Содержание
Нормы и сроки испытания средств защиты работающих | Средства защиты работающих, применяемые в электроустановках | Архивы
- безопасность
Содержание материала
- Средства защиты работающих, применяемые в электроустановках
- Классификация, назначение и область применения средств защиты работающих в электроустановках
- Комплектование электроустановок средствами защиты
- Указатели напряжения
- Заземления переносные
- Штанги изолирующие оперативные и измерительные
- Клещи изолирующие и электроизмерительные
- Диэлектрические резиновые перчатки, боты, галоши и сапоги
- Диэлектрические резиновые коврики, подставки и накладки изолирующие
- Инструмент слесарно-монтажный с изолирующими рукоятками
- Предохранительные пояса, страховочные канаты, защитные каски и монтерские когти
- Защитные очки и рукавицы
- Индивидуальные комплекты экранирующей одежды
- Временные ограждения, знаки безопасности и предупредительные плакаты
- Нормы и сроки испытания средств защиты работающих
- Нормы комплектования
Страница 15 из 16
После изготовления средства защиты должны пройти типовые испытания, которые проводят над головными образцами при организации производства нового изделия, а затем над отдельными образцами из партий при изменении технологии. Периодические испытания проводят в сроки, предусмотренные техническими условиями и стандартами, а также приемо-сдаточные испытания каждого образца.
Во время эксплуатации средства защиты подвергаются периодическим испытаниям, осмотрам и внеочередным испытаниям в случае неисправности средств защиты, а также после их ремонта. Нормы и периодичность испытаний и осмотров приведены в приложении 1.
Объем внеочередных испытаний определяется характером неисправности и видом ремонта. Испытания после ремонта проводятся по нормам приемо-сдаточных испытаний.
Все средства защиты, полученные для целей эксплуатации от заводов-изготовителей или со складов, должны быть проверены по нормам эксплуатационных испытаний.
Пользование непроверенными средствами защиты, а также средствами защиты с истекшим сроком годности категорически запрещается. Они должны быть изъяты из эксплуатации.
Нормы и сроки электрических испытаний электрозащитных средств
Наименование электрозащитных средств |
Напряжение электроустановки |
Приемо-сдаточные испытания |
||
Испытательное напряжение |
Продолжительность, мин |
Ток утечки, мА, не более |
||
Штанги изолирующие (кроме измерительных) |
Ниже 110 кВ |
Трехкратное линейное, но не менее 40 кВ |
5 5 |
— |
Штанги с дугогасящим устройством. |
110—220 кВ |
40 кВ |
5 |
|
Штанги измерительные |
Ниже 110 кВ |
Трехкратное линейное, но не менее 40 кВ |
5 5 |
— |
Головки измерительных штанг |
35-500 кВ |
35 кВ |
5 |
|
Продольные и поперечные планки ползунковых головок и изолирующий капроновый канатик измерительных штанг |
220—500 кВ |
2,5 кВ/см |
5 |
|
Штанги составные с металлическими звеньями для наложения заземления на провода ВЛ 330— 500 кВ. |
330—500 кВ |
100 кВ |
5 |
|
ПРИЛОЖЕНИЕ 1 Таблица 111
Эксплуатационные испытания | ||||
|
Продолжительность, мин |
Ток утечки, мА, не более |
Периодичность |
|
Испытательное напряжение |
испытаний |
осмотров |
||
Трехкратное линейное, но не менее 40 кВ |
5 |
|
1 раз в 24 мес. |
1 раз в 12 мес. |
Трехкратное фазное |
5 |
|
|
|
40 кВ |
5 |
|
1 раз в 12 мес. |
1 раз в 12 мес. |
Трехкратное линейное, но не менее 40 кВ |
5 5 |
— |
В сезон измерений 1 раз в 3 мес., в том числе перед началом сезона, но не реже 1 раза в 12 мес. |
Перед применением |
30 кВ |
5 |
|
|
|
2,2 кВ/см |
5 |
|
|
|
100 кВ |
5 |
|
1 раз в 24 мес. |
Перед применением, но не реже 1 раза в 12 мес. |
Фазировка при напряжении электроустановки, кВ |
Схема согласного включения |
Схема встречного включения |
Напряжение зажигания лампы, В, не ниже |
Напряжение зажигания лампы. |
|
6 |
7 600 |
1500 |
10 |
12 700 |
2750 |
Согласное включение — это включение на сфазированное напряжение, когда крючками указателя и дополнительной трубки касаются частей, находящихся под одним и тем же потенциалом.
