Содержание
Светодиодная лампа | это… Что такое Светодиодная лампа?
Светодиодная лампа
Светодиодные лампы или светодиодные светильники в качестве источника света используют светодиоды, применяются для бытового, промышленного и уличного освещения. Различают законченные устройства — светильники и элементы для светильников — сменные лампы.
Содержание
|
Светодиодный светильник
Светодиодный светильник — самостоятельное устройство. Корпус светильника чаще всего уникален, специально спроектирован под светодиодный источник освещения. Конструктивно такой светильник состоит из корпуса, светодиодного источника света и электронного драйвера (преобразователя питания). Иногда светодиодным светильником называют традиционный светильник с установленной сменной светодиодной лампой. Однако, специально спроектированный светильник обладает бóльшей энергоэффективностью и надежностью. Светодиодные источники света в основном используются для направленного или местного освещения по причине особенностей полупроводникового излучателя светить преимущественно в одном направлении[1].
Преимущество светодиодного светильника — низкое энергопотребление[2], долгий срок службы от 30000 до 50000 и более часов[1], простота установки, низкая температура корпуса, зачастую — небольшие габариты. Основной недостаток — высокая цена. Кроме того, при выходе из строя любого из элементов, светильник чаще всего подлежит замене на аналогичный. Эти недостатки чаще всего компенсируются экономией электроэнергии, экономией на обслуживании (замене ламп), что особенно актуально для уличного освещения.
Все типы светильников можно разделить на три группы:
- Светодиодные светильники для улиц, парков, дорог, для архитектурного освещения[3]. Выполняются в защищенном от влаги и пыли корпусе, кроме того, корпус обычно выполняет роль теплоотвода и изготавливается из хорошо проводящих тепло материалов[4].
- Светильники для производственных целей, ЖКХ и офисов. К изделиям предъявляются повышенные требования к качеству освещения, в том числе к стабильности и цветопередаче, условиям эксплуатаци[5].
- Светильники для бытовых нужд обычно выпускаются невысокой мощности, но должны удовлетворять многочисленным требованиям к качеству освещения, электробезопасности, пожароопасности и, в немалой степени, — к внешнему виду. Зачастую бытовые светильники имеют сменные лампы.
Кроме указанных применений, светодиодные светильники хорошо подходят для освещения музеев и раритетов, поскольку спектр лампы не содержит ультрафиолетовой составляющей[6][7].
Светильники для уличного освещения
Светильники для улиц, парков и дорог должны удовлетворять многим критериям. Основные особенности, которые необходимо учитывать[3]:
- Экономия электроэнергии. Светильники для улицы освещают большие территории и особенно важно, чтобы бóльшая часть излучаемого света направлялась на освещаемую поверхность. Светодиодные приборы наиболее удовлетворяют таким требованиям в исполнениях прямого света и преимущественно прямого света (по ГОСТ 17677-82) и позволяют получить экономию электроэнергии даже по сравнению с аналогичными газоразрядными лампами высокого давления и натриевыми лампами.
- Прочность конструкции и защищенность от воздействия окружающей среды. Корпус устройства дожен быть сконструирован так, чтобы мусор, испражнения птиц и вода не скапливались на поверхности светильника и не ухудшали его охлаждающую способность, прозрачность защитного стекла, тем самым сохраняя характеристики в течение всего срока службы.
- Цветопередача. Светодиодные источники освещения в большинстве обладают лучшими характеристиками цветопередачи. Кроме того, цветовой оттенок и индекс цветопередачи могут быть подобраны при выборе светильника для конкретного приложения.
- Срок службы светодиодных ламп значительно превышает срок службы традиционных уличных источников освещения. Однако, светодиодные источники света чувствительны к повышенной температуре и при плохом теплоотводе срок службы может быть значительно снижен.
- Равномерность освещения зависит от конструкции светильника и в большинстве обеспечивает необходимую диаграмму направленности для светильников прямого света.
- Цена светодиодного светильника зачастую значительно выше аналогичных традиционных устройств освещения. Но, поскольку замена ламп в традиционных устройствах наружного освещения связана с значительными затратами, требует специального оборудования, использование светодиодных устройств в некоторых случаях дает ощутимую экономию в ближайшей перспективе применения.
