Содержание
Мощность электрического тока: формула
Прежде чем рассматривать электрическую мощность, следует определиться, что же представляет собой мощность вообще, как физическое понятие. Обычно, говоря об этой величине, подразумевается определенная внутренняя энергия или сила, которой обладает какой-либо объект. Это может быть мощность устройства, например, двигателя или действия (взрыв). Ее не следует путать с силой, поскольку это разные понятия.
Содержание
Что такое мощность электрического тока
Любые физические действия совершаются под влиянием силы. С ее помощью проделывается определенный путь, то есть выполняется работа. В свою очередь, работа А, проделанная в течение определенного времени t, составит значение мощности, выраженное формулой: N = A/t (Вт = Дж/с). Другое понятие мощности связано со скоростью преобразования энергии той или иной системы. Одним из таких преобразований является мощность электрического тока, с помощью которой также выполняется множество различных работ. В первую очередь она связана с электродвигателями и другими устройствами, выполняющими полезные действия.
Мощность тока связана сразу с несколькими физическими величинами. Напряжение (U) представляет собой работу, затрачиваемую на перемещение 1 кулона. Сила тока (I) соответствует количеству кулонов, проходящих за 1 секунду. Таким образом, ток, умноженный на напряжение (I x U), соответствует полной работе, выполненной за 1 секунду. Полученное значение и будет мощностью электрического тока.
Приведенная формула мощности тока показывает, что мощность находится в одинаковой зависимости от силы тока и напряжения. Отсюда следует, что одно и то же значение этого параметра можно получить за счет большого тока и малого напряжения и, наоборот, при высоком напряжении и малом токе. Это свойство позволяет передавать электроэнергию на дальние расстояния от источника к потребителям. В процессе передачи ток преобразуется с помощью трансформаторов, установленных на повышающих и понижающих подстанциях.
Существует два основных вида электрической мощности – активная и реактивная. В первом случае происходит безвозвратное превращение мощности электрического тока в механическую, световую, тепловую и другие виды энергии. Для нее применяется единица измерения – ватт. 1Вт = 1В х 1А. На производстве и в быту используются более крупные значения – киловатты и мегаватты.
К реактивной мощности относится такая электрическая нагрузка, которая создается в устройствах за счет индуктивных и емкостных колебаний энергии электромагнитного поля. В переменном токе эта величина представляет собой произведение, выраженное следующей формулой: Q = U х I х sin(угла). Синус угла означает сдвиг фаз между рабочим током и падением напряжения. Q является реактивной мощностью, измеряемой в Вар – вольт-ампер реактивный. Данные расчеты помогают эффективно решить вопрос, как найти мощность электрического тока, а формула, существующая для этого, позволяет быстро выполнить вычисления.
Обе мощности можно наглядно рассмотреть на простом примере.
Что касается электродвигателя, то внутри него расположена медная обмотка, обладающая индуктивностью, которая, в свою очередь, обладает эффектом самоиндукции. Благодаря этому эффекту, происходит частичный возврат электричества обратно в сеть. Возвращаемая энергия характеризуется небольшим смещением в параметрах напряжения и тока, оказывая негативное влияние на электрическую сеть в виде дополнительных перегрузок.
Такие же свойства имеют и конденсаторы из-за своей электрической емкости, когда накопленный заряд отдается обратно. Здесь также смещаются значения тока и напряжения, только в противоположном направлении. Данная энергия индуктивности и емкости, со смещением по фазе относительно значений действующей электросети, как раз и есть реактивная электрическая мощность.
По какой формуле вычисляется мощность электрического тока
Правильное и точное решение вопроса чему равна мощность электрического тока, играет решающую роль в деле обеспечения безопасной эксплуатации электропроводки, предупреждения возгораний из-за неправильно выбранного сечения проводов и кабелей. Мощность тока в активной цепи зависит от силы тока и напряжения. Для измерения силы тока существует прибор – амперметр. Однако не всегда возможно воспользоваться этим прибором, особенно когда проект здания еще только составляется, а электрической цепи просто не существует. Для таких случаев предусмотрена специальная методика проведения расчетов. Силу тока можно определить по формуле при наличии значений мощности, напряжения сети и характера нагрузки.