Встречное включение — это включение на несфазированное напряжение, когда крючками указателя и дополнительной трубки касаются частей, находящихся под разными потенциалами.
5. Периодичность испытаний изолирующих устройств в приспособлений для ремонтных работ под напряжением установлена 1 раз в 6 мес., а осмотров — перед каждым употреблением.
Таблица
Для штанг с фарфоровыми изоляторами — 784 Н (80 кгс).
Прогиб изолирующей части не должен превышать 10% для штанг на напряжение до 220 кВ включительно и 20% для штанг на напряжение 330 кВ и выше.
Пояса подвергают также типовым динамическим испытаниям согласно ГОСТ 5718-77.
Примечание. При типовых испытаниях оперативные штанги и штанги для наложения заземления должны испытываться на сжатие и растяжение усилием 1470 Н (150 кгс), а измерительные штанги и штанги для наложения заземления — на изгиб двойной массой рабочей части, при этом изгиб не должен превышать 10% для штанг иа напряжение до 220 кВ включительно и 20% для штанг 330 кВ и выше. Оперативные штанги до 10 кВ с фарфоровыми изоляторами при типовых испытаниях должны испытываться на растяжение усилием 784 Н (80 кгс). Для этих оперативных штанг рекомендуется применять изоляторы типа СА-6.
Нормы и сроки механических испытаний средств защиты
- Назад
- Вперед
- Назад
- Вперед
- Вы здесь:
- Главная org/ListItem»> Книги
- Архивы
- Испытания и ремонт средств защиты в электроустановках
Читать также:
- Классификация взрывоопасных зон
- Ремонт взрывозащищенного электрооборудования
- О мерах безопасности при работах на ВЛ под наведенным напряжением
- Эксплуатация АЭС
- Требования безопасности при переработке тяжеловесных грузов и контейнеров
изолирующей штанги для наложения заземления повышенным напряжением.
Главная
→ Испытание средств защиты используемых в электроустановках.
→ Кипарис
→ Испытание — изолирующей штанги для наложения заземления повышенным напряжением.
В эксплуатации средства защиты подвергают эксплуатационным очередным и внеочередным испытаниям (после падения, ремонта, замены каких-либо деталей, при наличии признаков неисправности). Нормы эксплуатационных испытаний и сроки их проведения приведены в Приложениях 6 и 7 «Инструкции по применению и испытанию средств защиты, используемых в электроустановках».
Испытания проводятся по утвержденным методикам (инструкциям).
Все испытания средств защиты должны проводиться специально обученными и аттестованными работниками.
Каждое средство защиты перед испытанием должно быть тщательно осмотрено с целью проверки наличия маркировки изготовителя, номера, комплектности, отсутствия механических повреждений, состояния изоляционных поверхностей (для изолирующих средств защиты). При несоответствии средства защиты требованиям настоящей Инструкции испытания не проводят до устранения выявленных недостатков.
Электрические испытания следует проводить переменным током промышленной частоты, как правило, при температуре плюс (25+-15)° С.
Электрические испытания изолирующих штанг, указателей напряжения, указателей напряжения для проверки совпадения фаз, изолирующих и электроизмерительных клещей следует начинать с проверки электрической прочности изоляции.
Скорость подъема напряжения до 1/3 испытательного может быть произвольной (напряжение, равное указанному, может быть приложено толчком), дальнейшее повышение напряжения должно быть плавным и быстрым, но позволяющим при напряжении более 3/4 испытательного считывать показания измерительного прибора. После достижения нормированного значения и выдержки при этом значении в течение нормированного времени напряжение должно быть плавно и быстро снижено до нуля или до значения не выше 1/3 испытательного напряжения, после чего напряжение отключается.
Испытательное напряжение прикладывается к изолирующей части средства защиты. При отсутствии соответствующего источника напряжения для испытания целиком изолирующих штанг, изолирующих частей указателей напряжения и указателей напряжения для проверки совпадения фаз и т.п. допускается испытание их по частям. При этом изолирующая часть делится на участки, к которым прикладывается часть нормированного полного испытательного напряжения, пропорциональная длине участка и увеличенная на 20%.