Сменная светодиодная лампа
Сменная светодиодная лампа — осветительный прибор, устанавливаемый в существующий светильник, изначально предназначенный как для установки сменных светодиодных ламп, так и для установки ламп другого типа — (люминесцентных, накаливания, галогенных), возможно, с некоторой доработкой. В настоящее время выпускаются светодиодные лампы практически под все существующие типы цоколей. Лампы выпускаются в основном невысокой мощности (до 20 Вт) и предназначены для установки в бытовые осветительные устройства — настольные светильники, потолочные светильники, бра — как быстрая замена менее экономичных традиционных ламп без изменения дизайна и конструкции. Производители кроме напряжения питания, потребляемой мощности и цоколя, указывают оттенок белого света (цветовую температуру), срок службы лампы и мощность аналогичной лампы накаливания.
См. также
- Светодиодное освещение
- Белый светодиод
Примечания
- ↑ 1 2 Основы светодиодного освещения
- ↑ Почему именно светодиодное овещение
- ↑ 1 2 Уличное освещение
- ↑ А.Винокуров. Особенности светодиодных уличных светильников. Компоненты и технологии №6 2008 г.
- ↑ А.Полищук. Концепция применения светильников со светодиодами в целях реализации программы энергосберегающего освещения. Компоненты и технологии №11 2007 г.
- ↑ Светодиодное освещение в Чикагском музее.
- ↑ Использование светодиодов с максимальной выгодой.
Ссылки
- ГОСТ 17677-82 Светильники. Общие технические условия.
- ГОСТ 8607-82 Светильники для освещения жилых и общественных помещений. Общие технические условия.
- Стандарты, имеющие отношения к светодиодному освещению в США.
- Конструкция светодиодных ламп
Филаментные лампы. Принцип работы, особенности, преимущества и недостатки
Что такое филаментная лампа и почему она лучше? Чем она отличается от ламп накаливания и светодиодных ламп? В этой статье вы найдете ответы на эти вопросы. Мы подробно расскажем о принципе работы, особенностях, преимуществах и недостатках филаментных ламп.
Филаментные лампы: что это?
Что же такое филаментная лампа? Это светодиодная лампа особого типа, которая внешне очень напоминает лампу накаливания (ЛН). Она имеет такую же прозрачную стеклянную колбу, но внутри расположена не вольфрамовая нить, а светодиоды особой конструкции, по виду напоминающие нити. Отсюда и произошло название этого типа ламп – «filament», которое с английского языка переводится как «нить».
Каталог: Филаментные лампы
В выключенном состоянии филаментную лампу легко отличить от ЛН по форме и характерному жёлтому цвету светодиодных нитей, но во включенном состоянии отличия становятся не столь очевидны. Несмотря на большое внешнее сходство, по параметрам филаментная лампа намного лучше ламп накаливания и эффективнее обычных светодиодных ламп.
Конструкция филаментной лампы
В конструкции филаментных ламп применяются отработанные и проверенные годами элементы ламп накаливания в сочетании с современными светодиодными технологиями. Основные части филаментной лампы показаны на рисунке ниже.
Конструкция филаментной лампы
Колба
Стеклянная герметичная прозрачная колба может иметь различную форму. В декоративных сериях ламп может применяться стекло со специальным напылением, чтобы создать более мягкий и тёплый оттенок свечения. Колба заполнена инертным газом, как правило, гелием, который быстро переносит выделяемое светодиодами тепло к стенкам колбы. Тепло равномерно распределяется по всей поверхности колбы и рассеивается в окружающую среду. Так как площадь колбы во много раз больше площади светодиодных нитей, она не нагревается выше 50-60°С.
Светодиодный филамент
Филаментная нить производится по технологии Chip-on-Glass (COG), применяемой при изготовлении дисплеев для мобильных устройств. Она представляет собой подложку из сапфирового стекла, на которой цепочкой расположены кристаллы светодиодов. Благодаря прозрачной подложке свет от светодиодов распространяется во все стороны. На концах подложки закреплены контакты для подачи электропитания и закрепления нити в лампе. Снаружи нить покрывают специальным веществом – люминофором, который и задаёт требуемый цвет свечения (цветовую температуру) нити. Для декоративных серий ламп изготавливают нити различной формы, например, в виде дуг или спиралей.