Существует формула мощности тока, применительно к постоянным значениям силы тока и напряжения: P = U x I.
Таким образом, формула определения мощности электрического тока позволяет вычислить силу тока для однофазной сети: I = P/(U x cos φ), где cos φ представляет собой коэффициент мощности. При наличии трехфазной электрической сети сила тока вычисляется по такой же формуле, только к ней добавляется фазный коэффициент 1,73: I = P/(1,73 х U x cos φ). Коэффициент мощности полностью зависит от характера планируемой нагрузки. Если предполагается использовать лишь лампы освещения или нагревательные приборы, то он будет составлять единицу.
При наличии реактивных составляющих в активных нагрузках, коэффициент мощности уже считается как 0,95.
Для расчетов при наличии однофазного тока значение напряжения принимается 220 вольт. Если присутствует трехфазный ток, расчетное напряжение составит 380 вольт. Однако с целью получения максимально точных результатов, необходимо использовать в расчетах фактическое значение напряжения, измеренное специальными приборами.
От чего зависит мощность тока
Мощность тока, различных приборов и оборудования зависит сразу от двух основных величин – силы тока и напряжения. Чем выше ток, тем больше значение мощности, соответственно, при повышении напряжения, мощность также возрастает. Если напряжение и сила тока увеличиваются одновременно, то мощность электрического тока будет возрастать как произведение той и другой величины: N = I x U.
Очень часто возникает вопрос, в чем измеряется мощность тока? Основной единицей измерения этой величины является 1 ватт (Вт). Таким образом, 1 ватт является мощностью устройства, потребляющего ток силой в 1 ампер, при напряжении 1 вольт. Подобной мощностью обладает, например, лампочка от обычного карманного фонарика.
Расчетное значение мощности позволяет точно определить расход электрической энергии. Для этого необходимо взять произведение мощности и времени. Сама формула выглядит так: W = IUt где W является расходом электроэнергии, произведение IU – мощностью, а t – количеством отработанного времени. Например, чем больше продолжается работа электрического двигателя, тем большая работа им совершается. Соответственно возрастает и потребление электроэнергии.
Работа и мощность электрического тока в цепи
Определение 1
Во время протекания тока по однородному участку цепи электрическое поле совершает работу.
Электрическое поле выделенного участка выполняет работу, формулу которой мы запишем так: ΔA=(φ1–φ2) Δq=Δφ12IΔt=UIΔt, где U=Δφ12 – напряжение. Такая величина называется работой электрического тока.
Обе части формулы RI=U выражают закон Ома для однородного участка цепи с сопротивлением R, умноженным на IΔt. В итоге получим соотношение RI2Δt=UIΔt=ΔA, выражающее закон сохранения энергии для однородного участка цепи. Работа ΔA электрического тока I, протекающего по неподвижному проводнику с сопротивлением R, преобразуется в тепло ΔQ, выделяющееся на проводнике. ΔQ=ΔA=RI2Δt.
Закон Джоуля-Ленца
Дж. Джоуль и Э. Ленц установили закон преобразования работы тока в тепло.
Определение 2
Формула мощности электрического тока (измеряется в амперах) записывается в виде отношения изменения работы тока ΔA за определенный промежуток времени Δt:
P=∆A∆t=UI=I2R=U2R.
Работа и мощность электрического тока обратно пропорциональны.
По таблице СИ понятно, в чем измеряется мощность: в ваттах (ВТ), а работа в Джоулях (Дж).
Перейдем к рассмотрению полной цепи постоянного тока, которая состоит из источника с электродвижущей силой ε и внутренним сопротивлением r на участке R. Запись основного закона Ома для полной цепи имеет вид (R + r)I=ε. При умножении обеих частей на Δq=IΔt получаем, что соотношение для выражения сохранения энергии полной цепи постоянного тока запишется: R I2Δt+r I2Δt=ε IΔt=ΔAст. Из левой части видно, что ΔQ=R I2Δt обозначает выделяющееся тепло на внешнем участке за промежуток времени Δt, а ΔQист=rI2Δt – внутри источника за тот же время.