Основные изолирующие электрозащитные средства, предназначенные для электроустановок напряжением выше 1 до 35 кВ включительно, испытываются напряжением, равным 3-кратному линейному, но не ниже 40 кВ, а предназначенные для электроустановок напряжением 110 кВ и выше — равным 3-кратному фазному.
Дополнительные изолирующие электрозащитные средства испытываются напряжением по нормам, указанным в Приложениях 5 и 7 «Инструкции по применению и испытанию средств защиты, используемых в электроустановках».
Длительность приложения полного испытательного напряжения, как правило, составляет 1 мин. для изолирующих средств защиты до 1000 В и для изоляции из эластичных материалов и фарфора и 5 мин. — для изоляции из слоистых диэлектриков.
Для конкретных средств защиты и рабочих частей длительность приложения испытательного напряжения приведена в Приложениях 5 и 7 «Инструкции по применению и испытанию средств защиты, используемых в электроустановках».
Токи, протекающие через изоляцию изделий, нормируются для электрозащитных средств из резины и эластичных полимерных материалов и изолирующих устройств для работ под напряжением. Нормируются также рабочие токи, протекающие через указатели напряжения до 1000 В.
Значения токов приведены в Приложениях 5 и 7 «Инструкции по применению средств защиты, используемых в электроустановках».
Пробой, перекрытие и разряды по поверхности определяются по отключению испытательной установки в процессе испытаний, по показаниям измерительных приборов и визуально.
Электрозащитные средства из твердых материалов сразу после испытания следует проверить ощупыванием на отсутствие местных нагревов из-за диэлектрических потерь.
При возникновении пробоя, перекрытия или разрядов по поверхности, увеличении тока через изделие выше нормированного значения, наличии местных нагревов средство защиты бракуется.
297,00 руб |
-
Штанги изолирующие
Испытание — изолирующей штанги для наложения заземления
← Испытание — изолирующей штанги для снятия предохранителей повышенным напряжением.
Испытание — диэлектрических бот повышенным напряжением. →
тестирование на сопротивление изоляции от Cole-Parmer
Тестеры с сопротивлением изоляции. распределительные устройства и электроустановки. Метод испытаний определяется типом испытуемого оборудования и причиной проведения испытаний. Например, при испытаниях электрических кабелей или распределительных устройств (малоемкостного оборудования) зависящие от времени емкостные токи утечки и абсорбционные токи утечки становятся незначительными и практически мгновенно уменьшаются до нуля. Почти мгновенно (минута или меньше) достигается устойчивый ток утечки, что обеспечивает идеальные условия для точечного считывания/кратковременного испытания сопротивления. (Для получения более подробной информации о токах утечки и испытаниях сопротивления см. следующие разделы: Что такое сопротивление изоляции, токи утечки и профилактические испытания) . С другой стороны, когда тестируемое оборудование представляет собой длинный кабель, большой двигатель или генератор (оборудование с высокой емкостью), токи, зависящие от времени, будут длиться часами. Важнейшей причиной проверки изоляции является обеспечение общественной и личной безопасности. Выполняя испытание высоким постоянным напряжением между обесточенными токоведущими (горячими), заземленными и заземляющими проводниками, вы можете исключить возможность опасного для жизни короткого замыкания или короткого замыкания на землю. Этот тест обычно проводится после первоначальной установки оборудования. Этот процесс защитит систему от неправильно подключенного и неисправного оборудования, а также обеспечит высокое качество установки, удовлетворенность клиентов и защитит от возгорания или поражения электрическим током. Второй по значимости причиной проверки изоляции является защита и продление срока службы электрических систем и двигателей. На протяжении многих лет электрические системы подвергаются воздействию факторов окружающей среды, таких как грязь, жир, температура, напряжение и вибрация. Эти условия могут привести к нарушению изоляции, что приведет к остановке производства или даже к пожару. Периодические эксплуатационные испытания могут предоставить ценную информацию о состоянии износа и помочь в прогнозировании возможного отказа системы. Устранение неполадок приведет не только к безотказной работе системы, но и продлит срок эксплуатации различного оборудования. Чтобы получить достоверные результаты измерений сопротивления изоляции, электрик должен тщательно осмотреть проверяемую систему. Наилучшие результаты достигаются, когда:
За безопасность отвечают все, но в конечном счете она в ваших руках. Ни один инструмент сам по себе не может гарантировать вашу безопасность. Именно сочетание прибора и безопасных методов работы обеспечивает максимальную защиту. Вот несколько советов по безопасности, которым вы должны следовать:
Во время процедуры тестирования высокое постоянное напряжение, создаваемое нажатием кнопки тестирования, вызывает небольшой ток (микроампер) через проводник и изоляцию. Величина тока зависит от величины приложенного напряжения, емкости системы, общего сопротивления и температуры материала. При фиксированном напряжении чем выше ток, тем ниже сопротивление (E=IR, R=E/I). Общее сопротивление представляет собой сумму внутреннего сопротивления проводника (малое значение) плюс сопротивление изоляции в МО. Значение сопротивления изоляции, считываемое измерителем, будет зависеть от следующих трех независимых субтоков. Кондуктивный ток утечки (I L ) Кондуктивный ток представляет собой небольшой (микроампер) ток, который обычно протекает через изоляцию, между проводниками или от проводника к земле. Этот ток увеличивается по мере ухудшения изоляции и становится преобладающим после исчезновения тока поглощения (см.
