Содержание
Типы электрических розеток и напряжение в разных странах мира
При поездках за рубеж важное значение имеет формат розетки и напряжение в сети, ведь каждому из нас потребуется заряжать свой мобильный телефон,ноутбук или планшет. Большинство блоков питания для электронных устройств, таких как ноутбуки, зарядные устройства, мобильные устройства, видеокамеры и фотоаппараты имеют универсальное питание, поэтому они способны работать при напряжении питания от 100 до 240 Вольт, и частоте 50 или 60 Гц.
В мире существуют два стандарта напряжения: европейский — 220-240В и американский 100-127В. И два стандарта частоты переменного тока: 50 Гц и 60 Гц . США, Япония и большинство стран Южной Америки используют связку 100-127В 60 Гц. Остальной мир в основном использует европейские 220-240В 50 Гц. Кроме того, в мире есть несколько стран с разными вариациями напряжения и частоты, например Филиппины, там используется напряжение 220-240В с частотой 60 Гц.
Карта-схема использования в разных странах мира напряжения и частоты тока
Стандарты электрических розеток развивались в большинстве стран независимо друг от друга, поэтому в большинстве своем вилки и розетки разных стран не совместимы между собой.
Карта-схема использования в разных странах мира электрических вилок и розеток по типам
Сводная таблица типов розеток, напряжения и частоты тока по странам
Страны и территории | Тип розетки |
Напряжение В |
Частота, Гц |
Дополнительно |
---|---|---|---|---|
Австралия | I | 230 | 50 | |
Австрия | C, F | 230 | 50 | |
Азербайджан | C | 220 | 50 | |
Азорские о-ва | C, F | 220 | 50 | |
Албания | C, F | 220 | 50 | |
Алжир | C, F | 230 | 50 | |
Американское Самоа | A, B, F, I | 120 | 60 | |
Ангилья | A, B | 110 | 60 | |
Ангола | C | 220 | 50 | |
Андорра | C, F | 230 | 50 | |
Антигуа | A, B | 230 | 60 | в аэропорту 110 В |
Аомынь (Макао) | D, M, G, редко F | 220 | 50 | |
Аргентина | C, I | 220 | 50 | |
Армения | C, F | 220 | 50 | |
Аруба | A, B, F | 127 | 60 | в Лаго 115 В |
Афганистан | C, D, F | 240 | 50 | напряжение неустойчиво |
Багамские о-ва | A, B | 120 | 60 | в некоторых отдаленных регионах 50Гц |
Балеарские о-ва | C, F | 220 | 50 | |
Бангладеш | A, C, D, G, K | 220 | 50 | |
Барбадос | A, B | 115 | 50 | |
Бахрейн | G | 230 | 50 | в Авали 110 В, 60Гц |
Белоруссия | C | 220 | 50 | |
Белиз | A, B, G | 110, 220 | 60 | |
Бельгия | C, E | 230 | 50 | |
Бенин | C, E | 220 | 50 | |
Бермудские о-ва | A, B | 120 | 60 | |
Болгария | C, F | 230 | 50 | |
Боливия | A, C | 220 | 50 | в Ла-Пасе 115 В |
Босния | C, F | 220 | 50 | |
Ботсвана | D, G, M | 231 | 50 | |
Бразилия | A, B, C, I | 127, 220 | 60 | |
Бруней | G | 240 | 50 | |
Буркина-Фасо | C, E | 220 | 50 | |
Бурунди | C, E | 220 | 50 | |
Бутан | D, F, G, M | 230 | 50 | |
Вануату | I | 230 | 50 | |
Великобритания(Англия, Британия, Объединенное Королевство) | G, редко D и M | 230 | 50 | ранее 240 В; иногда дополнительно низковольтная (110-115 В) розетка в ванной, похожая на тип C |
