы в самых разных странах мира планируется существенно увеличить количество получаемой электроэнергии от ветряков. Однако распространение ВЭС может быть затруднено по ряду причин, о которых речь пойдет ниже.


Минусы ветроэнергетики


Итак, какие же существуют главные минусы у ветроэнергетики? Во-первых, сила ветра непостоянна. Поэтому существует опасность нарушения работы общей энергосистемы (которая сама по себе «страдает» от пиков и спадов нагрузки) в том случае, если в ней будет присутствовать значительная доля электроэнергии, получаемой от ВЭС (согласно некоторым расчетам — эта доля в 20-25%). Кроме того, «нестабильность» ветра вынуждает человека думать о резервных источниках электроэнергии, которые бы могли в нужный момент компенсировать недостающую часть электроэнергии. В качестве примера такого резерва можно привести газотурбинные электростанции либо аккумуляторы. Все это приводит к повышению стоимости ветровой электроэнергии.


Во-вторых, ветряные энергетические установки издают приличный шум, что вынудило в ряде европейских стран принять закон, ограничивающий уровень шума ветряков до 45 дБ днем и до 35 дБ в ночное время. К шуму добавляется низкочастотная вибрация, передающаяся через почву. Вот почему жилые дома размещаются обычно на расстоянии 300 метров и более от ветряных энергетических установок.


В-третьих, металлические составляющие ветряков производят радиопомехи, из-за чего в некоторых местах приходится даже строить рядом дополнительные ретрансляторы.


Безусловно, нестабильность ВЭС в плане подачи электроэнергии — самая главная их беда, а с остальными недостатками ветряков вполне можно мириться. Тем более, что хоть значительные территории вокруг ветряных установок вынужденно безлюдны, однако они не пустуют, а практически полностью сдаются в аренду фермерским (либо иным) хозяйствам.


Типичный современный ветропарк


В связи с этим, логично выглядит идея перевода ВЭС на выдачу не электрической энергии промышленного качества (~ 220В, 50 Гц), а постоянного или переменного тока, который бы затем преобразовывался с помощью ТЭНов в тепло, например, для получения горячей воды, обогрева и прочих нужд. В этом случае проблема бесперебойности подачи тока уходит на второй план.


Кроме того, в мире функционируют ветродвигатели, с помощью которых не добывают электричество, а подымают воду из колодцев. Подобные установки находятся в Казахстане, Узбекистане и ряде других стран. Как видим, и в современном мире ветряки применяются достаточно широко.


Ветрогенераторы как они есть


Основными узлами ветрогенератора являются: винт, вращаемый силой ветра, корпус, генератор и аккумулятор. Помимо стационарных существуют мобильные ветроэлектростанции, мощности которых хватает на питание электроприборов.


Мощность ветрогенератора напрямую связана с площадью, заметаемой лопастями генератора. Самые большие в мире ветрогенераторы выпускает немецкая компания «Repower»: диаметр ротора у таких турбин составляет 126 метров, вес гондолы — 200 тонн, высота башни — 120 метров, а мощность может доходить до 6 МВт.


Самая распространенная конструкция ветрогенератора — с тремя лопастями и горизонтальной осью вращения, хотя можно и сегодня увидеть двухлопастные установки. На текущий момент в мире распространены ветродвигатели двух типов: карусельные и крыльчатые. Встречаются также барабанные и другие конструкции.


У карусельных (роторных) ветрогенераторов на вертикальную ось «насажено» колесо с лопастями. В отличие от крыльчатых, такие ветряки способны функционировать при любом направлении ветра, не меняя своего положения. Это тихоходные установки, не создающие большого шума. В них используются многополюсные электрогенераторы, работающие на малых оборотах — это допускает применение простых электрических схем без опасности потерпеть аварию при порыве ветра.


Крыльчатые ветряки — это лопастные механизмы с горизонтальной осью вращения. Крыло-стабилизатор позволяет устанавливать систему в самое выгодное положение относительно потока ветра. Небольшие крыльчатые ВЭС постоянного тока соединяют с электрогенератором напрямую (без мультипликатора), более мощные снабжаются редуктором. На мировом рынке доля крыльчатых ВЭС превышает 90%, чему причина — высокий коэффициент использования энергии ветра.


Среди альтернативных конструкций стоит упомянуть ветряные системы, в которых нет движущихся частей. Проносящийся ветер в них охлаждается и, благодаря термоэлектрическому эффекту Томсона, способствует вырабатыванию электрической энергии.


А есть ли перспективы?


Безусловно, перспективы имеются. Ветряные установки вот уже более ста лет помогают человеку получать электричество буквально из ничего, используя лишь кинетическую энергию воздушных масс атмосферы. Тем самым, экономятся традиционные виды топлива (дрова, уголь, нефть, природный газ), уменьшается загрязнение окружающей среды.