Ток утечки емкостной зарядки (I C ) Когда два или более проводника проходят вместе в кабелепроводе, они действуют как конденсатор. Из-за этого емкостного эффекта через изоляцию проводника протекает ток утечки. Этот ток длится всего несколько секунд при подаче постоянного напряжения и исчезает после того, как изоляция заряжается до полного испытательного напряжения. В оборудовании с малой емкостью емкостный ток выше, чем кондуктивный ток утечки, но обычно исчезает к тому времени, когда мы начинаем записывать данные. Из-за этого важно дать показаниям «устояться» перед их записью. С другой стороны, при тестировании оборудования с высокой емкостью емкостной зарядный ток утечки может сохраняться в течение очень долгого времени, прежде чем установится. Поляризационно-абсорбционный ток утечки (I A ) Проверка установки Электрики и инженеры проводят контрольные испытания, чтобы убедиться в правильной установке и целостности проводников. Контрольное испытание представляет собой простое быстрое испытание, используемое для определения мгновенного состояния изоляции. Он не предоставляет диагностических данных, а используемые тестовые напряжения намного выше, чем напряжения, используемые в тестах профилактического обслуживания. Контрольное испытание иногда называют ИСПЫТАНИЕМ ГОТОВО/НЕГОДНО, потому что оно проверяет кабельные системы на ошибки обслуживания, неправильную установку, серьезное ухудшение качества или загрязнение. Установка считается приемлемой, если во время испытаний не произошло поломки. Контрольное испытание может быть выполнено на оборудовании любой емкости. Это выполняется с одним напряжением, обычно между 500 и 5000 В, в течение примерно одной минуты. Обычно на изоляцию воздействуют напряжением, превышающим нормальное рабочее напряжение, чтобы обнаружить слабые места в изоляции. Для нового оборудования испытание следует проводить при напряжении от 60% до 80% от заводского испытательного напряжения изготовителя (выше номинального напряжения, которое можно получить у производителя кабеля). Если вы не знаете заводское испытательное напряжение, при испытании используйте напряжение, примерно вдвое превышающее номинальное напряжение кабеля, плюс 1000 вольт. Чтобы провести контрольную проверку установки, используйте следующую процедуру:
Эксплуатационные испытания могут предоставить важную информацию о текущем и будущем состоянии проводников, генераторов, трансформаторов и двигателей. Во время кратковременного теста мегаомметр подключается непосредственно к тестируемому оборудованию и прикладывается тестовое напряжение примерно на 60 секунд. Для получения стабильных показаний изоляции примерно за одну минуту испытание следует проводить только на оборудовании с малой емкостью. Основная процедура подключения такая же, как и для контрольного испытания, а прикладываемое напряжение рассчитывается по формулам испытательного напряжения постоянного тока. При тестировании хорошего оборудования вы должны заметить устойчивое увеличение сопротивления изоляции из-за уменьшения емкостных токов и токов поглощения. Поскольку температура и влажность могут повлиять на показания, измерения желательно проводить выше точки росы при стандартной температуре, около 20 °C/68 °F. DCt — испытательное напряжение постоянного тока относительно максимальной изоляции E pp — номинальное линейное напряжение E p-n — номинальное линейное напряжение 2 Проверка ступенчатым напряжением включает проверку сопротивления при различных настройках напряжения. Испытание на устойчивость во времени не зависит от размера оборудования и температуры. Он сравнивает характеристики поглощения загрязненной изоляции с характеристиками поглощения хорошей изоляции. Испытательное напряжение прикладывается в течение 10-минутного периода, при этом данные записываются каждые 10 