Стеклянная ножка
Этот важный элемент конструкции является опорой для крепления филаментных нитей. Также в ножке проложены проводники, через которые подводится электропитание к светодиодам.
Цоколь
Служит для закрепления лампы в электрическом патроне и подвода к ней электропитания. Самые распространённые типы цоколей – E27 и E14. Цоколь филаментной лампы – единственное место, где может быть размещён драйвер питания светодиодов.
Драйвер
Драйвер светодиодной лампы представляет собой специальную электронную схему, собранную на печатной плате. Основная функция драйвера – обеспечить правильный режим работы светодиодов при изменении внешних факторов, таких как напряжение питания и температура окружающей среды. Современные схемы светодиодных драйверов способны работать в очень широком диапазоне напряжений сети, имеют различные виды защит и высокий КПД, гарантируют отсутствие мерцания и пульсаций света. Как правило, основой схемы драйвера является специализированная микросхема, обеспечивающая его высокие показатели.
Интересно знать.Цветовую температуру филаментной лампы можно приблизительно определить по оттенку цвета нитей. Если нити имеют лимонный оттенок, то такая лампа будет создавать дневной (белый) свет, а лампа с нитями насыщенного жёлтого или оранжевого цвета – более тёплый (жёлтый). Форма, длина и количество филаментных нитей влияют на качество освещения. Чем больше цепочек и чем они длиннее, тем больше светодиодов на них можно разместить и тем ярче будет лампа. От расположения нитей зависит также и равномерность освещения.
Совет. Качество люминофора напрямую влияет на качество света. Производители недорогих брендов могут экономить на люминофоре. Дешёвый люминофор быстро теряет свои свойства в процессе эксплуатации (деградирует), что отрицательно сказывается на качестве света – появляется неприятный и вредный для глаз синий оттенок. По этой причине, нужно правильно подходить к выбору производителя ламп.
Особенности и преимущества филаментных ламп
Филаментные лампы имеют ряд преимуществ не только перед ЛН, но и перед обычными светодиодными лампами:
- Ввиду того, что вся поверхность лампы представляет собой прозрачную колбу, а также из-за особенной конструкции филаментной нити, лампа обеспечивает очень широкий угол рассеивания света – практически 360 градусов. Она способна равномерно освещать окружающее пространство, чего трудно добиться в обычных светодиодных лампах;
- В обычных светодиодных лампах для увеличения угла рассеивания применяют колбы (оптические системы) из специальных полупрозрачных материалов, которые поглощают часть света. Колба филаментной лампы полностью прозрачна, что приводит к увеличению энергоэффективности лампы;
- Во время работы светодиоды могут нагреваться до высоких температур, и именно температура является препятствием к дальнейшему увеличению их светоотдачи. Особенности конструкции филаментной нити способствуют равномерному распределению тепла между всеми кристаллами светодиодов и эффективному отведению тепла от всей поверхности нити. При этом, за счёт газа, заполняющего колбу, тепло быстро переносится к ее стенкам и рассеивается в окружающую среду, а из-за большой площади поверхности колба не нагревается до высокой температуры. Эффективное отведение тепла от светодиодов позволяет подводить к ним большую мощность без риска выхода из строя, что также способствует повышению энергоэффективности лампы и увеличению ее срока службы.
Таким образом, основным преимуществом филаментных ламп является их высокая эффективность, но на этом их преимущества не заканчиваются. Эти источники света одинаково хорошо подходят для освещения домов, магазинов, кафе, учебных и общественных заведений. Благодаря широкому углу рассеивания света, филаментные лампы можно применять для общего и местного освещения интерьеров. Филамент отлично сочетается с хрустальными светильниками и люстрами, открытыми и прозрачными плафонами, бра в форме фонарей и другими моделями в классическом и старинном стилях. Стеклянная колба не нагревается до высоких температур, поэтому филаментные лампы можно устанавливать возле натяжных или гипсокартонных потолков и других поверхностей, которые не допускают сильного нагрева.