Глобальный экономический кризис, за развитием и, надеемся, благополучным концом которого мы наблюдаем сегодня, дает много пищи для размышлений, и в частности, наводит на мысль о переходе на альтернативные источники энергии. Высокие цены на нефть, перебои с поставками природного газа (в Европу, в частности) дают ветроэнергетике отличный шанс для дальнейшего развития. Не случайно ведь за рубежом альтернативная энергетика начала серьезный рост после нефтяного кризиса середины 70-х годов прошлого века. Поначалу ветроэнергетику дотировало государство, но сегодня данный вид энергетики является прибыльным делом, хотя и регулируется госструктурами. В России, кстати, необходимой законодательной базы для развития ветроэнергетики нет, по этой причине (а также из-за отсутствия серьезных инвестиций; ветропарк Куликовской ВЭС — дар властей Дании!!!) в нашей стране действуют не более четырех десятков скромных ВЭС, дающих суммарно менее 0,1% вырабатываемой в РФ энергии.


Ветроэнергетика наличествует в более чем 50 странах мира. Страны-лидеры по суммарно установленным мощностям: Германия (18428 МВт), Испания (10027 МВт), США (9149 МВт), Индия (4430 МВт), Дания (3122 МВт), Нидерланды (1290 МВт), Китай (1260 МВт) и Португалия (1000 МВт).


Если до недавнего времени ветроэнергетика активно развивалась в странах ЕС и США, то сегодня ВЭС в больших количествах возводят в Канаде, Азии, Южной Америке, Австралии, Африке (на прародине А.С. Пушкина в этом деле преуспевает Египет).


Тенденция такова, что энергией ветра скоро начнут питать не отдельные дома, а целые поселки и города, поначалу, конечно, совсем небольшие. Одной из таких «ласточек» стал в 2008-м городок Rock Port (штат Миссури) — первый город в США, получающий 100% энергии от ветропарка (проект Wind Capital Group). Так называемая «малая ветроэнергетика» тоже может быть причислена к перспективным направлениям энергетики.


Ветроэнергетика сегодня — это стремительно развивающаяся отрасль. Об этом говорят и цифры — в 2008 году общая мощность ветряной энергетики во всем мире составила 120 ГВт. Надеемся, что и Россия не останется в стороне от тенденций развития альтернативной энергетики, использующей для получения электричества или тепла силу ветра (а также приливы-отливы, геотермальные источники и т.д.), благо территории и ветрового потенциала в России предостаточно.

Обогрейте свой дом с помощью механической ветряной мельницы

Это веб-сайт, работающий на солнечной энергии, что означает, что он иногда отключается. Солнечная энергия

При правильных условиях механический ветряк с увеличенной тормозной системой является дешевой, эффективной и устойчивой системой отопления.

Изображение: Иллюстрация Роны Бинай для журнала Low-tech Magazine.

Производство возобновляемой энергии почти полностью направлено на производство электроэнергии. Однако мы используем больше энергии в виде тепла, которое солнечные батареи и ветряные турбины могут производить только косвенно и относительно неэффективно. Солнечный тепловой коллектор пропускает преобразование в электричество и поставляет возобновляемую тепловую энергию прямым и более эффективным способом.

Гораздо менее известно, что механический ветряк может делать то же самое в ветреную погоду — за счет увеличенной тормозной системы ветряк может генерировать много прямого тепла за счет трения. Механический ветряк также может быть соединен с механическим тепловым насосом, что может быть дешевле, чем использование газового котла или электрического теплового насоса, приводимого в действие ветряной турбиной.

Тепло по сравнению с электричеством

В глобальном масштабе спрос на тепловую энергию соответствует одной трети предложения первичной энергии, а спрос на электроэнергию составляет лишь одну пятую часть. 1 В умеренном или холодном климате доля тепловой энергии еще выше. Например, в Великобритании тепло составляет почти половину общего потребления энергии. 2 Если рассматривать только домохозяйства, то тепловая энергия для отопления помещений и нагрева воды в умеренном и холодном климате может составлять 60-80% от общего бытового спроса на энергию. 3

Несмотря на это, возобновляемые источники энергии играют незначительную роль в производстве тепла. Основным исключением является традиционное использование биомассы для приготовления пищи и отопления, но в «развитом» мире даже биомасса часто используется для производства электроэнергии вместо тепла. Использование прямого солнечного тепла и геотермального тепла обеспечивает менее 1% и 0,2% мирового спроса на тепло соответственно 4 5 . В то время как на возобновляемые источники энергии приходится более 20% мирового спроса на электроэнергию (в основном гидроэнергетика), на них приходится только 10% глобального спроса на тепло (в основном биомасса). 5 6

Прямое и косвенное производство тепла

Электричество, производимое возобновляемыми источниками энергии, может быть преобразовано – и преобразуется – в тепло косвенным путем. Например, ветряная турбина преобразует энергию вращения в электричество с помощью электрического генератора, а затем это электричество можно преобразовать в тепло с помощью электрического нагревателя, электрического котла или электрического теплового насоса. В результате получается тепло, вырабатываемое энергией ветра.