секунд в течение первой минуты, а затем каждую минуту после этого. Интерпретация наклона построенного графика будет определять состояние изоляции. Постоянное увеличение показанного на графике сопротивления указывает на хорошую изоляцию. Плоская или нисходящая кривая указывает на треснутую или загрязненную изоляцию. Другим методом определения качества изоляции является использование теста индекса поляризации (PI). Это особенно ценно для обнаружения проникновения влаги и масла, которые сглаживают кривую PI, вызывая ток утечки и, в конечном итоге, короткое замыкание обмоток. Индекс поляризации представляет собой отношение двух показаний временного сопротивления: одно снято через 1 минуту, а другое через 10 минут. Для проверки сопротивления изоляции в генераторах, трансформаторах, двигателях и электроустановках мы можем использовать любой из ранее упомянутых тестов профилактического обслуживания. Выбираем ли мы тесты точечного считывания, ступенчатого напряжения или испытаний на сопротивление во времени, зависит от причины проведения испытаний и достоверности полученных данных. При испытании генераторов, двигателей или трансформаторов каждую обмотку/фазу следует испытывать последовательно и отдельно, при этом все остальные обмотки должны быть заземлены. Для проверки сопротивления изоляции якоря и обмотки возбуждения при различных температурах IEEE рекомендует следующую формулу сопротивления изоляции. Rm — Минимальное сопротивление изоляции, приведенное к 40 °C (104 °F) в МО Kt — Температурный коэффициент сопротивления изоляции при температуре обмотки, полученный из рисунка 10 Для трехфазной системы, испытанной с заземленными двумя другими фазами, сопротивление, зарегистрированное для каждой фазы, должно быть разделено на два. Затем полученное значение можно сравнить с рекомендуемым минимальным сопротивлением изоляции (Rm). При проверке сопротивления катушек статора убедитесь, что обмотка статора и фазы отсоединены. Измерьте сопротивление изоляции между обмотками и обмотками относительно земли. Кроме того, при испытании генераторов или двигателей постоянного тока щетки должны быть подняты, чтобы катушки можно было испытывать отдельно от якоря. При испытании однофазных трансформаторов проверяйте обмотку на обмотку, обмотку на землю или проверяйте по одной обмотке при заземлении всех остальных. Для трехфазных трансформаторов замените E на EP-P (для трансформаторов, соединенных треугольником) или Ep-n (для трансформаторов, соединенных звездой) и кВА на номинальную мощность испытуемой обмотки в кВА3Ø. Для определения минимального сопротивления изоляции используйте следующую формулу. R — Минимальное сопротивление изоляции при напряжении 500 В пост. тока в одну минуту в мегаомах C — Постоянная величина для измерений при 20 °C (68 °F) (см. ниже) E — Номинальное напряжение обмотки. KVA — Номинальная мощность испытуемой обмотки. Для трехфазных блоков кВА3Ø = v3 x кВА1Ø При проверке проводов или кабелей их следует отсоединять от панелей и механизмов, чтобы они не были изолированы. R — МО на 1000 футов (305 метров) кабеля. Основано на испытательном напряжении постоянного тока 500 вольт, приложенном в течение одной минуты при температуре 15,6 °C (60 °F)) K — постоянство материала изоляции. (Например: Бумага пропитанная-2640, Камбрик лакированный-2460, Полиэтилен термопласт-50000, Полиэтилен композитный-30000) D — Наружный диаметр изоляции жилы для одножильного провода и кабеля D = d + 2c + 2b диаметр одиночной жилы кабель d — Диаметр жилы c — Толщина изоляции проводника b — Толщина изоляции оболочки Например, одна тысяча футов 6 A.W.G. Многожильный провод с термостойкой изоляцией из натурального каучука с толщиной изоляции 0,125 будет иметь K = 10 560 и Log10 (D/d) = 0,373 дюйма. Фотографии предоставлены Fluke.
|
Добавить комментарий