Венесуэла | A, B | 120 | 60 |
также возможно 220 в с типом G для питания кондиционеров и т. |
Венгрия | C, F | 230 | 50 | ранее 220 В |
Восточный Тимор | C, E, F, I | 220 | 50 | |
Вьетнам | A, C | 220 | 50 | тип A — в Южном Вьетнаме, тип C — в Северном. В дорогих отелях также применяется тип G |
Габон | C | 220 | 50 | |
Гаити | A, B | 110 | 60 | |
Гайана | A, B, D, G | 240 | 60 | |
Гамбия | G | 230 | 50 | |
Гана | D, G | 230 | 50 | |
Германия | C, F | 230 | 50 | ранее 220 В; тип C давно не устанавливается |
Гваделупа | C, D, E | 230 | 50 | |
Гватемала | A, B | 120 | 60 | |
Гвинея | C, F, K | 220 | 50 | |
Гвинея-Бисау | C | 220 | 50 | |
Гибралтар | G, K | 240 | 50 | тип K только в Европорте |
Гондурас | A, B | 110 | 60 | |
Гонконг | G, M, D | 220 | 50 | |
Гренада | G | 230 | 50 | |
Гренландия | C, K | 220 | 50 | |
Греция | C, F | 230 | 50 | ранее 220 В |
Гуам | A, B | 110 | 60 | |
Дания | C, K, E | 230 | 50 |
тип E добавляется с июля 2008 г. |
Джибути | C, E | 220 | 50 | |
Доминика | D, G | 230 | 50 | |
Доминиканская Республика | A, B | 110 | 60 | |
Египет | C | 220 | 50 | |
Замбия | C, D, G | 230 | 50 | |
Западный Самоа | I | 230 | 50 | |
Зимбабве | D, G | 220 | 50 | |
Израиль | C, H, M | 230 | 50 | в типе H плоские штырьки сменены круглыми; большинство новых розеток принимает вилки как H, так и C |
Индия | C, D, M | 230 | 50 | |
Индонезия | C, F, реже G | 127, 230 | 50 | |
Иордания | B, C, D, F, G, J | 230 | 50 | |
Ирак | C, D, G | 230 | 50 | |
Иран | F, реже C | 220 | 50 | |
Ирландия | D, F, G, M | 230 | 50 | ранее 220 В; иногда дополнительно 110 В |
Исландия | C, F | 230 | 50 | |
Испания | C, F | 230 | 50 | ранее 220 В |
Италия | C, F, L | 230 | 50 | ранее 220 В |
Йемен | A, D, G | 230 | 50 | |
Кабо-Верде (о-ва Зеленого Мыса) | C, F | 220 | 50 | |
Казахстан | C, F | 220 | 50 | |
Каймановы о-ва | A, B | 120 | 60 | |
Камбоджа | A, C, G | 230 | 50 | |
Камерун | C, E | 220 | 50 | |
Канада | A, B | 120 | 60 | иногда дополнительно 240 В |
Канарские о-ва | C, E, F, L | 220 | 50 | |
Катар | D, G | 240 | 50 | |
Кения | G | 240 | 50 | |
Кипр | G | 240 | 50 | |
Киргизия | C | 220 | 50 | |
Кирибати | I | 240 | 50 | |
Китай (материковый) | A, C, I | 220 | 50 | |
КНДР | C | 220 | 50 | |
Колумбия | A, B | 120 | 60 | иногда дополнительно 240 В |
Коморские о-ва | C, E | 220 | 50 | |
Демократическая Республика Конго (Киншаса) | C, D | 220 | 50 | |
Республика Конго (Браззавиль) | C, E | 230 | 50 | |
Корея (Южная) | A, B, C, F | 220,110 | 60 | типы A и B используются при напряжении 110 В (пережиток японской колонии) в старых сооружениях |
Коста-Рика | A, B | 120 | 60 | |
Кот-д’Ивуар (Берег Слоновой Кости) | C, E | 230 | 50 | |
Куба | A, B | 110 | 60 | |
Кувейт | C, G | 240 | 50 | |
Лаос | A, B, C, E, F | 230 | 50 | |
Латвия | C, F | 220 | 50 | |
Лесото | M | 220 | 50 | |