εIΔt – это обозначение работы сторонних сил ΔAст,действующих внутри. Если имеется замкнутая цепь, тогда ΔAстпереходит в тепло, которое выделяется во внешней цепи (ΔQ)и внутри источника (ΔQист).
ΔQ+ΔQист=ΔAст=εIΔt.
Работа сторонних сил
Работа электрического поля не входит в данное соотношение, так как в замкнутой цепи работа не совершается, следовательно, тепло идет только от внутренних сторонних сил. В данном случае электрическое поле перераспределяет тепло по всем участкам цепи.
Внешняя цепь может иметь не только проводник с R сопротивлением, но и механизм, потребляющий мощность. Такой случай говорит о том, что R эквивалентно сопротивлению нагрузки. Энергия, которая выделяется по внешней цепи, преобразуется в тепло и другие виды энергии.
Определение 3
Работа, совершаемая сторонними силами за единицу времени, равняется Pист=εI=ε2R+r. Внешняя цепь характеризуется мощностью P=RI2=εI-rI2=ε2R(R+r)2.
Коэффициентом полезного источника называют отношение η=PPист, записываемое как η=PPист=1-rεI=RR+r.
Рисунок 1.11.1 показывает зависимость Pист, полезной Р, выделяемой во внешней цепи, кпд η от тока I для источника с ЭДС, равной ε, и внутренним сопротивлением r.
Рисунок 1.11.1. Зависимость мощности источника Pист, мощности во внешней цепи Р и КПД источника η от силы тока.
Приведенные графики показывают, что максимальная мощность во внешней цепи может быть достигнута при R=r и запишется Pmax=ε24r. Формула тока в цепи будет иметь вид Imax=12Iкз=ε2r, где КПД источника не превышает 50%. При I→0может достигаться максимальное значение КПД, тогда сопротивление R→∞. При коротком замыкании значение мощности Р=0. Тогда она только выделяется внутри источника, что грозит перегревом, причем КПД обращается в ноль.
Решение задач
от 1 дня / от 150 р.
Курсовая работа
от 5 дней / от 1800 р.
Реферат
от 1 дня / от 700 р.
Автор:
Роман Адамчук
Преподаватель физики
Формула силы
| Формула электроэнергии в цепях постоянного и переменного тока
Мы используем электроэнергию, предоставляемую нашей коммунальной компанией, для обеспечения нас светом, теплом, работающими приборами и т.
Краткое описание
Что такое электроэнергия?
Электрическая энергия является одной из широко используемых форм энергии в нашей повседневной жизни, будь то питание от сети переменного тока или батареи. Наша коммунальная компания поставляет эту электрическую энергию в виде электрического потенциала и тока, а скорость, с которой электрическая энергия передается в электрической цепи, называется электрической мощностью.
С точки зрения физики, Энергия — это способность выполнять Работу, а скорость выполнения этой Работы известна как Сила.
Итак, если P — мощность, W — работа, а t — время, то
Power P = работа, выполненная в единицу времени = W/t
Единицами мощности являются ватты.
Мы знаем, что электрический потенциал — это количество работы, совершаемой при перемещении единичного заряда, а ток — это скорость движения заряда.
Используя приведенное выше утверждение, мы можем переписать предыдущее уравнение мощности как:
P = Вт/t = (Вт/Q) × (Q/t) Вт
Первый член (Вт/Q) представляет электрический потенциал (V), а второй член (Q/t) представляет ток (I).
Таким образом, электрическая мощность P = V × I.
Формула электрической мощности в цепях переменного и постоянного тока
В зависимости от типа тока в цепи, т. е. переменного тока или постоянного тока, электрическая мощность может быть дополнительно классифицирована на переменный ток Мощность и мощность постоянного тока.
Теперь посмотрим на различные формулы электроэнергии в цепях постоянного и переменного тока.
Формулы мощности в цепях постоянного тока
В простых цепях постоянного тока, т. е. электрических цепях с источником питания постоянного тока, формула мощности приведена ниже:
P = V × I
Мощность в резистивных цепях постоянного тока — это просто произведение напряжения и тока.
Мы можем вывести дальнейшие формулы мощности, применяя закон Ома. Согласно закону Ома, напряжение в цепи (или компоненте) является произведением сопротивления и тока.
