Содержание
Подключение светодиода к 220в для индикации
Чаще всего для того, чтобы подключить светодиоды к сети В, приобретаются драйверы. Их использование не целесообразно, если источник света обладает малой мощностью например, индикатор подсветки. Приходится искать вариант, как подключить светодиод к В с минимальными затратами и максимальным КПД. Существует несколько схем, основанных на использовании резисторов и конденсаторов в качестве преобразователей вольтажа. Проблема подключения светодиода к сети вольт вызвана его техническими характеристиками. Чтобы светиться, LED-лампа пропускает ток в одном направлении.
Поиск данных по Вашему запросу:
Схемы, справочники, даташиты:
Прайс-листы, цены:
Обсуждения, статьи, мануалы:
Дождитесь окончания поиска во всех базах.
По завершению появится ссылка для доступа к найденным материалам.
Содержание:
- Схемы подключения светодиодов к сети 220В
- Подключение светодиода к сети 220 Вольт
- ПОДКЛЮЧЕНИЕ СВЕТОДИОДОВ К 220 В
- Подключение светодиода к сети 220в
- Светодиод индикатор сети 220 вольт
- Подключение светодиода к 220 вольтам, схемы, примеры (видео, калькулятор)
- Как подключить светодиоды к 220 В электрической сети
- Как правильно подключить светодиод к сети 220 В
ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Светодиод легко можно заставить светиться от 220 вольт
youtube.com/embed/-m3a5Z03r6E» frameborder=»0″ allowfullscreen=»»/>
Схемы подключения светодиодов к сети 220В
А предотвратить пробой от обратного напряжения можно с помощью обычного диода или еще одного светодиода. Поэтому самая простая схема подключения светодиода к В состоит всего из нескольких элементов:. Защитный диод может быть практически любым, так как его обратное напряжение никогда не будет превышать прямого напряжения на светодиоде, а ток ограничен резистором.
Сопротивление и мощность ограничительного балластного резистора зависит от рабочего тока светодиода и рассчитывается по закону Ома:. Обычно оно лежит в пределах 1. Для обычных индикаторных светодиодов ток будет мА. В предыдущих схемах защитный диод был включен встречно-параллельно, однако его можно разместить и так:. Это вторая схема включения светодиодов на вольт без драйвера. В этой схеме ток через резистор будет в 2 раза меньше, чем в первом варианте.
А, следовательно, на нем будет выделяться в 4 раза меньше мощности. Это несомненный плюс. Но есть и минус: к защитному диоду прикладывается полное амплитудное напряжение сети, поэтому любой диод здесь не прокатит. Придется подобрать что-нибудь с обратным напряжением В и выше. Но в наши дни это вообще не проблема. Отлично подойдет, например, вездесущий диод на вольт — 1N КД Не смотря на распространенное заблуждение, в отрицательные полупериоды сетевого напряжения, светодиод все-таки будет находиться в состоянии электрического пробоя.
Но благодаря тому, что сопротивление обратносмещенного p-n-перехода защитного диода очень велико, ток пробоя будет недостаточен для вывода светодиода из строя. Для уменьшения величины тока прикосновения нужно располовинить резистор на две части, чтобы получилось как показано на картинках:. А это уже не так опасно.
В обеих схемах светодиод будет светиться только в положительный полупериод сетевого напряжения. Это будет заметно глазу. К тому же, при подсветке мерцающими светодиодами каких-либо движущихся объектов, например, лопастей вентилятора, колес велосипеда и т. В некоторых случаях данный эффект может быть неприемлем или даже опасен. Например, при работе за станком может показаться, что фреза неподвижна, а на самом деле она вращается с бешенной скоростью и только и ждет, чтобы вы сунули туда пальцы.
Чтобы сделать пульсации менее заметными, можно удвоить частоту включения светодиода с помощью двухполупериодного выпрямителя диодного моста :. Обратите внимание, что по сравнению со схемой 2 при том же самом сопротивлении резисторов, мы получили в два раза больший средний ток. И, соответственно, в четыре раза большую мощность рассеивания резисторов. К диодному мосту при этом не предъявляется каких-либо особых требований, главное, чтобы диоды, из которых он состоит, выдерживали половину рабочего тока светодиода.
Обратное напряжение на каждом из диодов будет совсем ничтожным. Еще, как вариант, можно организовать встречно-параллельное включение двух светодиодов. Тогда один из них будет гореть во время положительной полуволны, а второй — во время отрицательной.
Фишка в том, что при таком включении максимальное обратное напряжение на каждом из светодиодов будет равно прямому напряжению другого светодиода несколько вольт максимум , поэтому каждый из светодиодов будет надежно защищен от пробоя. Светодиоды следует разместить как можно ближе друг к другу. В идеале — попытаться найти сдвоенный светодиод, где оба кристалла размещены в одном корпусе и у каждого свои выводы хотя я таких ни разу не видел.
Вообще говоря, для светодиодов, выполняющих индикаторную функцию, величина пульсаций не очень-то и важна. А вот при создании светильников, всегда нужно стараться свести пульсации к минимуму. И не столько из-за опасностей стробоскопического эффекта, сколько из-за их вредного влияния на организм. Все зависит от частоты: чем она ниже, тем заметнее пульсации. Не смотря на то, что пульсации освещенности на частотах Гц и выше визуально не воспринимаются, тем не менее, они способны вызывать повышенную усталость глаз, общую утомляемость, тревожность, снижение производительности зрительной работы и даже головные боли.
Для частоты 50 Гц — это будут 1. Но это для перфекционистов. Именно таков уровень мерцания ламп накаливания средней мощности, а ведь на них никто и никогда не жаловался.
Методы измерения коэффициента пульсации освещенности» для оценки величины пульсаций вводится специальный показатель — коэффициент пульсаций К п. Очень точно определить пульсации любого источника света можно при помощи солнечной панели и осциллографа:. Посмотрим, как включить светодиод в сеть вольт, чтобы снизить пульсации.