Либерия | A, B, C, E, F | 120, 240 | 50 | раньше 60 Гц, в частных электрических сетях возможно сохранение частоты 60 Гц, типы A и B используются при напряжении 110-120 В |
Ливан | A, B, C, D, G | 110, 200 | 50 | |
Ливия | D, L | 127 | 50 | в отдельных городах 230 В |
Литва | C, F | 230 | 50 | ранее 220 В |
Лихтенштейн | C, J | 230 | 50 | |
Люксембург | C, F | 230 | 50 | ранее 220 В |
Маврикий | C, G | 230 | 50 | |
Мавритания | C | 220 | 50 | |
Мадагаскар | C, D, E, J, K | 127, 220 | 50 | |
Мадейра | C, F | 220 | 50 | |
Македония | C, F | 220 | 50 | |
Малави | G | 230 | 50 | |
Малайзия | G, редко M, C | 240 | 50 |
тип M используют для подключения кондиционеров, сушилок и пр. |
Мали | C, E | 220 | 50 | |
Мальдивы | A, D, G, J, K, L | 230 | 50 | |
Мальта | G | 230 | 50 | |
Марокко | C, E | 127, 220 | 50 | продолжается переход на 220 В |
Мартиника | C, D, E | 220 | 50 | |
Мексика | A, B | 120 | 60 | |
Микронезия (Федеративные Штаты Микронезии, Яп, Чуук, Понпеи и Косрае) | A, B | 120 | 60 | |
Мозамбик | C, F, M | 220 | 50 |
тип M используют у границы с ЮАР, в т. |
Монако | C, D, E, F | 127, 220 | 50 | |
Молдавия | C, F | 220-230 | 50 | |
Монголия | C, E | 230 | 50 | |
Монсеррат | A, B | 230 | 60 | |
Мьянма (Бирма) | C, D, F, G | 230 | 50 | тип G используется только в дорогих отелях |
Намибия | D, M | 220 | 50 | |
Науру | I | 240 | 50 | |
Непал | C, D, M | 230 | 50 | |
Нигер | A, B, C, D, E, F | 220 | 50 | |
Нигерия | D, G | 240 | 50 | |
Нидерландские Антильские о-ва | A, B, F | 127, 220 | 50 | |
Нидерланды(Голландия) | C, F | 230 | 50 | ранее 220 В |
Никарагуа | A, B | 120 | 60 | |
Новая Зеландия | I | 230 | 50 | |
Новая Каледония | E | 220 | 50 | |
Норвегия | C, F | 230 | 50 | |
Нормандские острова | C, G | 230 | 50 | |
ОАЭ | C, D, G | 220 | 50 | |
Окинава | A, B | 100 | 60 | на военных объектах 120 В |
Оман | C, G | 240 | 50 | |
О. |
C, G | 240 | 50 | |
О-ва Кука | I | 240 | 50 | |
Пакистан | C, D, M, редко G | 230 | 50 | тип M используется длф подключения кондиционеров и пр. |
Панама | A, B | 110 | 60 | |
Папуа-Новая Гвинея | I | 240 | 50 | |
Парагвай | C | 220 | 50 | |
Перу | A, B, C | 220 | 60 | в Таларе также 110 В, в Арекипе 50Гц |
Польша | C, E | 230 | 50 | |
Португалия | C, F | 220 | 50 | |
Пуэрто-Рико | A, B | 120 | 60 | |
Реюньон | E | 220 | 50 | |
Россия | C, F | 220 | 50 |
На всей территории бывшего СССР, а также в нек. |
Руанда | C, J | 230 | 50 | |
Румыния | C, F | 230 | 50 | ранее 220 В, местами сохранились розетки советского стандарта (ГОСТ), см. примечание к России |
Сальвадор | A, B | 115 | 60 | |
Сан-Томе и Принсипи | C, F | 220 | 50 | |
Санта-Лючия | G | 240 | 50 | |
Сейшельские о-ва | G | 240 | 50 | |
Саудовская Аравия | A, B, F, G | 127, 220 | 60 | |
Сектор Газа | C, H, M | 230 | 50 | |
Сенегал | C, D, E, K | 230 | 50 | |
Сент-Винсент и Гренадины | A, C, E, G, I, K | 230 | 50 | |
Сербия | C, F | 220 | 50 | |
Сингапур | G, M, A, C | 230 | 50 |