V = I × R
Итак, если мы используем это уравнение в приведенной выше формуле мощности, мы получим
P = V × (V/R) = V 2 /R
P = (I×R ) × I = I 2 R
В зависимости от имеющихся величин можно использовать одну из трех формул мощности для расчета мощности постоянного тока.
Формулы мощности в цепях переменного тока
Измерение мощности в цепях постоянного тока очень просто, так как вам нужно всего лишь умножить напряжение и силу тока. Но то же самое невозможно в цепях переменного тока, поскольку значения напряжения и тока постоянно меняются как по величине, так и по направлению (знаку).
Значения переменного напряжения и тока обычно записываются как
В Переменный ток = В P × sin(ωt) и I Переменный ток = I P × sin(ωt)
Чтобы рассчитать мощность переменного тока, мы должны каким-то образом рассчитать средние значения напряжения и тока.
Если V RMS — среднеквадратичное значение напряжения переменного тока, а I RMS — среднеквадратичное значение переменного тока, тогда средняя мощность переменного тока равна
P AC (среднее) = V RMS × I RMS
Если f(t) является функцией времени t, то ее среднеквадратичное значение равно
Применение вышеуказанной формулы к нашей чередующемуся напряжению и синусоидальным значениям, мы получаем:
V среднеквадратичных средств = v P /√2 и I ОБЛЮЧЕЙ = I P /√2 и I Обратитесь = I P /√2 и I ОБ. 2
Мощность, которую мы рассчитали ранее (P AC (Average)) на самом деле известна как полная мощность. Это не что иное, как произведение среднего (или эффективного) напряжения и тока, т.
Но катушки индуктивности и конденсаторы имеют фазовые сдвиги и реактивное сопротивление. Итак, с катушками индуктивности и конденсаторами есть еще два способа определить мощность в цепях переменного тока. Это реальная мощность (активная мощность) и реактивная мощность.
Реальная мощность, также известная как активная мощность, представляет собой мощность, рассеиваемую в цепи из-за ее резистивных элементов.
Активная мощность = В СКЗ × I СКЗ × cos(θ), где θ — фазовый угол, на который напряжение опережает ток.
Реактивная мощность — это мощность, рассеиваемая в цепи за счет индуктивности и емкости (или реактивного сопротивления).
Задается как реактивная мощность = V RMS × I RMS × sin(θ)
Таким образом, мы можем сказать, что (полная мощность) 2 = (активная мощность) 2 + (реактивная мощность ) 2
Формулы мощности постоянного и переменного тока
В следующей таблице перечислены все формулы мощности для цепей переменного и постоянного тока.
| Цепь | Мощность |
| DC | Р = В × I |
| Р = В 2 /Р | |
| P = I 2 × R | |
| Однофазная реальная мощность переменного тока | ½ В P × I P × cos(θ) = V СКЗ × I СКЗ × cos(θ) |
| Однофазная реактивная мощность переменного тока | ½ В P × I P × sin(θ) = V СКЗ × I СКЗ × sin(θ) |
| Реальная мощность трехфазного переменного тока | 3 × V L-N × I L-N × cos(θ) = √3 × V L-L × I L-L × cos(θ) |
| Реактивная мощность трехфазного переменного тока | 3 × V L-N × I L-N × sin(θ) = √3 × V L-L × I L-L × sin(θ) |
Заключение
Простое руководство по изучению электроэнергии.
Учебник по физике: новый взгляд на электроэнергию
В предыдущем разделе третьего урока подробно рассматривалась зависимость силы тока от разности электрических потенциалов и сопротивления. Сила тока в электрическом устройстве прямо пропорциональна разности электрических потенциалов, приложенных к устройству, и обратно пропорциональна сопротивлению устройства. Если это так, то скорость, с которой это устройство преобразует электрическую энергию в другие формы, также зависит от силы тока, разности электрических потенциалов и сопротивления. В этом разделе урока 3 мы вернемся к концепции мощности и разработаем новые уравнения, выражающие мощность через ток, разность электрических потенциалов и сопротивление.