Для этого проще всего подпаять параллельно светодиоду накопительный сглаживающий конденсатор:. Из-за нелинейного сопротивления светодиодов, расчет емкости этого конденсатора является довольно нетривиальной задачей.
Однако, эту задачу можно упростить, если сделать несколько допущений. Во-первых, представить светодиод в виде эквивалентного постоянного резистора:. А во-вторых, сделать вид, что яркость светодиода а, следовательно, и освещенность имеет линейную зависимость от тока. Допустим, мы хотим получить коэфф. И пусть в нашем распоряжении оказался светодиод, на котором при токе в 20 мА падает 2 В.
Частота сети, как обычно, 50 Гц. Так как мы решили, что яркость линейно зависит от тока через светодиод, а сам светодиод мы представили в виде простого резистора, то освещенность в формуле расчета коэффициента пульсаций можем спокойно заменить на напряжение на конденсаторе:.
Таким образом, осциллограмма напряжения на конденсаторе а значит и на нашем упрощенном светодиоде будет выглядеть примерно вот так:. Вспоминаем тригонометрию и считаем время заряда конденсатора для простоты не будем учитывать сопротивление балластного резистора :.
Весь остальной остаток периода кондер будет разряжаться. Причем, период в данном случае нужно сократить в два раза, так как у нас используется двухполупериодный выпрямитель:. На практике вряд ли кто-то будет ставить такой большой кондер ради одного маленького светодиодика. Обратили внимание, насколько большая мощность выделяется на гасящем резисторе? Мощность, которая тратится впустую. Нельзя ли ее как-нибудь уменьшить? Оказывается, еще как можно! Достаточно вместо активного сопротивления резистора взять реактивное конденсатор или дроссель.
Дроссель мы, пожалуй, сразу откинем из-за его громоздкости и возможных проблем с ЭДС самоиндукции. А насчет конденсаторов можно подумать. Как известно, конденсатор любой емкости обладает бесконечным сопротивлением для постоянного тока.
А вот сопротивление переменному току рассчитывается по этой формуле:. Прелесть в том, что на реактивном сопротивлении и мощность тоже реактивная, то есть ненастоящая. Она как бы есть, но ее как бы и нет.
На самом деле эта мощность не совершает никакой работы, а просто возвращается назад к источнику питания в розетку. Бытовые счетчики ее не учитывают, поэтому платить за нее не придется. Таким образом, наша схема питания светодиодов от В своими руками приобретает следующий вид:. Именно в таком виде ее лучше не использовать, так как в этой схеме светодиод уязвим для импульсных помех. Включение или выключение распложенных на одной с вами линии мощной индуктивной нагрузки двигатель кондиционера, компрессор холодильника, сварочный аппарат и т.
Конденсатор С1 представляет для них практически нулевое сопротивление, следовательно мощный импульс направится прямиком к С2 и VD5. К сожалению, электролитические конденсаторы, из-за своей большой паразитной индуктивности, плохо справляются с ВЧ-помехами, поэтому большая часть энергии импульса пойдет через p-n-переход светодиода.
Еще один опасный момент возникает в случае включения схемы в момент пучности напряжения в сети то есть в тот самый момент, когда напряжение в розетке находится на пике своего значения.
С1 в этот момент полностью разряжен, то возникает слишком большой бросок тока через светодиод. Все это со временем это приводит к прогрессирующей деградации кристалла и падению яркости свечения. Во избежание таких печальных последствий, схему нужно дополнить небольшим гасящим резистором на Ом и мощностью 1 Вт. Кроме того, резистор R1 будет выступать в роли предохранителя на случай пробоя конденсатора С1. Получается, что схема включения светодиода в сеть вольт должна быть такой:.
И остается еще один маленький нюанс: если выдернуть эту схему из розетки, то на конденсаторе С1 останется какой-то заряд. Остаточное напряжение будет зависеть от того, в какой момент была разорвана цепь питания и в отдельных случаях может превышать вольт. А так как конденсатору некуда разряжаться, кроме как через свое внутреннее сопротивление, то заряд может сохраняться очень долго сутки и более.
И все это время кондер будет ждать вас или вашего ребенка, через которого можно будет как следует разрядиться. Причем, для того, чтобы получить удар током, не нужно лезть в недра схемы, достаточно просто прикоснуться к обоим контактам штепсельной вилки.
Чтобы помочь кондеру избавиться от ненужного заряда, подключим параллельно ему любой высокоомный резистор например, на 1 МОм. Этот резистор не будет оказывать никакого влияния на расчетный режим работы схемы. Он даже греться не будет. Таким образом, законченная схема подключения светодиода к сети В с учетом всех нюансов и доработок будет выглядеть так:. Значение емкости конденсатора C1 для получения нужного тока через светодиод можно сразу взять из Таблицы 2 , а можно рассчитать самостоятельно.
Не буду приводить утомляющие математические выкладки, дам сразу готовую формулу емкости в Фарадах :. Таким образом, при включении светодиода на напряжение В, на каждые мА тока потребуется примерно 1.
Таблица 2. Зависимость тока через светодиоды от емкости балластного конденсатора. В качестве гасящих рекомендуется применять помехоподавляющие конденсаторы класса Y1, Y2, X1 или X2 на напряжение не менее В.
Они имеют прямоугольный корпус с многочисленными обозначениями сертификатов на нем.
Подключение светодиода к сети 220 Вольт
Для питания светодиодов необходим источник постоянного тока. Кроме этого, этот ток должен быть стабилизирован. В бытовой сети напряжение В, что значительно больше, чем нужно для питания обычных светодиодов. Плюс, это напряжение переменное. Как же совместить несовместимое и подключить светодиод к сети В? Нет ничего невозможного, но сначала попробуем разобраться, для чего это подключение может вообще потребоваться. Прежде всего, речь может идти о подключении мощных источников света.
Питание светодиодов от В своими руками — схема подключения Если на табло индикации появляется знак бесконечности или «0L», с этого.