Сравнение ламп разных типов
ЛАМПА НАКАЛИВАНИЯ (ЛН) | КОМПАКТНАЯ ЛЮМИНЕСЦЕНТНАЯ ЛАМПА | ОБЫЧНАЯ СВЕТОДИОДНАЯ ЛАМПА | ФИЛАМЕНТНАЯ ЛАМПА | |
Свет | комфортный для глаз; угол освещения – 360° | некомфортный для глаз; угол освещения – 360° |
менее комфортный для глаз; угол освещения – 180…270°
|
комфортный для глаз; угол освещения – 360°
|
Здоровье | безопасна – не содержит ртуть | небезопасна – содержит ртуть | безопасна – не содержит ртуть | безопасна – не содержит ртуть |
Стоимость | низкая | средняя | выше средней | высокая, но быстрая окупаемость |
Электроэнергия |
высокое потребление электроэнергии
|
в 5 раз меньше, чем ЛН | в 7 раз меньше, чем ЛН | в 10 раз меньше, чем ЛН |
Срок службы | небольшой срок службы (1000 часов) | средний срок службы | большой срок службы | большой срок службы |
Декоративные модели с прозрачной стеклянной колбой подойдут для оформления залов кофеен, баров и ресторанов
Филаментная лампа в форме свечи — отличный выбор для хрустальной люстры
Виды филаментных ламп
Существует несколько видов филаментных ламп для различных областей применения. В зависимости от этого внешний вид лампы и конструкция ее нитей выглядят по-разному. Прямая нить используется для максимально яркого освещения дома, офиса либо улицы. Нить в виде спирали применяется в декоративных лампах для создания мягкого света, уютной и приглушенной атмосферы в спальнях, кафе, барах и ресторанах. Специальное напыление внутри колбы делает филаментную лампочку уникальной, а ее свечение – особенным.
Применение филаментных ламп в декоративных целях позволяет создать неповторимый интерьер
Форма, размеры и внешний вид филаментных ламп настолько разнообразны, что позволяют удовлетворить практически любые потребности и подобрать лучший вариант.
ММодели с прозрачной колбой стильно смотрятся не только в классических или винтажных, но и в современных интерьерах
Лампы филамент в форме свечи с теплым светом создадут уют в гостиной
Чтобы получить уверенность в том, что вы покупаете качественные и долговечные филаментные лампы, дающие комфортный свет, заходите в магазин Maxus!
Мы предлагаем модели, которые прошли тестирование и одобрены офтальмологами как безопасные для зрения. Наши филаментные лампы имеют ресурс работы до 30 000 часов и отлично адаптированы к нашим электросетям. Мы уверены в качестве своей продукции и предоставляем трёхлетнюю гарантию на филаментные лампы MAXUS!
Покупайте лампы в брендовом магазине «Максус», потому что у нас:
- работают приветливые консультанты, которые ответят на любые вопросы и помогут подобрать правильную модель;
- есть бесплатная услуга расчета освещения;
- созданы условия для удобных покупок: доставка по всей Украине и разные способы платежа.
Чтобы покупать лампы и светильники по выгодным ценам, следите за нашим блогом, подписывайтесь на страничку в ФБ и участвуйте в акциях и выгодных предложениях!
Выбирайте качественный и современный свет с MAXUS!
Узнайте о светодиодном освещении | ENERGY STAR
- Основы
- Что такое светодиоды и как они работают?
- Срок службы светодиодных осветительных приборов
- Где использовать светодиодные лампы
- светодиоды и тепло
- Чем отличается светодиодное освещение?
- Почему я должен выбирать продукты светодиодного освещения, сертифицированные ENERGY STAR®?
Основы светодиодного освещения
Что такое светодиоды и как они работают?
Светодиод означает светоизлучающий диод . Светодиодные осветительные приборы производят свет на 90% эффективнее, чем лампы накаливания. Как они работают? Электрический ток проходит через микрочип, который освещает крошечные источники света, которые мы называем светодиодами, и в результате получается видимый свет. Чтобы предотвратить проблемы с производительностью, тепло, выделяемое светодиодами, поглощается радиатором.