В частности, многие правительства и организации продвигают электрический тепловой насос как устойчивое решение для производства тепла из возобновляемых источников. Однако солнечную и ветровую энергию можно использовать и напрямую, без предварительного преобразования их в электричество, и, конечно же, то же самое относится и к биомассе. Прямое производство тепла дешевле, может быть более энергоэффективным и более устойчивым, чем косвенное производство тепла.

Изображение: прототипы ветряков, производящих тепло, построенные Эсрой Л. Соренсен в 1974. Фото Клауса Нюбро. Источник: 13

Прямая альтернатива солнечной фотоэлектрической энергии – солнечная тепловая энергия, технология, появившаяся в девятнадцатом веке вслед за более дешевыми технологиями производства стекла и зеркал. Солнечную тепловую энергию можно использовать для нагрева воды, отопления помещений или промышленных процессов, и это в 2-3 раза более энергоэффективно по сравнению с непрямым путем, включающим преобразование электроэнергии.

Почти никто не знает, что ветряк может производить тепло напрямую

Прямая альтернатива ветряной энергии, известная всем, — это старомодный ветряк, которому не менее 2000 лет. Он передавал энергию вращения от своего ветряного ротора непосредственно на ось машины, например, для распиловки дерева или измельчения зерна. Этот старомодный подход остается актуальным, в том числе в сочетании с новыми технологиями, потому что он был бы более энергоэффективным по сравнению с преобразованием энергии сначала в электричество, а затем обратно в энергию вращения.

Однако старомодный ветряк может производить не только механическую, но и тепловую энергию. Проблема в том, что об этом почти никто не знает. Даже Международное энергетическое агентство не упоминает о прямом преобразовании ветра в тепло, когда представляет все возможные варианты производства возобновляемого тепла. 1

Ветряная мельница с водяным тормозом

Ветряная мельница оригинального типа преобразует энергию вращения непосредственно в тепло путем создания трения в воде с использованием так называемого «водяного тормоза» или «машины Джоуля». Теплогенератор, основанный на этом принципе, представляет собой ветряной смеситель или крыльчатку, установленную в изолированном баке, наполненном водой. Благодаря трению между молекулами воды механическая энергия преобразуется в тепловую. Нагретую воду можно закачивать в здание для обогрева или стирки, и та же концепция может быть применена к производственным процессам на заводе, требующим относительно низких температур. 7 8 9

Изображение; система отопления на основе водяного тормозного ветряка. Источник: 8

Изначально машина Джоуля задумывалась как измерительный прибор. Джеймс Джоуль построил его в 1840-х годах для своего знаменитого измерения механического эквивалента тепла: одна калория равна количеству энергии, необходимой для повышения температуры 1 кубического сантиметра воды на 1 градус Цельсия. 10

Теплогенератор, основанный на этом принципе, представляет собой ветряной смеситель или крыльчатку, установленную в изолированном баке, наполненном водой.

Самое интересное в ветряных мельницах с водяным тормозом то, что гипотетически они могли быть построены сотни или даже тысячи лет назад. Для них требуются простые материалы: дерево и/или металл. Но хотя мы не можем исключить их использование в доиндустриальные времена, первое упоминание о ветряках, производящих тепло, относится к 1970-м годам, когда датчане начали их строить после первого нефтяного кризиса.

Изображение: теплогенератор теплового ветряка. Источник: 8

В то время Дания почти полностью зависела от импорта нефти для отопления, что оставило многие домохозяйства в холоде, когда были перебои с подачей нефти. Поскольку у датчан уже была сильная культура изготовления небольших ветряных турбин, вырабатывающих электроэнергию на фермах, они начали строить ветряные мельницы для обогрева своих домов. Некоторые избрали непрямой путь, преобразуя электроэнергию, вырабатываемую ветром, в тепло с помощью электронагревательных приборов. Другие, однако, разработали механические ветряные мельницы, которые напрямую производили тепло.

Дешевле строить

Прямой подход к производству тепла значительно дешевле и устойчивее, чем преобразование энергии ветра или солнца в тепло с помощью электрических нагревательных устройств. На это есть две причины.