ПОДКЛЮЧЕНИЕ СВЕТОДИОДОВ К 220 В
В декоративном освещении и прочих местах, где светодиод используется как источник света, принято подключать его через драйвер. Драйвер уже имеет необходимые параметры для бесперебойной и максимально эффективной работы светодиода. Он актуален в тех случаях, когда в цепи наличествует несколько мощных кристаллов или целый набор светодиодных лент. Подключение светодиода напрямую к напряжению В используется в том случае, когда LED будет выглядеть как слабенький индикатор — если в подключении участвуют один или несколько элементов. Для них покупка драйвера совершенно нецелесообразна. В данном материале описана разница подключения через драйвер и к сети В напрямую, а также показаны и объяснены схемы подключения различных типов. Как подключить светодиод к сети В? Проблема изначально кроется в технических характеристиках LED. Его работа основана на пропускании сквозь кристаллы определенного тока, вследствие чего они светят.
Подключение светодиода к сети 220в
Канал ЭлектроХобби на YouTube. Порой возникает необходимость в подключении обычного, маломощного светодиода к переменному, сетевому напряжению вольт в роли светового индикатора. Казалось бы нет ничего проще, чем взять и поставить последовательно светодиоду обычный резистор, который бы ограничивал силу тока в данной цепи. Но не все так просто.
Добрый день всем. Он будет индицировать сеть вольт.
Светодиод индикатор сети 220 вольт
Достаточно часто нам приходится сталкиваться с таким вопросом — как подключить светодиод к В, или попросту к электрической сети переменного напряжения. Как таковое, прямое подключение диода напрямую к сети не несет никакой смысловой нагрузки. Даже при использовании определенных схем мы не получим необходимого эффекта. Если нам необходимо подключить светодиод к сети постоянного напряжения, то такая задача решается очень просто — ставим ограничительный резистор и забываем. Если же нам необходимо использовать сеть В для подключения LED, то на него будет уже воздействовать обратная полярность. Это хорошо видно, взглянув на график синусоиды, где каждый полупериод синусоида имеет свойство менять свой знак на противоположный.
Подключение светодиода к 220 вольтам, схемы, примеры (видео, калькулятор)
Забыли пароль? Изменен п. Расшифровка и пояснения — тут. Требуется изготовить индикатор наличия трех фаз. За основу хотелось бы взять светодиоды.
Простая схема включения светодиода к напряжению В. к переменному , сетевому напряжению вольт в роли светового индикатора. Казалось.
Как подключить светодиоды к 220 В электрической сети
Светодиоды — неотъемлемая часть электроники, позволяющая осуществлять индикацию состояния приборов. В зависимости от цвета и расположения на корпусе светоизлучающие диоды сигнализируют о состоянии зарядки, подключении гаджета к сети и т. Но бывают ситуации, когда в приборе отсутствует штатная сигнализация, а человеку она нужна.
Как правильно подключить светодиод к сети 220 В
ВИДЕО ПО ТЕМЕ: Подключаем светодиод к сети 220 вольт!
Подобную схему можно применить и для подсветки обычного настенного выключателя. Такие простые схемы включения светодиодов часто применяются в бытовой технике для индикации их состояния и облегчения поиска в темноте. Каждый из приведенных вариантов включения работоспособен и опробован лично автором статьи. Опробование схем производилось с двумя типами светодиодов цветной 1. При питании светодиода от постоянного напряжения, достаточно включить последовательно с ним токоограничивающий резистор, сопротивление которого легко рассчитать по формуле:. Подставив в формулу получим номинал резистора Ом
Одним из важных вопросов при работе со светодиодами является его подключение к сети переменного тока и высокого напряжения. Известно, что светодиод от сети В напрямую питаться не может.
Канал ЭлектроХобби на YouTube. Порой возникает необходимость подключить обычный светодиод к сетевому переменному напряжению величиной вольт. Например, это может быть нужно при установке светодиодного индикатора на переднюю панель какого-либо электроприбора, который будет сигнализировать об определенном режиме работы той или иной функции устройства. Допустим это индикатор наличия сетевого питания, или сигнальная лампа аварии и т. Как известно, большинство обычных индикаторных светодиодов изначально рассчитаны на постоянное низковольтное напряжение величиной от 1,5 до 4 вольт.
В большинстве случаев светодиоды запитываются от сети Вольт через драйверы например, обычная светодиодная лампа , но в некоторых случаях необходимо подключить к сети всего лишь один светодиод в качестве индикатора и здесь использование драйвера просто нецелесообразно. В таких случаях используются более простые схемы, о которых мы сегодня с вами и поговорим. Известно, что драйвер преобразует переменное синусоидальное напряжение в выпрямленное постоянное напряжение и запитывает светодиод малым током с низким напряжением.
Схема включения светодиода в сеть 220 вольт
Сейчас стало очень популярным освещение светодиодными лампами. Все дело в том, что это освещение не только достаточно мощное, но и экономически выгодное. Светодиоды — это полупроводниковые диоды в эпоксидной оболочке.
Изначально они были достаточно слабыми и дорогими. Но позднее в производство были выпущены очень яркие белые и синие диоды. К тому времени их рыночная цена снизилась. На данный момент существуют светодиоды практически любого цвета, что послужило причиной использования их в различных сферах деятельности. К ним относится освещение различных помещений, подсветка экранов и вывесок, использование на дорожных знаках и светофорах, в салоне и фарах автомобилей, в мобильных телефонах и т. д.
Описание
Светодиоды потребляют мало электроэнергии, в результате чего такое освещение постепенно вытесняет ранее существовавшие источники света. В специализированных магазинах можно приобрести различные предметы, в основе которых светодиодное освещение, начиная от обычного светильника и светодиодной ленты, заканчивая светодиодными панелями. Их всех объединяет то, что для их подключения необходимо наличие тока в 12 или 24 В.
В отличие от других источников освещения, которые используют нагревательный элемент, здесь применяется полупроводниковый кристалл, который генерирует оптическое излучение под воздействием тока.