типы A и C используются для подключения аудио-видеотехники, тип M — для кондиционеров, сушилок и т. |
Сирия | C, E, L | 220 | 50 | |
Словакия | C, E | 230 | 50 | |
Словения | C, F | 230 | 50 | |
Сомали | C | 220 | 50 | |
Судан | C, D | 230 | 50 | |
Суринам | C, F | 127 | 60 | |
США | A, B | 120 | 60 | |
Сьерра-Леоне | D, G | 230 | 50 | |
Таджикистан | C, I | 220 | 50 | |
Таиланд | A, B, C | 220 | 50 | |
Тайвань | A, B | 110, 220 | 60 |
220 В используется для питания кондиционеров и т. |
Танзания | D, G | 230 | 50 | |
Того | C | 220 | 50 | в Ломе 127 В |
Тонга | I | 240 | 50 | |
Тринидад и Тобаго | A, B | 115 | 60 | |
Тунис | C, E | 230 | 50 | |
Туркменистан (Туркмения) | B, F | 220 | 50 | |
Турция | C, F | 230 | 50 | |
Уганда | G | 240 | 50 | |
Узбекистан | C, F | 220 | 50 | |
Украина | C, F | 220 | 50 | |
Уругвай | C, F, I, L | 230 | 50 | ранее 220 В |
Фарерские о-ва | C, K | 220 | 50 | |
Фиджи | I | 240 | 50 | |
Филиппины | A, редко B | 220 | 60 | в некторорых регионах, например, в Багио 110 В |
Финляндия | C, F | 230 | 50 | |
Фолклендские о-ва | G | 240 | 50 | |
Франция | C, E | 230 | 50 | ранее 220 В; тип C запрещен к установке более 10 лет |
Французская Гвиана | C, D, E | 220 | 50 | |
Французская Полинезия(Таити) | A, B, E | 110, 220 | 60 , 50 | |
Хорватия | C, F | 230 | 50 | |
Центральноафриканская Республика | C, E | 220 | 50 | |
Чад | D, E, F | 220 | 50 | |
Черногория | C, F | 220 | 50 | |
Чехия | C, E | 230 | 50 | |
Чили | C, L | 220 | 50 | |
Швейцария | C, J | 230 | 50 | |
Швеция | C, F | 230 | 50 | |
Шри-Ланка (Цейлон) | D, M, G | 230 | 50 | в новых домах и дорогих отелях чаще тип G |
Эквадор | A, B | 120 | 60 | |
Экваториальная Гвинея | C, E | 220 | 50 | |
Эритрея | C | 230 | 50 | |
Эстония | C, F | 230 | 50 | |
Эфиопия | C, E, F, L | 220 | 50 | |
ЮАР | M | 220 | 50 | в некоторых городах 250 В |
Ямайка | A, B | 110 | 50 | |
Япония | A, B | 100 | 50 , 60 | 50 Гц в Восточной Японии (Токио, Саппоро, Йокогама, Сэндай), 60 Гц — в Западной (Окинава, Осака, Киото, Кобэ, Нагоя, Хиросима) |
Австралия
Австрия
Азербайджан
Албания
Алжир
Американское Самоа
Ангилья
Ангола
Андорра
Аргентина
Армения
Аруба
Афганистан
Бангладеш
Барбадос
Бахрейн
Белиз
Бельгия
Бенин
Болгария
Боливия
Версия для печати
Напряжение в розетке: как оценить качество | Публикации
Для того, чтобы понять, насколько качественное напряжение поступает к нам в розетку, необходимы две вещи — знать стандарты качества и знать, как измерить эти стандарты. В статье я подробно расскажу, что такое качество напряжения и как измерить его характеристики. Это будет не теоретическая википедийная статья, а материал, максимально приближенный к реальной жизни.
Посмотрим, что мы можем измерить и посмотреть реально в питающей сети. Я приведу официальные стандарты качества и покажу, что в сети может происходить на самом деле.
Как и зачем оценивать качество напряжения в сети?