Срок службы светодиодных осветительных приборов
Срок службы светодиодных осветительных приборов определяется иначе, чем срок службы других источников света, таких как лампы накаливания или компактные люминесцентные лампы (КЛЛ). Светодиоды обычно не «сгорают» и не выходят из строя. Вместо этого они испытывают «амортизацию светового потока», когда яркость светодиода медленно тускнеет с течением времени. В отличие от ламп накаливания, «срок службы» светодиодов определяется прогнозом, когда светоотдача уменьшится на 30 процентов.
Как светодиоды используются в освещении
Светодиоды используются в лампах и светильниках для общего освещения. Небольшие по размеру светодиоды открывают уникальные возможности для дизайна. Некоторые решения на основе светодиодных ламп могут физически напоминать знакомые лампочки и лучше соответствовать внешнему виду традиционных ламп накаливания. Некоторые светодиодные светильники могут иметь встроенные светодиоды в качестве постоянного источника света. Существуют также гибридные подходы, в которых используется нетрадиционный формат «лампочки» или сменного источника света, специально разработанный для уникального светильника. Светодиоды предлагают огромные возможности для инноваций в форм-факторах освещения и подходят для более широкого спектра применений, чем традиционные технологии освещения.
Светодиоды и тепло
В светодиодах используются радиаторы для поглощения тепла, выделяемого светодиодом, и рассеивания его в окружающую среду. Благодаря этому светодиоды не перегреваются и не перегорают. Управление температурным режимом , как правило, является наиболее важным фактором успешной работы светодиода в течение всего срока его службы. Чем выше температура, при которой работают светодиоды, тем быстрее ухудшается качество света и тем короче срок службы.
В светодиодных продуктах используется множество уникальных конструкций и конфигураций радиаторов для отвода тепла. Сегодня достижения в области материалов позволили производителям разрабатывать светодиодные лампы, которые соответствуют формам и размерам традиционных ламп накаливания. Независимо от конструкции радиатора, все светодиодные продукты, получившие сертификат ENERGY STAR, были протестированы, чтобы убедиться, что они правильно распределяют тепло, чтобы световой поток оставался должным образом до конца номинального срока службы.
Чем светодиодное освещение отличается от других источников света, таких как лампы накаливания и компактные люминесцентные лампы (КЛЛ)?
Светодиодное освещение отличается от ламп накаливания и люминесцентных ламп по нескольким параметрам. При правильном проектировании светодиодное освещение является более эффективным, универсальным и служит дольше.
Светодиоды являются «направленными» источниками света, что означает, что они излучают свет в определенном направлении, в отличие от ламп накаливания и компактных люминесцентных ламп, которые излучают свет и тепло во всех направлениях. Это означает, что светодиоды могут более эффективно использовать свет и энергию во множестве приложений. Однако это также означает, что для производства светодиодной лампочки, излучающей свет во всех направлениях, необходимы сложные инженерные решения.
Общие цвета светодиодов включают желтый, красный, зеленый и синий. Для получения белого света светодиоды разных цветов комбинируются или покрываются люминофорным материалом, который преобразует цвет света в знакомый «белый» свет, используемый в домах. Люминофор представляет собой желтоватый материал, покрывающий некоторые светодиоды. Цветные светодиоды широко используются в качестве сигнальных и световых индикаторов, таких как кнопка питания на компьютере.
В КЛЛ электрический ток течет между электродами на каждом конце трубки, содержащей газы. Эта реакция производит ультрафиолетовый (УФ) свет и тепло. Ультрафиолетовый свет преобразуется в видимый свет, когда он попадает на люминофорное покрытие внутри колбы. Узнайте больше о КЛЛ.
Лампы накаливания излучают свет, используя электричество для нагревания металлической нити до тех пор, пока она не станет «белоснежной» или, как говорят, не раскалится. В результате лампы накаливания выделяют 90% своей энергии в виде тепла.
Почему мне следует выбирать светодиодные осветительные приборы, сертифицированные ENERGY STAR?
Сегодня доступно больше вариантов освещения, чем когда-либо прежде. Несмотря на это, ENERGY STAR по-прежнему является простым выбором для экономии на счетах за коммунальные услуги.