Чтобы понять схемы включения светодиодов в сеть 220В, нужно для начала сказать о том, что напрямую от такой сети он питаться не сможет. Поэтому для работы со светодиодами нужно соблюдать определенную последовательность подключения их к сети высокого напряжения.
Электрические свойства светодиода
Вольтамперная характеристика светодиода — это крутая линия. То есть, если напряжение увеличится хотя бы немного, то ток резко возрастет, это повлечет за собой перегрев светодиода с последующим его перегоранием. Чтобы этого избежать, необходимо включить в цепь ограничительный резистор.
Но важно не забывать о максимально допустимом обратном напряжении светодиодов в 20 В. И в случае его подключения в сеть с обратной полярностью он получит амплитудное напряжение в 315 вольт, то есть в 1,41 раза больше, чем действующее. Дело в том, что ток в сети на 220 вольт переменный, и он изначально пойдет в одну сторону, а затем обратно.
Для того чтобы не дать току двигаться в противоположном направлении, схема включения светодиода должна быть следующей: в цепь включается диод. Он не пропустит обратное напряжение. При этом подключение обязательно должно быть параллельным.
Еще одна схема включения светодиода в сеть 220 вольт заключается в установке двух светодиодов встречно-параллельно.
Что касается питания от сети с гасящим резистором, то это не самый лучший вариант. Потому что резистор будет выделять сильную мощность. К примеру, если использовать резистор 24 кОм, то мощность рассеивания составит примерно 3 Вт. При включении последовательно диода мощность снизится вдвое. Обратное напряжение на диоде должно равняться 400 В. Когда включаются два встречных светодиода, можно поставить два двухваттных резистора. Их сопротивление должно быть в два раза меньше. Это возможно, когда в одном корпусе два кристалла разных цветов. Обычно один кристалл красный, другой зелёный.
В том случае, когда используется резистор 200 кОм, наличие защитного диода не требуется, так как ток на обратном ходу маленький и не будет вызывать разрушение кристалла. Эта схема включения светодиодов в сеть имеет один минус — маленькая яркость лампочки. Она может применяться, например, для подсветки комнатного выключателя.
Из-за того, что ток в сети переменный, это позволяет избежать лишних трат электричества на нагрев воздуха с помощью ограничительного резистора. С этой задачей справляется конденсатор. Ведь он пропускает переменный ток и при этом не нагревается.
Важно помнить, что через конденсатор должны проходить оба полупериода сети, для того чтобы он смог пропускать переменный ток. А так как светодиод проводит ток только в одну сторону, то необходимо поставить обычный диод (либо еще дополнительный светодиод) встречно-параллельно светодиоду. Тогда он и будет пропускать второй полупериод.
Когда схема включения светодиода в сеть 220 вольт будет отключена, на конденсаторе останется напряжение. Иногда даже полное амплитудное в 315 В. Это грозит ударом тока. Чтобы этого избежать, нужно предусмотреть помимо конденсатора еще и разрядный резистор большого номинала, который в случае отсоединения от сети моментально разрядит конденсатор. Через этот резистор, при нормальной его работе, течет незначительный ток, не нагревающий его.
Для защиты от импульсного зарядного тока и в качестве предохранителя ставим низкоомный резистор. Конденсатор должен быть специальный, который рассчитан на цепь с переменным током не меньше 250 В, либо на 400 В.
Схема последовательного включения светодиодов предполагает установку лампочки из нескольких светодиодов, включенных последовательно. Для этого примера достаточно одного встречного диода.
Так как падение напряжения тока на резисторе будет меньше, то от источника питания нужно отнять суммарное падение напряжения на светодиодах.
Необходимо, чтобы устанавливаемый диод был рассчитан на ток, аналогичный току, проходящему через светодиоды, а обратное напряжение должно быть равно сумме напряжений на светодиодах. Лучше всего использовать чётное количество светодиодов и подключать их встречно-параллельно.
В одной цепочке может быть больше десяти светодиодов. Чтобы рассчитать конденсатор, нужно отнять от амплитудного напряжения сети 315 В сумму падения напряжения светодиодов. В результате узнаем число падения напряжения на конденсаторе.
Ошибки подключения светодиодов
- Первая ошибка — это когда подключают светодиод без ограничителя, напрямую к источнику. В этом случае светодиод очень быстро выйдет из строя, по причине отсутствия контроля над величиной тока.
- Вторая ошибка — это подключение к общему резистору светодиодов, установленных параллельно. Из-за того, что происходит разброс параметров, яркость горения светодиодов будет разной. К тому же, в случае выхода одного из светодиодов из строя, произойдет возрастание тока второго светодиода, из-за чего он может сгореть. Так что, когда используется один резистор, необходимо последовательно подключать светодиоды. Это позволяет оставить ток прежним при расчёте резистора и сложить напряжения светодиодов.
- Третья ошибка — это когда светодиоды, которые рассчитаны на разный ток, включают последовательно. Это становится причиной того, что один из них будет гореть слабо, либо наоборот — работать на износ.
- Четвертая ошибка — это использование резистора, у которого недостаточное сопротивление. Из-за этого ток, текущий через светодиод, будет слишком большим. Некоторая часть энергии, при завышенном напряжении тока, превращается в тепло, в результате чего происходит перегрев кристалла и значительное уменьшение его срока службы. Причина этому — дефекты кристаллической решетки. Если напряжение тока еще больше возрастет, и р-n-переход нагреется, это приведет к снижению внутреннего квантового выхода. В результате этого упадет яркость светодиода, и кристалл будет подвергаться разрушению.
- Пятая ошибка — включение светодиода в 220В, схема которой очень проста, при отсутствии ограничения обратного напряжения. Максимально допустимое обратное напряжение у большинства светодиодов — примерно 2 В, а напряжение обратного полупериода влияет на падение напряжения, которое равняется напряжению питания при запертом светодиоде.