Действительно, зачем? Ведь достаточно нажать кнопку на пульте телевизора или воткнуть зарядное устройство айфона в розетку и пользоваться благами электрификации всей страны!
Но бывают моменты, когда что-то идет не так: крокодил не ловится, айфон не заряжается, кондиционер вместо прохлады выдает натужное гудение, а телевизор после щелчка не подает признаков жизни.
Тут собрались люди знающие, которые понимают, что значения основных параметров электрической сети — напряжения и частоты — можно узнать в первую очередь посредством мультиметра. Но что делать, если нужно посмотреть, что делается в розетке в течение суток? А что если нужно отследить скачок напряжения, который по времени гораздо короче интервала измерения мультиметра? Причем может быть так, что время появления этого артефакта неизвестно.
Обычно при любых проблемах с напряжением ставят стабилизаторы, но они помогают далеко не всегда. Ведь стабилизатор устраняет следствие, но не причину проблемы. А если происходит скачкообразное кратковременное изменение напряжения, то стабилизатор не только не поможет, но и усугубит положение.
И чтобы понять, что делать в том или ином случае — проверить качество контактов на вводе или поставить стабилизатор, — нужен анализатор качества электроэнергии (Power Quality Analyzer).
Анализатор качества электроэнергии дает полную картину того, что происходит в розетке.
Я использую в своей работе анализатор качества электрической энергии HIOKI 3197, фото которого будут приведены в статье.
Без анализатора качества часто вообще непонятно, что происходит в сети: какие помехи, импульсные перенапряжения и провалы, коэффициент мощности cos и так далее. Приходится действовать наугад, используя свой опыт и эксперименты. А с японцем HIOKI из Нагано все ясно-понятно. Для того, чтобы составить полную картину того, что творится в сети, прибор имеет клещи для измерения тока и зажимы для измерения напряжения, а также зажим для подключения к нейтрали. Итого — 7 точек подключения.
Анализатор качества электроэнергии
Реальный случай, когда без анализатора качества не обойтись. Контроллер в технологической линии периодически зависал и выдавал ошибки. Когда все перелопатили, а причину не нашли, на помощь пришел анализатор качества электроэнергии. После непродолжительного наблюдения напряжения 220 В, поступающего на питание контроллера, выяснилось, что причина в плохом контакте внутри сетевого фильтра.
Напряжение в электросети
Это самый важный параметр, определяющий в основном качество и характеристики всей энергосистемы.
Старый ГОСТ 13109-97 «Нормы качества электрической энергии в системах электроснабжения общего назначения» гласит, что действующее (или среднеквадратическое, что для синуса одинаково) фазное напряжение в питающей сети должно составлять 220±10 %=198…242 В.
Однако новый ГОСТ 29322-2014 «Напряжения стандартные» «повысил» напряжение до 230 В±10 % =207…253 В. При этом разрешено действие напряжения 220 В. Линейные напряжения (между фазами) будут соответственно 380 и 400 В.
Получается, что если напряжение в розетке «плавает» от 198 до 253 В, то это укладывается в норму.
Рассмотрим трехфазную систему питания. Пример того, что может происходить на вводе в электрошкаф, виден на экране анализатора качества электроэнергии HIOKI 3197.
Фазные напряжения в трехфазной сети
На графиках видно, что уровень фазного напряжения колеблется около среднего уровня 238–240 В за время измерения 2 минуты. Судя по одинаковым провалам на всех фазах, за это время несколько раз включалась относительно мощная трехфазная нагрузка.
График напряжения, приведенный выше, может записываться в память прибора несколько дней. Таким образом, можно проанализировать, как меняется напряжение в течение суток, и подобрать стабилизатор. Либо вообще его не ставить, а отремонтировать электропроводку или предъявить претензии энергоснабжающей организации.
Кроме того (что очень важно!), можно зафиксировать и посмотреть все артефакты на напряжении. Например, скачки и провалы напряжения (последствия плохих контактов или помех), моменты пуска мощных приводов и т. д. Пороги событий устанавливаются в настройках. Пример экрана, на котором отображены события:
События и деталировка на экране анализатора качества электроэнергии
Ток в электросети
Когда-то в детстве отец мне купил мой первый тестер ТЛ-4М. Я мерил все подряд, пока мою голову не посетила «гениальная» идея — измерить ток в розетке. В итоге — выбило пробки, в тестере сгорел шунт, а я понял — ток измеряется всегда только через нагрузку. С тех пор средства измерения тока сильно шагнули вперед, и для этого используются только токовые клещи (трансформаторный метод), шунты практически не применяются.