Во-первых, и это самое главное, механические ветряные мельницы менее сложны, что делает их более доступными и менее ресурсоемкими в изготовлении, а также увеличивает срок их службы. В ветряной мельнице с водяным тормозом можно исключить электрический генератор, силовые преобразователи, трансформатор и редуктор, а из-за экономии веса ветряная мельница должна быть менее прочной. Машина Джоуля имеет меньший вес, меньшие размеры и более низкую стоимость, чем электрический генератор. 11 Также немаловажно, что стоимость аккумулирования тепла на 60-70% ниже по сравнению с аккумуляторами или использованием резервных ТЭС. 2

Ветряная мельница с водяным тормозом, построенная в Институте сельскохозяйственной техники в 1974 году. Фото Рикарда Матцена. Источник: 13

Во-вторых, преобразование энергии ветра или солнца непосредственно в тепло (или механическую энергию) может быть более энергоэффективным, чем при преобразовании электричества. Это означает, что для подачи определенного количества тепла требуется меньше преобразователей солнечной и ветровой энергии и, следовательно, меньше места и ресурсов. Короче говоря, ветряная мельница, вырабатывающая тепло, устраняет основные недостатки энергии ветра: ее низкая удельная мощность и ее прерывистость.

Механические ветряные мельницы менее сложны, что делает их более доступными и менее ресурсоемкими в строительстве, а также увеличивает срок их службы

Кроме того, прямое производство тепла значительно повышает экономичность и устойчивость небольших типов ветряных мельниц. Испытания показали, что небольшие ветряные турбины, производящие электроэнергию, очень неэффективны и не всегда производят столько энергии, сколько необходимо для их производства. 12 Однако использование аналогичных моделей для производства тепла снижает потребление энергии и затраты, увеличивает срок службы и повышает эффективность.

Сколько тепла может производить ветряная мельница?

Датская ветряная мельница с водяным тормозом 1970-х годов была относительно небольшой машиной с диаметром ротора около 6 метров и высотой около 12 метров. Более крупные ветряные электростанции, производящие тепло, были построены в 1980-х годах. Чаще всего используются простые деревянные лопасти. Всего задокументировано не менее дюжины различных моделей, как самодельных, так и коммерческих. 7 Многие из них были построены из использованных автомобильных запчастей и других выброшенных материалов. 13

Изображение: ветряк Calorius, производящий до 4 кВт тепла. Изображение предоставлено Nordic Folkecenter в Дании.

Один из первых датских тепловых ветряков меньшего размера прошел официальные испытания. Calorius type 37 с ротором диаметром 5 метров и высотой 9 метров производил 3,5 киловатта тепла при скорости ветра 11 м/с (сильный ветер, 6 баллов по шкале Бофорта). Это сравнимо с тепловой мощностью самых маленьких электрических котлов для отопления помещений. с 19С 93 по 2000 год датская фирма Westrup построила в общей сложности 34 водяных тормозных ветряка на основе этой конструкции, а к 2012 году в эксплуатации оставалось еще 17. 7

Более крупный водяной ветряк (диаметр ротора 7,5 м, башня 17 м) был построен в 1982 году братьями Сванеборг и отапливал дом одного из них (другой брат выбрал ветряк и электрическое отопление). система). Ветряк, имевший три лопасти из стеклопластика, по неофициальным замерам производил до 8 киловатт тепла — сравнимо с тепловой мощностью электрического котла для скромного дома. 7

Далее в 1980-х годах Кнуд Бертоу построил самую сложную на сегодняшний день ветряную электростанцию: LO-FA. В других моделях выделение тепла происходило в нижней части башни — от вершины ветряка к низу шла шахта, где устанавливался водяной тормоз. Однако в ветряной мельнице LO-FA все механические части для преобразования энергии были перемещены на вершину башни. Нижние 10 метров 20-метровой башни были заполнены 15 тоннами воды в изолированном резервуаре. Следовательно, горячую воду можно было буквально выкачивать из ветряной мельницы. 7

Башня ветряной мельницы LO-FA была заполнена 15 тоннами воды в изолированном резервуаре: горячую воду можно было буквально выкачивать из ветряной мельницы.