- Шестая причина — это использование резистора, мощность которого недостаточна. Это провоцирует сильный нагрев резистора и процесс плавления изоляции, которая касается его проводов. Затем начинает обгорать краска и под влиянием высоких температур наступает разрушение. Все по причине того, что резистор рассеивает только ту мощность, на которую он был рассчитан.
Схема включения мощного светодиода
Для подключения мощных светодиодов нужно использовать AC/DC-преобразователи, у которых стабилизированный выход тока. Это поможет отказаться от применения резистора или интегральной схемы драйвера светодиодов. В то же время мы сможем добиться простого подключения светодиодов, комфортного использования системы и снижения стоимости.
Прежде чем включить в электросеть мощные светодиоды, убедитесь в надежности подключения их к источнику тока. Не подключайте систему к блоку питания, который находится под напряжением, иначе это приведет к выходу из строя светодиодов.
Светодиоды 5050. Характеристики. Схема включения
К маломощным светодиодам относятся также светодиоды поверхностного монтажа (SMD). Чаще всего их используют для подсветки кнопок в мобильном телефоне или для декоративной светодиодной ленты.
Светодиоды 5050 (размер типокорпуса: 5 на 5 мм) — это полупроводниковые источники света, прямое напряжение которых 1,8-3,4 В, а сила прямого тока на каждый кристалл — до 25 мА. Особенность светодиодов SMD 5050 состоит в том, что их конструкция состоит из трех кристаллов, которые позволяют светодиоду излучать несколько цветов. Их называют RGB-светодиодами. Корпус их выполнен из термоустойчивого пластика. Линза рассеивания прозрачная и залита эпоксидной смолой.
Для того чтобы светодиоды 5050 работали как можно дольше, их необходимо подключать к номиналам сопротивлений последовательно. Для максимальной надежности схемы на каждую цепочку лучше подключить отдельный резистор.
Схемы включения мигающих светодиодов
Мигающий светодиод — это светодиод, в который встроен интегральный генератор импульсов. Частота вспышек у него составляет от 1,5 до 3 Гц.
Несмотря на то что мигающий светодиод достаточно компактный, в него вмещен полупроводниковый чип генератора и дополнительные элементы.
Что касается напряжения мигающего светодиода, то оно универсально и может варьироваться. Например, для высоковольтных это З-14 вольт, а для низковольтных 1,8-5 вольт.
Соответственно, к положительным качествам мигающего светодиода можно отнести, помимо маленького размера и компактности устройства световой сигнализации, еще и широкий диапазон допустимого напряжения тока. К тому же он может излучать различные цвета.
В отдельные виды мигающих светодиодов встраивают около трех разноцветных светодиодов, у которых разная периодичность вспышек.
Мигающие светодиоды еще и достаточно экономичны. Дело в том, что электронная схема включения светодиода сделана на МОП-структурах, благодаря чему мигающим диодом можно заменить отдельный функциональный узел. По причине маленьких габаритов мигающие светодиоды часто применяются в компактных устройствах, требующих наличия маленьких радиоэлементов.
На схеме мигающие светодиоды обозначаются так же, как и обычные, исключение лишь в том, что линии стрелок не просто прямые, а пунктирные. Тем самым они символизируют мигание светодиода.
Через прозрачный корпус мигающего светодиода видно, что он состоит из двух частей. Там на отрицательном выводе катодного основания находится кристалл светоизлучающего диода, а на анодном выводе расположен чип генератора.
Соединены все составляющие данного устройства с помощью трех золотистых проволочных перемычек. Чтобы отличить мигающий светодиод от обычного, достаточно просмотреть прозрачный корпус на свету. Там можно увидеть две подложки одинаковой величины.
На одной подложке находится кристаллический кубик светоизлучателя. Он состоит из редкоземельного сплава. Для того чтобы увеличить световой поток и фокусировку, а также для формирования диаграммы направленности используют параболический алюминиевый отражатель. Этот отражатель в мигающем светодиоде по размеру меньше, чем в обычном. Это по причине того, что во второй половине корпуса находится подложка с интегральной микросхемой.
Между собой эти две подложки сообщаются при помощи двух золотистых проволочных перемычек. Что касается корпуса мигающего светодиода, то он может быть выполнен либо из светорассеивающей матовой пластмассы, либо из прозрачного пластика.
Из-за того, что излучатель в мигающем светодиоде находится не на оси симметрии корпуса, то для функционирования равномерной засветки необходимо применение монолитного цветного диффузного световода.
Наличие прозрачного корпуса можно встретить лишь у мигающих светодиодов большого диаметра, которые обладают узкой диаграммой направленности.
Из высокочастотного задающего генератора состоит генератор мигающего светодиода. Его работа постоянна, а частота составляет около 100 кГц.
Наравне с высокочастотным генератором также функционирует делитель на логических элементах. Он, в свою очередь, осуществляет деление высокой частоты до 1,5-3 Гц. Причиной совместного применения высокочастотного генератора с делителем частоты является то, что для работы низкочастотного генератора необходимо наличие конденсатора с наибольшей ёмкостью для времязадающей цепи.
Доведение высокой частоты до 1-3 Гц требует наличия делителей на логических элементах. А их достаточно легко можно применить на небольшом пространстве полупроводникового кристалла. На полупроводниковой подложке, помимо делителя и задающего высокочастотного генератора, находится защитный диод и электронный ключ. Ограничительный резистор встраивается в мигающие светодиоды, которые рассчитаны на напряжение тока от 3 до 12 вольт.
Низковольтные мигающие светодиоды
Что касается низковольтных мигающих светодиодов, то у них отсутствует ограничительный резистор. При переполюсовке питания требуется наличие защитного диода. Он необходим для того, чтобы не допустить выхода микросхемы из строя.
Чтобы работа высоковольтных мигающих светодиодов была долговременной и шла бесперебойно, напряжение питания не должно превышать 9 вольт. Если напряжение тока возрастет, то рассеиваемая мощность мигающего светодиода увеличится, что приведет к нагреву полупроводникового кристалла. Впоследствии из-за чрезмерного нагрева начнется деградация мигающего светодиода.