Новые уравнения для мощности
На уроке 2 было введено понятие электрической мощности. Электрическая мощность определялась как скорость, с которой электрическая энергия подается в цепь или потребляется нагрузкой. Уравнение для расчета мощности, отдаваемой в цепь или потребляемой нагрузкой, было получено следующим образом:
P = ΔV • I
(Уравнение 1)
Две величины, от которых зависит мощность, связаны с сопротивлением нагрузки по закону Ома. Разность электрических потенциалов ( ΔV ) и ток ( I ) могут быть выражены через их зависимость от сопротивления, как показано в следующих уравнениях.
|
|
|
Если выражения для разности электрических потенциалов и тока подставить в уравнение мощности, можно вывести два новых уравнения, которые связывают мощность с током и сопротивлением и с разностью электрических потенциалов и сопротивлением.
|
P = ΔV • I P = (I • R) • I Р = I 2 • Р |
P = ΔV • I P = ΔV • (ΔV / R) P = ΔV 2 / R |
Теперь у нас есть три уравнения для электрической мощности, два из которых получены из первого с использованием уравнения закона Ома. Эти уравнения часто используются в задачах, связанных с вычислением мощности по известным значениям разности электрических потенциалов (ΔV), тока (I) и сопротивления (R). Уравнение 2 связывает скорость, с которой электрическое устройство потребляет энергию, с током в устройстве и сопротивлением устройства. Обратите внимание на двойную важность тока в уравнении, обозначенную квадратом тока. Уравнение 2 можно использовать для расчета мощности при условии, что известны сопротивление и ток.
Уравнение 3 связывает скорость, с которой электрическое устройство потребляет энергию, с падением напряжения на устройстве и сопротивлением устройства. Обратите внимание на двойное значение падения напряжения, обозначенное квадратом ΔV. Уравнение 3 можно использовать для расчета мощности при условии, что известны сопротивление и падение напряжения. Если одно из них неизвестно, важно либо использовать одно из двух других уравнений для расчета мощности, либо использовать уравнение закона Ома для расчета количества, необходимого для использования уравнения 3.
Концепции на первом месте
Хотя эти три уравнения дают удобные формулы для вычисления неизвестных величин в физических задачах, нужно быть осторожным, чтобы не злоупотреблять ими, игнорируя концептуальные принципы, касающиеся схем.

|
P = ΔV • I I = P/ΔV I = (120 Вт) / (120 В) I = 1 А
ΔV = I • R R = ΔV / I R = (120 В) / (1 А) R = 120 Ом |
P = ΔV • I I = P/ΔV I = (60 Вт) / (120 В) I = 0,5 А
ΔV = I • R R = ΔV / I R = (120 В) / (0,5 А) R = 240 Ом |
Теперь, правильно используя уравнение 2, можно понять, почему удвоение мощности означает удвоение силы тока, поскольку сопротивление также меняется при замене лампы.
|
P = I 2 • R I 2 = П/Р I 2 = (120 Вт) / (120 Ом) I 2 = 1 Вт/Ом I = SQRT (1 Вт/Ом) I = 1 А |
П = И 2 • Р I 2 = П/Р I 2 = (60 Вт) / (240 Ом) я 2 = 0,25 Вт/Ом I = SQRT (0,25 Вт/Ом) I = 0,5 А |
Проверьте свое понимание
1. Что будет толще (шире) — нить накаливания 60-ваттной лампочки или нить накаливания 100-ваттной лампочки? Объяснять.
2. Рассчитайте сопротивление и силу тока лампы ночного освещения мощностью 7,5 Вт, включенной в бытовую розетку США (120 В).
3. Рассчитайте сопротивление и силу тока электрического фена мощностью 1500 Вт, подключенного к бытовой розетке США (120 В).
4. Коробка на настольной пиле указывает, что сила тока при запуске составляет 15 ампер. Определить сопротивление и мощность двигателя за это время.
5. На наклейке проигрывателя компакт-дисков указано, что при питании от 9-вольтовой батареи он потребляет 288 мА тока. Какова мощность (в ваттах) проигрывателя компакт-дисков?
6. Тостер мощностью 541 Вт подключен к бытовой розетке 120 В. Каково сопротивление (в омах) тостера?
7. Цветной телевизор имеет силу тока 1,99 А при подключении к бытовой сети с напряжением 120 Вольт.

Добавить комментарий