Ток, точнее, его значение, форма и составляющие, значительно зависит от нагрузки. Например, вот как выглядит форма напряжения и тока при работе диммера:
Напряжение в сети и ток ЧЕРЕЗ диммер
Естественно, присутствуют гармоники тока и напряжения. Гармоники говорят о том, как отличаются формы напряжения и тока от синусоидальной.
Гармоники напряжения и тока
Гармоники напряжения и тока можно увидеть в графическом виде, как на скрине выше, так и в виде таблицы — с 1-й до 50-й гармоники. И для однофазной, и для трехфазной сети.
Частота
Все знают, что частота питающего напряжения у нас в розетке равна 50 Гц. Это означает, что 50 раз в секунду все повторяется. Иначе говоря, длительность периода напряжения равна 20 мс. Если точнее, то согласно ГОСТ 29322-2014 частота напряжения должна быть 50±0,2 Гц. То есть от 49,8 до 50,2 Гц.
Пожалуй, частота — единственный параметр, на который ничего не влияет. И ее стабильность зависит только от работы электростанции. Вот как график частоты выглядит на экране анализатора качества электроэнергии:
Частота питающей сети
Из графика видно, что частота отклоняется не более чем на 0,03 Гц от номинала, что с большим запасом укладывается в ГОСТ.
Заключение
HIOKI умеет гораздо больше, чем изложено в этой короткой статье. Например, служить в качестве эталонного электросчетчика и строить график потребляемой мощности, измерять коэффициент мощности cos и коэффициент реактивной мощности tg. Применение прибора обосновано при проведении энергоаудита и при выявлении сложных неисправностей оборудования.
Источник: Александр Ярошенко, автор блога SamElectric.ru. Опубликовано в журнале «Электротехнический рынок» №3 2020
Выбор из
слов. Есть ли в американском английском термин «питание от сети»?
спросил
Изменено
1 год, 9 месяцев назад
Просмотрено
14 тысяч раз
Я не уверен, что это случай избирательной памяти или она настоящая.
Похоже, что американцы не используют термин «питание от сети», который часто встречается в британском английском. Ближайший синоним, который я знаю, это «сила стены», что является неточным.
Как американский инженер-электрик, я не хочу переворачивать диалекты, а «электропитание от стены» звучит наивно и неуклюже, когда речь идет о 120 В переменного тока внутри устройства (но все еще поступающем от сети) или иным образом далеко от стена.
Есть ли лучший термин, который я должен знать, или я должен предположить, что «сеть» является основной для моих соотечественников-американцев?
Редактировать: Согласно Википедии:
В США сетевая электроэнергия (в отличие от электроэнергии от аккумуляторов и т. д.) упоминается под несколькими названиями, включая «бытовая электроэнергия», «бытовая электроэнергия», «линия электропередач», «бытовая электроэнергия», «электроэнергия от стены» и т. д. сеть», «электроэнергия переменного тока», «городская электроэнергия», «уличная электроэнергия» и «электроэнергия сети».
Это намекает на то, что «сеть» не является американским термином и что все альтернативы одинаково неточны.
Вывод: Американцы, скорее всего, будут использовать «сеть» как синоним «сеть» , что не лишено оснований. Так что на самом деле британский стиль казался лучше только потому, что я еще не подумал, имеет ли это слово уже другое значение.
- word-choice
- single-word-requests
- американский английский
2
Как еще один американец ЭЭ, я бы использовал слово «сеть» только в определенных контекстах…
После урагана больница питала оборудование жизнеобеспечения от дизельных генераторов в течение 36 часов, затем снова переключилась на сеть.
«Сетка» также подойдет.