Когда необходимо проверить исправность мигающего светодиода, то для того, чтобы это сделать безопасно, можно использовать батарейку на 4,5 вольта и включенный последовательно со светодиодом резистор сопротивлением 51 Ом. Мощностью резистора должна быть не менее 0,25 Вт.
Монтаж светодиодов
Монтаж светодиодов — очень важный вопрос по той причине, что это непосредственно связано с их жизнеспособностью.
Так как светодиоды и микросхемы не любят статику и перегрев, то паять детали необходимо как можно быстрее, не больше пяти секунд. При этом нужно использовать паяльник малой мощности. Температура жала не должна превышать 260 градусов.
При пайке дополнительно можно использовать медицинский пинцет. Пинцетом светодиод зажимается ближе к корпусу, благодаря чему при пайке создается дополнительный отвод тепла от кристалла. Чтобы ножки светодиода не сломались, их необходимо гнуть не сильно. Они должны оставаться параллельно друг другу.
Для того чтобы избежать перегрузки либо замыкания, устройство нужно снабдить предохранителем.
Схема плавного включения светодиодов
Схема плавного включения и выключения светодиодов — популярная среди других, ею интересуются автовладельцы, желающие тюнинговать свои машины. Данная схема применяется для подсветки салона автомобиля. Но это не единственное ее применение. Она используется и в других сферах.
Простая схема плавного включения светодиода должна состоять из транзистора, конденсатора, двух резисторов и светодиодов. Необходимо подобрать такие токоограничивающие резисторы, которые смогут пропускать ток в 20 мА через каждую цепочку светодиодов.
Схема плавного включения и выключения светодиодов не будет полноценной без наличия конденсатора. Именно он позволяет ее собрать. Транзистор должен быть p-n-p-структуры. А ток на коллекторе не должен быть меньше 100 мА. Если схема плавного включения светодиодов собрана правильно, то на примере салонного освещения автомобиля за 1 секунду будет проходить плавное включение светодиодов, а после закрытия дверей — плавное выключение.
Поочередное включение светодиодов. Схема
Одним из световых эффектов с применением светодиодов является поочередное их включение. Он именуется бегущим огнем. Работает такая схема от автономного питания. Для ее конструкции применяется обычный переключатель, который подает напряжение питания поочередно на каждый из светодиодов.
Рассмотрим устройство, состоящее из двух микросхем и десяти транзисторов, которые вкупе составляют задающий генератор, управление и саму индексацию. С выхода задающего генератора импульс передается на блок управления, он же десятичный счетчик. Затем напряжение поступает на базу транзистора и открывает его. Анод светодиода оказывается подключен к плюсу источника питания, что приводит к свечению.
Второй импульс формирует логическую единицу на следующем выходе счетчика, а на предыдущем появится низкое напряжение и закроет транзистор, в результате чего светодиод погаснет. Далее все происходит в той же последовательности.
Схема светодиодной лампы
на 220 вольт
Опубликовано: 08.12.2020
2820
1. Типы схем
1.1. Импульсные драйверы
1.2. Диммируемые драйверы
1.3. Конденсатор
2. Напряжение светодиодов в лампочках
С каждым годом растет спрос на светодиодные лампочки. Они могут вскоре вытеснить с рынка лампы накаливания и люминесцентные аналоги, которые не могут похвастаться такой же безопасностью, служат не так долго, потребляют больше электроэнергии и не подлежат ремонту в случае поломки.
Принципиальная схема светодиодной лампочки проста как для опытного электрика, так и для новичка. Но устройство светодиодных лампочек сложнее, чем люминесцентных. Если вам нужно заменить светодиод, вам нужно не только разбираться в схеме лампочки, но и уметь пользоваться паяльником, а также понимать, как работают элементы.
Разнообразие схем
Драйвер нужен для стабилизации напряжения и собирается с помощью схем на конденсаторах и трансформаторах. Второй вариант более экономичен, а первый нужен для создания мощной лампы. Кроме того, существует еще один тип схем – инверторные схемы. Они используются в производстве диммируемых ламп и большого количества микросхем.
Импульсные драйверы.
По сравнению с линейным драйвером, в котором используется конденсатор, импульсный драйвер характеризуется эффективной защитой от нестабильности в сети. Чтобы подробно рассмотреть пример схемы импульсной диодной лампы, воспользуемся CPC9909. КПД этого изделия достигает 98%, поэтому его можно без преувеличения считать одним из самых экономичных и энергосберегающих.
Драйвер CPC9909″0003
Соединение с импульсным драйвером используется для включения освещения в экстренных случаях и подходит в качестве примера повышающих преобразователей. В домашних условиях на основе модели драйвера CPC9909 можно собрать свет, который будет питаться от батареек или драйвера, но мощность не будет превышать 25В.
Драйверы с диммированием
С помощью драйвера с диммированием можно регулировать яркость светодиодной лампы, что позволяет установить желаемый уровень освещенности в каждой комнате, уменьшая яркость света в течение дня. Приборы используются для акцентирования внимания на тех или иных предметах интерьера.
Диммер экономит электроэнергию, так как не нужно каждый раз включать лампу на полную мощность, что положительно сказывается на сроке службы изделия.
Схема подключения с диммером.
В производстве используются две разновидности диммируемых драйверов. У каждого есть плюсы и минусы. Один работает на широтно-импульсной модуляции (ШИМ). Диммер устанавливается между диодами и блоком питания. Схема питается импульсами различной длительности. Хорошим примером ШИМ-модуляции является бегущая строка.
Второй тип диммируемых драйверов влияет на блок питания. Их широко применяют для изделий с возможностью стабилизации тока. Регулировка может повлиять на оттенок освещения. Если это белые чипы, то они начнут светиться желтым цветом при снижении силы тока и синим цветом при увеличении силы тока.