Светодиодные лампы, получившие сертификат ENERGY STAR, подчиняются очень специфическим требованиям, разработанным для того, чтобы воспроизвести опыт, к которому вы привыкли при использовании стандартной лампы, поэтому их можно использовать для самых разных целей. Как показано на рисунке справа, светодиодная лампа общего назначения, не отвечающая требованиям ENERGY STAR, может не распространять свет повсюду и может разочаровать при использовании в настольной лампе.
ENERGY STAR означает высокое качество и производительность, особенно в следующих областях:
- Качество цвета
- 5 различных требований к цвету для обеспечения качества сразу и с течением времени
- Световой поток
- Минимальная светоотдача, обеспечивающая достаточное количество света
- Требования к распределению света, чтобы свет попадал туда, где он нужен
- Руководство по заявлениям об эквивалентности, позволяющее исключить догадки при замене
- Душевное спокойствие
- Подтверждено соответствие более чем 20 требованиям по производительности и маркировке
- Долгосрочное тестирование для подтверждения заявлений о сроке службы
- Тестирование продуктов в условиях эксплуатации, аналогичных тем, в которых вы будете использовать продукт дома
- Минимальный срок гарантии 3 года
Как и вся продукция ENERGY STAR, светодиодные лампы, сертифицированные по стандарту ENERGY STAR, ежегодно проходят выборочное тестирование, чтобы убедиться, что они продолжают соответствовать требованиям ENERGY STAR.
Для получения дополнительной информации о том, как выбрать лампочку, сертифицированную ENERGY STAR, для каждого применения в вашем доме, ознакомьтесь с Руководством по покупке лампочки ENERGY STAR (PDF, 1,49 МБ) или воспользуйтесь интерактивным онлайн-инструментом «Выбор лампы».
Найдите лампочки и светильники, сертифицированные ENERGY STAR.
Почему синий светодиод должен освещать вашу жизнь (и получил Нобелевскую премию)
Что вы представляете, когда слышите словосочетание «зеленые технологии»? Вам приходят на ум солнечные панели, ветряные турбины и электромобили? А как насчет светоизлучающих диодов (LED)? В отличие от многих дорогостоящих зеленых технологий, светодиоды доступны большинству людей, которые хотят помочь окружающей среде и сэкономить деньги. Использование светодиода для 50 000 часов домашнего освещения белым светом (т. е. светодиодные лампочки для использования в лампах, потолочных светильниках и т. д.) стоит всего около 86 долларов по сравнению с 352 долларами для ламп накаливания []. Несмотря на то, что некоторые светодиоды поступили в продажу с 1962, светодиоды белого света доступны только с 2006 года []. Наиболее важным из многих достижений, необходимых для вывода на рынок светодиодов белого света, было изобретение первого яркого синего светодиода в 1993 году []. За это изобретение Исаму Акасаки, Хироши Амано и Сюдзи Накамура 7 октября 2014 года получили Нобелевскую премию по физике.
Что такое светодиод и как он работает?
Рисунок 1 ~ Добавление электричества к полупроводниковому чипу производит свет за счет связывания электронов с атомами.
Светоизлучающие диоды (СИД) — это компоненты электрических цепей, излучающие свет. Светодиоды изготавливаются из небольших полупроводниковых кристаллов, материалов, способных проводить электричество. Хотя они проводят лучше, чем некоторые материалы, такие как стекло, полупроводники проводят менее эффективно, чем металлы, такие как алюминий или олово. Когда электричество проходит через светодиоды, электроны, маленькие отрицательно заряженные частицы в атомах внутри полупроводника, могут получить достаточно энергии, чтобы перемещаться между несколькими атомами, вместо того, чтобы быть привязанными к конкретному (рис. 1). Однако это состояние нестабильно, и в конце концов электрон снова свяжется с одним атомом. Когда это происходит, энергия высвобождается в виде фотонов, элементарных частиц света. Количество выделяемой энергии определяется свойствами материала полупроводника и, в свою очередь, определяет цвет излучаемого света [3, 4].