Если вы имеете в виду 120 В переменного тока (среднеквадратичное значение), не заботясь об источнике, общепринятым в США отраслевым термином является « линейное напряжение ».
4
Википедия говорит:
В США к электроэнергии относят
под несколькими именами, включая
бытовая энергия, домохозяйство
электричество, ЛЭП, бытовые
питание, настенное питание, линейное питание, переменный ток
власть, власть города, власть улицы, и
мощность сетки.![]()
Именно так я и называю домашнее электричество. Мы никогда не называем это «питание от сети».
Если бы кто-то начал говорить со мной о «сети», я бы подумал о питании, которое поступает в панель выключателя дома (т.е. питание главного автоматического выключателя), а не о реальных электрических розетках в доме.
Не знаю, что чаще встречается в повседневной речи, но я много слышал AC power , и вы часто встретите это на американских сайтах с описанием компьютерных компонентов и в руководствах. Я не удивлюсь, прочитав в техническом руководстве питание от сети или питание от сети , но питание переменного тока может встречаться чаще в техническом контексте. Но я не уверен. Если вам нужно быть абсолютно однозначным, вы можете просто назвать это 120-V power или что-то в этом роде.
2
Никогда не слышал словосочетания «питание от сети» здесь, в Америке, ни в каком контексте. Я думаю, что «настенная мощность» относится к мощности, которая исходит от «стены», а «домовой ток» относится к 120 В / 60 Гц, которая может исходить от генератора и т. д. Я не думаю, что «настенная мощность» может исходить от генератора.
2
Я менеджер по телекоммуникационным продуктам в США.
Я только что посмотрел превью, где другой PLM использовал термин «питание от сети».
Я предположил, что это означает 120 В переменного тока, но, честно говоря, я погуглил, чтобы убедиться…
Дело в том, что я думаю, что «сеть» еще недостаточно распространена в США, чтобы даже относительно технически подкованный американец мог с уверенностью понять, что вы имеете в виду.
Я предлагаю придерживаться «120 В переменного тока» (и, возможно, добавить «или питание от сети», чтобы продолжить социализацию этого термина в США 🙂
1
Однозначно, питание переменного тока. И укажите напряжение и Гц, потому что в Соединенных Штатах мощность бывает двух видов. В жилых домах это 120/220 (или в некоторых районах 110/220) и обычно 60 Гц. Но в коммерческих приложениях это часто 130 вольт. Так что будьте в безопасности и говорите именно то, о чем говорите.
Я пытался подобрать имя, понятное каждому. «Сеть» в любом случае не является обобщенным термином для того, что это такое. Разные народы по-разному обращаются с электричеством (сетью). Но это то же самое, это электричество, просто управляемое по-другому. Я думаю, что «электроэнергетическая система» — это хороший термин для обозначения того, как разные страны обращаются с электричеством. Пусть «электроэнергетическая система» представляет собой многочисленные вилки, напряжения, сопротивления, заземление и все, что может применяться к индивидуальному способу управления электричеством. Простой. Каждая нация или территория имеет свою собственную «электроэнергетическую систему» или системы, и каждый может легко понять то, чего не может «сеть». Чем проще, тем легче понять и принять. Мое мнение.
1
Зарегистрируйтесь или войдите в систему
Зарегистрируйтесь с помощью Google
Зарегистрироваться через Facebook
Зарегистрируйтесь, используя электронную почту и пароль
Опубликовать как гость
Электронная почта
Требуется, но никогда не отображается
Опубликовать как гость
Электронная почта
Требуется, но не отображается
Нажимая «Опубликовать свой ответ», вы соглашаетесь с нашими условиями обслуживания, политикой конфиденциальности и политикой использования файлов cookie
.
ОСНОВЫ ИСТОЧНИКОВ ПИТАНИЯ – Электроника длины волны
Теория нестабилизированных источников питания
Поскольку нестабилизированные источники питания не имеют встроенных регуляторов напряжения, они обычно предназначены для получения определенного напряжения при определенном максимальном выходном токе нагрузки. Обычно это настенные зарядные устройства, которые превращают переменный ток в небольшую струйку постоянного тока и часто используются для питания таких устройств, как бытовая электроника. Они являются наиболее распространенными адаптерами питания и получили прозвище «настенная бородавка».