Конденсатор
Конденсаторная схема может считаться одной из самых продаваемых, и часто встречается в бытовых светильниках.
Цепь конденсатора.
Конденсатор С1 нужен для защиты устройства от сетевых помех. C4 сгладит пульсацию. При подаче тока резисторы R3-R2 будут ограничивать его и защищать цепь от короткого замыкания. Элемент VD1 преобразует переменное напряжение. Когда ток прекратится, конденсатор разрядится через резистор R4. А вот элементы R2-R3 используются далеко не всеми производителями светодиодного освещения.
Светильник с диммером.
Для проверки работоспособности конденсатора используется мультиметр. Схема имеет ряд недостатков:
- нельзя добиться высокой яркости свечения, потребуется больше конденсаторов;
- есть риск перегрева микросхем из-за нестабильной подачи тока;
- нет гальванической развязки, возможен удар током. При разборке лампочки нельзя касаться токоведущих элементов голыми руками.
Несмотря на недостатки, схема имеет много достоинств, лампы хорошо продаются. Простота сборки, низкие цены и широкий диапазон выходных напряжений. Даже мастера со скромным опытом могут попробовать изготовить изделие самостоятельно. Для этого часть деталей можно снять со старых телевизоров или ресиверов.
Щелкните здесь, чтобы увидеть: Простая схема питания светодиодной лампы
Напряжение светодиодной трубки
Напряжение светодиодов в лампе составляет от 110 до 220 вольт. Эти значения достигаются за счет объединения нескольких чипов. Снижение напряжения и постоянного тока — это работа драйвера, который есть в каждой лампочке.
Если его нет, а лампочка должна работать от сети, то потребуется подключить внешнее устройство. Не так давно появились светодиоды, работающие от переменного напряжения. Но поскольку они пропускают ток только в одном направлении, то остались в нише изделий, работающих на постоянном токе.
Внутренняя схема светодиодной ленты и информация о напряжении
Дом /
Блог /
Конструкции печатных плат /
Внутренняя схема светодиодной ленты и информация о напряжении
В этой статье рассматриваются внутренние схемы и принципы работы светодиодной ленты. Эта информация предназначена для обсуждения технических вопросов и не является необходимой для обычных пользователей, заинтересованных в регулярном использовании светодиодных лент.
Назад к основам — напряжение светодиодного чипа
Указанное напряжение светодиодной ленты — напр. 12В или 24В — в первую очередь определяется:
1) Указанное напряжение светодиодов и используемых компонентов и
2) Конфигурация светодиодов на светодиодной ленте.
Светодиоды обычно представляют собой 3-вольтовые устройства. Это означает, что если между положительным и отрицательным концами светодиода приложить 3-вольтовую разность, он загорится.
Что происходит, когда у вас есть несколько светодиодов в цепочке, один за другим (серия)? В этом случае напряжения отдельных светодиодов суммируются.
Таким образом, для 3 последовательных светодиодов потребуется прямое напряжение 9 вольт (3 вольта х 3 светодиода), а для 6 последовательно соединенных светодиодов потребуется прямое напряжение 18 вольт (3 вольта х 6 светодиодов).
В дополнение к светодиодам также необходим один или несколько токоограничивающих резисторов, чтобы светодиодная лента не переходила в режим перегрузки по току. Резистор также включен последовательно со светодиодами, и значение его сопротивления рассчитано таким образом, чтобы он также потреблял примерно 3 вольта.
Итак, 3 последовательно соединенных светодиода требуют 9 вольт для светодиодов и 3 вольта для резистора, что дает нам 12 вольт.
6 светодиодов последовательно требуют 18 вольт для светодиодов и 3 вольта на резистор (x2), что дает нам 24 вольта.
Это «строительные блоки» для каждой группы светодиодов на светодиодной ленте. Как он расположен на светодиодной ленте, можно увидеть на нашем рисунке ниже:
Что происходит с параллельным подключением светодиодов? Напряжение остается прежним, но ток распределяется поровну между каждой из параллельных цепей. Следовательно, если у вас есть 3 параллельные группы, каждая из которых потребляет 50 мА при напряжении 24 В, общая потребляемая мощность составит 150 мА также при напряжении 24 В.
Эти два примера с 3 светодиодами и 6 светодиодами показывают, как устроена типичная светодиодная лента на 12 и 24 вольта. Потому что в светодиодных лентах используются светодиодные устройства на 3 вольта, и они сконфигурированы так, чтобы иметь несколько параллельных цепочек из 3 или 6 светодиодов.
Вы должны подавать точно указанное напряжение?
Вам может быть интересно, означают ли 12 вольт именно 12,0 вольт или 11,9 вольт все еще будут работать? Хорошей новостью является то, что мощность, подаваемая на светодиодную ленту, невелика.
Ниже приведена диаграмма из технического описания светодиодов, показывающая, какой ток будет проходить через светодиод в зависимости от напряжения.
Вы увидите, что, например, при напряжении 3,0 В этот конкретный светодиод будет потреблять около 120 мА. Если мы уменьшим напряжение до 2,9 В, светодиод будет потреблять немного меньше, всего около 80 мА. Если мы увеличим напряжение до 3,1 В, светодиод будет потреблять больше, около 160 мА.
Поскольку в светодиодной ленте на 12 В последовательно соединены 3 светодиода и резистор, подача 11 В вместо 12 В немного похожа на снижение напряжения для каждого светодиода на 0,25 В.
Будут ли светодиоды работать при напряжении 2,75 В? Если мы обратимся к приведенной выше диаграмме, то окажется, что потребляемый ток упадет со 120 мА на светодиод примерно до 40 мА.
Хотя это довольно значительное падение, светодиоды будут работать нормально, хотя и с гораздо более низким уровнем яркости.
Что, если бы мы подали всего 10 В на 12-вольтовую светодиодную ленту? В этом случае мы уменьшаем напряжение на светодиод на 0,5 В каждый. Если мы обратимся к диаграмме, при 2,5 В светодиоды почти не будут потреблять ток.