LO-FA также был самым большим из теплогенерирующих ветряков с диаметром ротора 12 метров. Его тепловая мощность оценивалась в 90 киловатт при скорости ветра 14 м/с (по шкале Бофорта 7). Этот результат кажется чрезмерным по сравнению с другими ветряками, производящими тепло, но выход энергии ветряной мельницы увеличивается более чем пропорционально диаметру ротора и скорости ветра. Кроме того, фрикционной жидкостью в водяном тормозе была не вода, а гидравлическое масло, которое можно нагревать до гораздо более высоких температур. Затем масло передало свое тепло резервуару для воды в градирне. 7

Возобновление интереса

Интерес к ветряным мельницам, вырабатывающим тепло, вновь проявился несколько лет назад, хотя на данный момент он касается лишь нескольких научных исследований. В статье 2011 года немецкие и британские ученые пишут, что «небольшие и отдаленные домохозяйства в северных регионах нуждаются в тепловой энергии, а не в электроэнергии, и поэтому в таких местах следует строить ветряные турбины для выработки тепловой энергии». 8

Исследователи объясняют и иллюстрируют работу ветряной мельницы с водяным тормозом и рассчитывают оптимальную производительность технологии. Было обнаружено, что характеристики крутящего момента ветрового ротора и крыльчатки должны быть тщательно согласованы для достижения максимальной эффективности. Например, для очень маленького ветряка Савониуса, который ученые использовали в качестве модели (диаметр ротора 0,5 м, башня 2 м), было рассчитано, что диаметр крыльчатки должен составлять 0,388 м.

Затем исследователи провели моделирование в течение пятидесяти часов, чтобы рассчитать тепловую мощность ветряной мельницы. Хотя Савониус — тихоходный ветряк, плохо приспособленный для выработки электроэнергии, он оказался отличным производителем тепла: небольшой ветряк производил до 1 кВт тепловой мощности (при скорости ветра 15 м/с). 8 Исследование, проведенное в 2013 году с использованием прототипа, дало аналогичные результаты и рассчитало, что эффективность системы составляет 91%. 9 Это сравнимо с эффективностью ветряной турбины, нагревающей воду с помощью электричества.

Исследование, проведенное в 2013 году с использованием прототипа, показало, что эффективность системы составляет 91%

Очевидно, не всегда штормовая погода, а значит, не менее важна средняя скорость ветра. В исследовании 2015 года исследуются возможности использования ветряных электростанций для выработки тепла в Литве, прибалтийской стране с холодным климатом, зависящей от импорта дорогого топлива. 14 Исследователи подсчитали, что при средней скорости ветра в стране (4 м/с по шкале Бофорта 3) для выработки одного киловатта тепла требуется ветряк с диаметром ротора 8,2 метра.

Теплогенерирующий ветряк с водяным тормозом, размещенный внутри нижней части башни. Мельница была построена Йоргеном Андерсеном в 1975 году и стояла в Серритслеве. Фото Клауса Нибро. Источник: 13

Они сравнивают это с потребностью в тепловой энергии энергоэффективного нового здания площадью 120 м2, отапливаемого по современным стандартам комфорта, и приходят к выводу, что ветряная мельница, производящая тепло, может покрыть от 40 до 75% годовой потребности в отоплении ( в зависимости от класса энергоэффективности сооружения). 14

Аккумулятор тепла

Средняя скорость ветра также не гарантируется, а это означает, что ветряк, производящий тепло, требует аккумулирования тепла, иначе он будет обогревать только при дуновении ветра. Один кубический метр нагретой воды (1 тонна, 1000 литров) может содержать до 90 кВтч тепла, что составляет примерно один-два дня подачи для семьи из четырех человек.

Та же ветряная мельница, что и на фото выше, вид снизу. Источник: 7

Таким образом, чтобы обеспечить достаточное хранилище для моста в течение недели без ветра, требуется до 7 тонн воды, что соответствует объему 7 кубических метров плюс изоляция. Однако следует также учитывать потери энергии (саморазряд), и это объясняет, почему датские ветряки, производящие тепло, обычно имели накопительный бак, вмещающий от десяти до двадцати тысяч литров воды. 13

Ветряная мельница, производящая тепло, также может быть объединена с солнечным котлом, так что солнце и ветер могут давать прямую тепловую энергию, используя меньший резервуар для воды.

Тепловой ветряк также можно комбинировать с солнечным котлом, чтобы и солнце, и ветер могли давать прямую тепловую энергию, используя один и тот же резервуар для хранения тепла. В этом случае появляется возможность построить довольно надежную систему отопления с меньшим баком-аккумулятором тепла, ведь сочетание двух – часто дополняющих друг друга – источников энергии увеличивает шансы прямого теплоснабжения. Особенно в менее солнечном климате ветряные мельницы, производящие тепло, являются отличным дополнением к солнечной тепловой системе, потому что последняя производит относительно меньше тепла зимой, когда потребность в тепле максимальна.

Замедлители и механические тепловые насосы

Самые последние и обширные исследования на сегодняшний день относятся к 2016 и 2018 годам и сравнивают различные типы ветряков, производящих тепло, с различными типами косвенного производства тепла. 1 15 В этом втором типе ветряной электростанции тепло вырабатывается механическими тепловыми насосами или гидродинамическими замедлителями, а не водяным тормозом.