Однако изобрести светодиод не так просто, как провести электричество через кусок определенного полупроводника. Во-первых, атомы полупроводника должны быть организованы в повторяющемся порядке или в кристаллической решетке. Если в каком-либо месте полупроводника схема нарушена, светодиод не будет работать должным образом. Процесс изготовления тонких кусочков полупроводника, также известных как «чипы», так что формируется кристаллическая решетка, называется «выращиванием кристаллов», и для каждого нового полупроводника процесс должен определяться с нуля. После того, как чистые чипы станут доступны, следующей задачей будет изготовление одних чипов с избытком свободных блуждающих электронов, а других с избытком атомов, потерявших электрон. Для создания этих условий в полупроводник контролируемым образом вводят атомы других элементов [3, 4]. Этот процесс называется «допинг». Опять же, соответствующие условия для успешного легирования полупроводника должны быть заново определены для каждого материала [3, 4, 5].
Почему изобретение синего светодиода имело такое большое значение?
Изобретение синего светодиода имело важное значение как потому, что оно стало техническим триумфом, так и потому, что оно сделало возможным множество новых применений. Это было огромным техническим достижением, потому что необходимые свойства для получения синего света не могли быть достигнуты с помощью полупроводника, подобного тем, которые уже используются для светодиодов. Еще в 1950-х годах нитрид галлия (GaN) был идентифицирован как полупроводник с подходящими свойствами для получения синего света, но быстро стало ясно, что создание чипов для использования в светодиодах является сложной задачей. Фактически к началу 19В 70-х годах большинство ученых прекратили работу по созданию светодиодов из GaN []. Однако в начале 1970-х годов были разработаны новые методы выращивания кристаллов, и, начиная с 1974 года, Исаму Акасаки, а затем Хироши Амано, а также другие, проводили исследования, чтобы определить, как использовать эти новые методы для изготовления кристаллов GaN. Проблема не была решена до 1986 года, и ученым все еще предстояло определить, как успешно легировать кристаллы GaN для практического использования []. Это было окончательно достигнуто в конце 1980-х [].
Изобретение первого яркого синего светодиода позволило использовать светодиоды для получения белого света. В то время как синий и красный свет имеют длины волн, которые находятся в очень специфических спектрах, волны белого света охватывают очень широкий спектр, что делает его желательным для практических целей. Хотя существует несколько методов получения белого света с помощью синих светодиодов, чаще всего используется сочетание синего светодиода и флуоресцентного материала []. Флуоресцентные материалы излучают свет определенной длины волны после того, как они освещаются светом другой длины волны. Флуоресцентный материал, используемый для изготовления белого светодиода, излучает различные цвета света, когда он освещается синим светом от синего светодиода []. Белый свет образуется, когда синий свет светодиода смешивается с другими цветами света, излучаемого флуоресцентным материалом.
Как выглядит будущее светодиодов и освещения?
Безусловно, наиболее важным применением синих светодиодов было эффективное производство белого света. Рынок эффективного белого освещения существует в таких странах, как США, где в 2012 году 21% электроэнергии, потребляемой в коммерческом секторе, приходился на освещение []. Точно так же в странах, где многие люди зависят от солнечных батарей для получения электроэнергии, желательно эффективное белое освещение от синих светодиодов, поскольку оно позволяет им в полной мере использовать ограниченное электричество []. Однако белое освещение — не единственное применение синих светодиодов. Синие светодиоды также используются в экранах многих мобильных телефонов, телевизоров и планшетов.
К сожалению, использование светодиодных ламп в жилых помещениях остается довольно низким, вероятно, потому, что, хотя экономия энергии от использования светодиодов велика, первоначальная стоимость светодиодной лампочки в 25 раз превышает стоимость лампы накаливания []. Однако эта неутешительная статистика, скорее всего, изменится; Фактически, Министерство энергетики США прогнозирует, что к 2020 году 37,6% бытового освещения будет обеспечиваться светодиодами, а в 2030 году — 72,3% []. Благодаря постоянным исследованиям и обучению потребителей мы можем рассчитывать на светлое будущее, освещенное светодиодами.
Элизабет «Эви» Ван Итали — аспирант программы «Системная биология».
Ссылки
[] http://eartheasy.com/live_led_bulbs_comparison.html
[] http://www.osram.com/osram_com/news-and-knowledge/led-home/professional-knowledge/led -basics/led-history/index.jsp
[] Страница Википедии, посвященная светодиодам: https://en.wikipedia.
Добавить комментарий