При этом уровне напряжения вы, скорее всего, увидите очень тусклую светодиодную ленту.
Все напряжения ниже номинала светодиодной ленты безопасны, так как вы всегда будете потреблять меньший ток и, следовательно, избежать любой возможности повреждения или перегрева. Но как насчет уровней напряжения более 12 В?
Рассмотрим подачу напряжения 12,8 В на 12-вольтовую светодиодную ленту. Это увеличивает напряжение на светодиод на 0,20 В.
Наш светодиод теперь питается от напряжения 3,2 В, при котором на диаграмме показано потребление тока 200 мА.
Так уж получилось, что 200 мА — максимальный номинальный ток производителей. Любое выше, и вы рискуете повредить светодиод.
И имейте в виду, что каждый светодиод будет иметь разные номинальные характеристики, и неотъемлемые различия в производстве могут повлиять на фактические диапазоны напряжения, приемлемые для конкретной светодиодной ленты.
Мы показали, что для светодиодной ленты на 12 В она может изменяться от темного до перегруженного в узком диапазоне от 10 В до 12,8 В.
Хотя можно подавать напряжение, которое немного отличается от номинального напряжения, необходимо соблюдать осторожность и точность, чтобы не повредить светодиоды.
Как насчет затемнения светодиодной ленты?
Один из способов уменьшить яркость светодиодной ленты — отрегулировать входное напряжение ниже номинального уровня, как мы видели выше. В действительности, однако, силовая электроника не очень хорошо справляется с уменьшением выходного напряжения таким образом.
Предпочтительным методом является использование так называемой ШИМ (широтно-импульсной модуляции), когда светодиоды включаются и выключаются с высокой скоростью. Регулируя соотношение времени включения и времени выключения (рабочий цикл), можно регулировать видимую яркость светового потока светодиодной ленты.
Для светодиодной ленты на 12 В это означает, что она всегда получает либо полные 12 В, либо 0 В, в зависимости от того, в какой части ШИМ-цикла мы находимся.
Точно так же мы также знаем, что светодиод будет потреблять одинаковое количество тока, когда он находится во включенном состоянии, независимо от его рабочего цикла. Это дополнительное преимущество для светодиодных лент, цветовая температура которых должна оставаться постоянной даже при изменении ее яркости.
Итог
Одним из существенных преимуществ светодиодных лент является их простота, но универсальность. Они совместимы с простыми источниками питания постоянного напряжения.
Иногда бывает полезно понять внутреннюю работу таких устройств, поскольку это может помочь нам понять некоторые из наиболее нюансированных аспектов их работы, такие как диммирование и изменение входного напряжения.
Other Posts
Использование светодиодной ленты 12 В в системе 24 В
Возможно, вы знакомы с различиями между системами постоянного тока 12 В и 24 В и различными … Подробнее
В чем разница между типами корпусов светодиодов, такими как 3528, 5050 и 2835?
При поиске светодиодной продукции вы можете встретить различные 4-значные обозначения типов светодиодов. Когда вы впервые сталкиваетесь с этим кодом… Подробнее
Что нужно знать о подложках для гибких светодиодных лент
Когда вы смотрите и сравниваете типы гибких светодиодных лент, вы, вероятно, обращаете внимание на цветовую температуру, количество светодиодов и сопряжение правильная по… Подробнее
Когда и зачем светодиодам нужны токоограничивающие резисторы?
Если вы работаете с какой-либо схемой, включающей светодиоды, вы, возможно, сталкивались с предупреждениями или рекомендациями всегда использовать ограничитель тока.
Просмотрите нашу коллекцию статей, инструкций и руководств по различным применениям освещения, а также подробные статьи по науке о цвете.
Обзор продуктов освещения Waveform
Светодиодные лампы серии A
Наши лампы A19 и A21 подходят для стандартных светильников и идеально подходят для напольных и настольных светильников.
Светодиодные лампы-канделябры
Наши светодиодные лампы-канделябры обеспечивают мягкий и теплый свет в декоративном стиле, который подходит для светильников E12.
Светодиодные лампы BR30
Лампы BR30 — это потолочные светильники, которые подходят для жилых и коммерческих светильников с отверстиями шириной 4 дюйма или шире.
Светодиодные лампы T8
Непосредственно замените 4-футовые люминесцентные лампы нашими светодиодными трубчатыми лампами T8, совместимыми как с балластами, так и без них.
Светильники T8 с поддержкой светодиодов
Трубчатые светодиодные светильники с предварительно смонтированными кабелями, совместимые с нашими светодиодными лампами T8.
Светодиодные линейные светильники
Линейные светильники длиной 2 и 4 фута. Подключается к стандартным настенным розеткам и крепится с помощью винтов или магнитов.
Светодиодные светильники для магазинов
Потолочные светильники с подвесными цепями. Включается в стандартные настенные розетки.
Светодиодные лампы UV-A
Мы предлагаем светодиодные лампы с длиной волны 365 нм и 395 нм для флуоресцентных и полимеризационных применений.
Светодиодные лампы УФ-С
Мы предлагаем светодиодные лампы УФ-С с длиной волны 270 нм для бактерицидного применения.
Светодиодные модули и аксессуары
Светодиодные печатные платы, панели и другие форм-факторы для различных промышленных и научных приложений.
Светодиодные ленты
Яркие светодиодные излучатели, смонтированные на гибкой печатной плате. Может быть отрезан по длине и установлен в различных местах.
Диммеры для светодиодных лент
Диммеры и контроллеры для регулировки яркости и цвета системы светодиодных лент.
Источники питания для светодиодных лент
Блоки питания для преобразования линейного напряжения в низкое постоянное напряжение, необходимое для систем светодиодных лент.
Швеллеры алюминиевые
Швеллеры из прессованного алюминия для монтажа светодиодных лент.
Соединители для светодиодных лент
Непаянные соединители, провода и адаптеры для соединения компонентов системы светодиодных лент.
Добавить комментарий