Механический тепловой насос — это просто тепловой насос без электродвигателя. Вместо этого ветряной ротор напрямую соединен с компрессором (компрессорами) теплового насоса. Это включает в себя одно преобразование энергии меньше, что делает комбинацию как минимум на 10% более энергоэффективной, чем электрический тепловой насос, приводимый в действие ветряной турбиной.

Гидродинамический замедлитель хорошо известен как тормозная система большегрузных автомобилей. Подобно джоулевой машине, он преобразует энергию вращения в тепло без участия электричества. Ретардеры и механические тепловые насосы имеют те же преимущества, что и машины Джоуля, в том смысле, что они намного меньше, легче и дешевле, чем электрические генераторы. Однако в этом случае для достижения оптимальной эффективности требуется редуктор.

Сравнение различных типов прямого и непрямого нагрева. Источник: 15

В исследовании сравниваются тепловые ветряки на основе замедлителей и механических тепловых насосов с косвенным производством тепла с использованием электрических котлов и электрических тепловых насосов. В нем сравниваются эти четыре технологии для трех размеров систем: небольшой ветряк, предназначенный для обогрева автономного дома, большой ветряк, предназначенный для обеспечения теплом деревни, и ветряная электростанция, производящая тепло для 20 000 жителей. Четыре концепции отопления ранжированы на основе их ежегодных капитальных и эксплуатационных расходов, исходя из срока службы 20 лет. 1 15

Непосредственное подключение механического ветряка к механическому тепловому насосу дешевле, чем использование газового котла или сочетание ветряной турбины и электрического теплового насоса.

Для автономной системы прямое подключение механического ветряка к механическому тепловому насосу является самым дешевым вариантом, тогда как сочетание ветряной турбины и электрического котла обходится в два-три раза дороже. Все остальные технологии находятся между ними. Принимая во внимание как инвестиционные, так и эксплуатационные затраты, небольшие ветряные генераторы тепла с механическими тепловыми насосами одинаково дороги или дешевле, чем обычные газовые котлы, если исходить из типичной производительности небольшого ветряка (который производит — в течение одного года — 12% до 22% от максимальной выходной энергии).

Изображение: Ветряк с водяным тормозом, разработанный О. Хельгасоном (слева), водяной тормоз с системой переменной нагрузки (справа). Изображения из «Испытания при очень высокой скорости ветра ветряной мельницы, управляемой водяным тормозом», О. Хелгасон и А.С. Сигурдсон, Научный институт Исландского университета. Источник: 7

С другой стороны, комбинация небольшой ветряной турбины и электрического теплового насоса требует, чтобы ветряная мельница с «коэффициентом мощности» не менее 30% стала конкурентоспособной по стоимости с газовым отоплением – но такой высокой исполнение очень необычное. Более крупные системы имеют те же рейтинги — комбинация механических ветряков и механических тепловых насосов является самым дешевым вариантом, — но они имеют до трех раз более низкие капитальные затраты из-за эффекта масштаба. Более крупные ветряные мельницы имеют более высокие коэффициенты мощности (16-40%), что приводит к еще большей экономии средств.

Из-за больших потерь энергии на транспортировку тепла ветряк лучше всего подходит в качестве децентрализованного источника энергии, обеспечивая теплом автономное домашнее хозяйство или, в оптимальном случае, небольшой город.

Однако более крупные системы также обнаруживают проблему при масштабировании технологии: хранение тепла может быть дешевле и эффективнее, чем хранение электроэнергии, но для транспорта верно обратное: потери энергии при транспортировке тепла намного больше, чем потери энергии при транспортировке. передача электроэнергии. Ученые подсчитали, что максимальное расстояние, достижимое с точки зрения затрат при оптимальных ветровых условиях, составляет 50 км. 15

Следовательно, тепловая ветряная электростанция лучше всего подходит в качестве децентрализованного источника энергии, обеспечивая теплом автономное домашнее хозяйство или, в оптимальном случае, относительно небольшой город или промышленную зону. Для еще более крупных систем энергию необходимо транспортировать в виде электричества, и в этом случае прямое производство тепла со всеми его преимуществами становится непривлекательным.

Ослепленный электричеством

Ветряные мельницы, производящие тепло, также исследуются для производства возобновляемой электроэнергии, главным образом потому, что они предлагают лучшее решение для хранения энергии по сравнению с батареями или другими распространенными технологиями. 16 В этих системах вырабатываемое тепло преобразуется в электричество с помощью паровой турбины. Система хранения аналогична системе концентрированной солнечной электростанции (CSP), а солнечные концентраторы заменены ветряными мельницами, производящими тепло.