Выходное напряжение постоянного тока зависит от внутреннего понижающего трансформатора напряжения и должно быть как можно ближе согласовано с током, требуемым нагрузкой. Обычно выходное напряжение будет уменьшаться по мере увеличения выходного тока на нагрузку.
При использовании нерегулируемого источника питания постоянного тока выходное напряжение зависит от величины нагрузки. Обычно он состоит из выпрямителя и сглаживающего конденсатора, но без регулирования для стабилизации напряжения. Он может иметь схемы безопасности и лучше всего подходит для приложений, не требующих точности.
Рис. 4. Блок-схема — нерегулируемый линейный источник питания
Преимущества нерегулируемых источников питания заключаются в том, что они долговечны и могут быть недорогими. Однако их лучше всего использовать, когда точность не требуется. Их остаточная пульсация аналогична показанной на рис. 3.
ПРИМЕЧАНИЕ. Компания Wavelength не рекомендует использовать нерегулируемые источники питания ни с одним из наших продуктов.
Теория регулируемого источника питания
Регулируемый источник постоянного тока представляет собой нерегулируемый источник питания с добавлением регулятора напряжения. Это позволяет напряжению оставаться стабильным независимо от величины тока, потребляемого нагрузкой, при условии, что заданные пределы не превышены.
Рис. 5. Блок-схема — регулируемый источник питания
В регулируемых источниках питания схема постоянно отбирает часть выходного напряжения и регулирует систему, чтобы поддерживать выходное напряжение на требуемом уровне. Во многих случаях для обеспечения ограничения тока или напряжения, фильтрации шумов и регулировки выходного сигнала включаются дополнительные схемы.
Линейный, импульсный или аккумуляторный?
Существует три подгруппы регулируемых источников питания: линейные, импульсные и аккумуляторные. Из трех основных конструкций регулируемых источников питания линейная является наименее сложной системой, но у импульсного питания и питания от батареи есть свои преимущества.
Линейный источник питания
Линейный источник питания используется, когда наиболее важны точная регулировка и устранение помех. Хотя они не являются самым эффективным источником питания, они обеспечивают наилучшую производительность. Название происходит от того факта, что они не используют переключатель для регулирования выходного напряжения.
Линейные источники питания доступны уже много лет, и они широко используются и надежны. Они также относительно бесшумны и доступны в продаже. Недостатком линейных источников питания является то, что они требуют более крупных компонентов, следовательно, они больше и рассеивают больше тепла, чем импульсные источники питания. По сравнению с импульсными источниками питания и батареями они также менее эффективны, иногда демонстрируя КПД всего 50%.
Импульсный источник питания
Импульсные источники питания (SMPS) более сложны в конструкции, но имеют большую гибкость в отношении полярности и при правильном проектировании могут иметь КПД 80% и более. Хотя в них больше компонентов, они меньше и дешевле, чем линейные источники питания.
Рис. 6. Блок-схема — регулируемый импульсный источник питания
Одним из преимуществ коммутируемого режима является то, что потери в коммутаторе меньше. Поскольку SMPS работают на более высоких частотах, они могут излучать шум и мешать другим цепям. Должны быть приняты меры по подавлению помех, такие как экранирование и соблюдение протоколов компоновки.
Преимущество импульсных источников питания заключается в том, что они, как правило, небольшие и легкие, имеют широкий диапазон входного напряжения и более высокий диапазон выходного напряжения, а также гораздо более эффективны, чем линейные источники питания. Однако SMPS имеет сложную схему, может загрязнять сеть переменного тока, более шумен и работает на высоких частотах, требующих подавления помех.
Аккумуляторный источник питания
Аккумуляторный источник питания представляет собой третий тип источника питания и, по сути, является мобильным накопителем энергии. Питание от батарей создает незначительный шум, мешающий работе электроники, но теряет емкость и не обеспечивает постоянного напряжения по мере разрядки батарей. В большинстве приложений, использующих лазерные диоды, батареи являются наименее эффективным способом питания оборудования.
Добавить комментарий