«Вихретоковый нагреватель». Источник: 9

Поскольку для эффективного производства электроэнергии с помощью паровой турбины необходимы высокие температуры, эти системы не могут использовать джоулевые машины или гидродинамические замедлители, а вместо этого полагаются на тип замедлителя, называемый «вихретоковым нагревателем». (или «индукционный нагреватель»). Они состоят из магнита, установленного на вращающемся валу, и могут достигать температуры до 600 градусов по Цельсию. Используя вихретоковые нагреватели, ветряные мельницы могут обеспечивать прямой нагрев при более высоких температурах, что еще больше расширяет их потенциальное применение в промышленности.

Однако использование аккумулированного тепла для производства электроэнергии значительно дороже и менее экологично по сравнению с использованием ветряных электростанций для прямого производства тепла. Преобразование накопленного тепла в электричество имеет эффективность не более 30%, а это означает, что две трети энергии ветра теряются из-за ненужных преобразований энергии, и то же самое верно, когда солнечная тепловая энергия используется для производства электроэнергии. 15

Таким образом, прямое производство тепла дает возможность сократить в три раза больше выбросов парниковых газов и ископаемого топлива, используя то же количество ветряных мельниц, которые также дешевле и экологичнее в строительстве. Будем надеяться, что прямому производству тепла будет отдан тот приоритет, которого оно заслуживает. Несмотря на потепление климата, спрос на тепловую энергию высок как никогда.

Крис Де Декер

  • Читать журнал Low-tech в автономном режиме.
  • Подпишитесь на нашу рассылку
  • Поддержите журнал Low-tech через Paypal или Patreon.

Комментарии

Чтобы оставить комментарий, отправьте электронное письмо на адрес solar (at) lowtechmagazine (dot) com.


  1. Нитто, дипломированный инженер Алехандро Николас, Карстен Агерт и Ивонн Шольц. «ВЕТРОЭНЕРГЕТИЧЕСКИЕ СИСТЕМЫ ТЕПЛОВОЙ ЭНЕРГИИ (ВТЭС)». ↩↩↩↩

  2. Интеграция хранилища тепловой энергии в энергетическую сеть, Шарьяр Ахмед, 2017 ↩↩

  3. Светлое будущее заводов, работающих на солнечной энергии, Крис Де Декер, журнал Low-tech Magazine, 2011 ↩

    .

  4. Solar Heat Worldwide, издание 2018 г., Международное энергетическое агентство (МЭА). ↩

  5. Renewables 2018, Heat, Международное энергетическое агентство (МЭА). ↩↩

  6. Всемирный банк: производство электроэнергии из возобновляемых источников. ↩

  7. Расцвет современной энергии ветра: энергия ветра для всего мира. Pan Stanford Publishing, 2013. См. главу 13 («Ветряные мельницы с водяным тормозом», Йорген Крогсгаард) и главу 16 («Обреченные на забвение», Пребен Мегаард). Кажется, это единственные документы на английском языке о датских ветряных мельницах с водяным тормозом. ↩↩↩↩↩↩↩↩

  8. Чакиров, Рустьам и Юрий Вагапов. «Прямое преобразование энергии ветра в тепло с помощью джоулевой машины». Четвертая международная конференция по экологии и компьютерным наукам (ICECS 2011), Сингапур, сентябрь 2011 г. ↩↩↩↩↩

  9. МАЛАЯ ВЕТРОЭНЕРГЕТИЧЕСКАЯ СИСТЕМА С ВИХРЕТОЧНЫМ НАГРЕВАТЕЛЕМ НА ПОСТОЯННЫХ МАГНИТАХ, ИОН СОБОР, ВАСИЛЬ РАШЬЕ, АНДРЕЙ ШИЧУК и РОДИОН ЧЮПЕРЦЭ. BULETINUL INSTITUTULUI POLITEHNIC DIN IAŞI. Publicat de Universitatea Tehnică «Georghe Asachi» din Iaşi Tomul LIX (LXIII), Fasc. 4 2013 ↩↩↩ 

  10. Эксперимент Джоуля: историко-критический подход, советник Маркоса Поу Галло. ↩

  11. Окадзаки, Тору, Ясуюки Шираи и Такетсуне Накамура. «Концептуальное исследование ветроэнергетики с использованием прямого преобразования тепловой энергии и аккумулирования тепловой энергии». Возобновляемая энергия 83 (2015): 332-338. ↩

  12. Реальные испытания малых ветряных турбин в Нидерландах и Великобритании, Крис Де Декер, The Oil Drum, 2010. ↩

  13. Selfbuilders, веб-сайт Winds of Change, Эрик Гроув-Нильсен. ↩↩↩↩↩

  14. Чернецкене, Юргита и Тадас Жданкус. «Использование энергии ветра для обогрева энергоэффективных зданий: анализ возможностей». Журнал устойчивой архитектуры и гражданского строительства 10.1 (2015): 58-65. ↩↩

  15. Цао, Карл-Кин и др. «Расширение горизонтов преобразования энергии в тепло: оценка затрат на новые концепции обогрева помещений с помощью ветряных тепловых энергетических систем». Энергия 164 (2018): 925-936. ↩↩↩↩↩

  16. Окадзаки, Тору, Ясуюки Шираи и Такетсуне Накамура. «Концептуальное исследование ветроэнергетики с использованием прямого преобразования тепловой энергии и аккумулирования тепловой энергии». Возобновляемая энергия 83 (2015): 332-338. ↩

Крис Де Декер

  • ← новый артикул

    Журнал Low-tech: печатный веб-сайт

  • старая статья →

    Поддерживая часть света: переосмысление энергетической безопасности

292.83KB

Hurricane Wind Power DC Водонагревательный элемент 48 В, 600 Вт, погружной нагреватель

  • В настоящее время:

    $31,19

    (пока отзывов нет)

    Написать обзор

    Артикул:
    ДК48600
    Состояние:
    org/OfferItemCondition» content=»New»> Новый
    Вес:
    1,00 фунта
    Ширина:
    7,50
    (в)
    Высота:
    1,50
    (в)
    Глубина:
    1,50
    (в)
    Доставка:
    Бесплатная доставка
    Бесплатная доставка:
    Бесплатная доставка доступна только для заказов, отправленных в пределах 48 смежных штатов США. Плата за доставку будет рассчитана и выставлена ​​в счет для заказов, отправляемых за пределы этой области. Стоимость доставки должна быть оплачена до отправки заказа.

    Поделиться этой статьей

    • Обзор
    • Видео продукта
    • Отзывы

    Product Description

    Hurricane Wind Power

    7 INCH DC WATER HEATER ELEMENT 

    48 VOLT 600 WATT  

    Fits standard water heaters with a 1″ NPT

     

    First we start с массивным латунным основанием и медью

    Затем он никелируется для увеличения срока службы.

     

    ИСПОЛЬЗОВАНИЕ

    • Противообледенитель резервуара для воды для домашнего скота (низкое энергопотребление означает, что вы не будете разряжать аккумулятор так быстро)
    • Для защиты собак, кошек и других домашних животных от замерзания воды
    • Стандартная американская вода Замена нагревательного элемента
    • Предварительный подогрев воды
    • Кемперы, дома на колесах
    • Аварийное горячее водоснабжение
    • Портативные коммерческие, промышленные машины и оборудование
    • Работает от автомобильного аккумулятора для переносного горячего водоснабжения в любом месте
    • Ветровые и солнечные установки
    • БЕТОНОСМЕСИТЕЛИ 
    • и многие, многие другие области применения, где требуется тепло или отводящие нагрузки
    • Водонагревательные элементы постоянного тока намного безопаснее, чем 110 вольт

       

      НАГРЕВ ВОДЫ ВЕТРОТУРБИНЫ

      Нагрев воды непосредственно с помощью генератора ветряной турбины (с аккумуляторной батареей или без нее). Генераторы ветряных турбин используются в основном для производства электроэнергии.

      Используемая мощность может храниться в аккумуляторной батарее или подключаться к сети с помощью подходящего сетевого инвертора.
      При очень сильном ветре и/или когда батареи полностью заряжены, ветряная турбина может генерировать больше тока, чем могут выдержать батареи.

      Поэтому для отвода дополнительной энергии на нагрев воды часто используется сбросная нагрузка, чтобы она не тратилась впустую и чтобы ветряная турбина не вращалась так быстро, что может быть повреждена.
      Отвод нагрузки водяного отопления

      На изображении выше показан типичный водонагревательный элемент на 48 В, который можно ввинтить (
      ) в отверстие сливного крана погружного нагревателя.
      При использовании в качестве диверсионной (сбросной) нагрузки такой элемент подключается к батареям через регулятор заряда.
      Когда регулятор  обнаруживает, что батареи полностью заряжены, он направляет вырабатываемую электроэнергию на элемент , который нагревает воду.

    Видео о продуктах

    Ролики

    Скрыть видео

    Показать видео

    • Элемент водонагревателя постоянного тока 12 24 и 48 В Ветровое и солнечное отопление Hurricane

      http://hurricanewindpower.com
      Элемент водонагревателя постоянного тока 12 24 и…

    Пользовательское поле

    Бесплатная доставка Бесплатная доставка доступна только для заказов, отправляемых в пределах 48 смежных штатов США. Плата за доставку будет рассчитана и выставлена ​​в счет для заказов, отправляемых за пределы этой области. Стоимость доставки должна быть оплачена до отправки заказа.


    Опубликовано

    в

    от

    Метки:

    Комментарии

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *