Содержание
Последовательное и параллельное соединение конденсаторов (ёмкостей)
Практически ни одно электронное устройство не обходится без конденсатора. Он может стоять на входе или выходе устройства, перед или после некоторых элементов. Применяется последовательное и параллельное соединение конденсаторов. Как и для чего их подключать тем или иным способом и будем обсуждать.
Содержание статьи
- 1 Что такое конденсатор и его основные характеристики
- 2 Что он из себя представляет и как работает
- 3 Где и для чего используются
- 4 Как подключать конденсаторы
- 4.1 Параллельное подключение конденсаторов
- 4.1.1 Расчёт суммарной ёмкости
- 4.1.2 Пример расчёта
- 4.2 Последовательное соединение
- 4.2.1 Как определить ёмкость последовательно соединенных конденсаторов
- 4.2.2 Пример расчёта
- 4.1 Параллельное подключение конденсаторов
- 5 Почему электролитические конденсаторы выходят из строя и что делать
- 5.1 Как подобрать замену
- 5. 2 Что будет, если поставить конденсатор большей ёмкости?
Что такое конденсатор и его основные характеристики
Конденсатор — это радиодеталь, которая работает как накопитель электрической энергии. Чтобы понятнее было, как он работает, его можно представить как своего рода небольшой аккумулятор. Обозначается двумя параллельными чёрточками.
Обозначения различных типов конденсаторов на схемах. Чаще всего из строя выходят электролитические конденсаторы, так что стоит запомнить их обозначение
Основная характеристика конденсатора любого типа — ёмкость. Это то количество заряда, которое он в состоянии накопить. Измеряется в Фарадах (сокращенно просто буква F или Ф), а вернее, в более «мелких» единицах:
- микрофарадах — мкФ это 10-6 фарада,
- нанофарадах — нФ это 10-9 фарада;
- пикофарадах — пФ это 10-12 фарада.
Вторая важная характеристика — номинальное напряжение. Это то напряжение, при котором гарантирована длительная безотказная работа. Например, 4700 мкФ 35 В, где 35 В — это номинальное напряжение 35 вольт.
У крупных по размеру конденсаторов, ёмкость и напряжение указаны на корпусе
Нельзя ставить конденсатор в цепь с более высоким напряжением чем то, которое на нём указано. В противном случае он быстро выйдет из строя.
Можно использовать конденсаторы на 50 вольт вместо конденсаторов на 25 вольт. Но это порой нецелесообразно, так как те, которые рассчитаны на более высокое напряжение, дороже, да и габариты у них больше.
Что он из себя представляет и как работает
В самом простейшем случае конденсатор состоит из двух токопроводящих пластин (обкладок), разделённых слоем диэлектрика.
Между обкладками находится слой диэлектрика — материала плохо проводящего электрический ток
На пластины подаётся постоянный или переменный ток. Вначале, пока энергия накапливается, потребление энергии конденсатором высокое. По мере «наполнения» ёмкости оно снижается. Когда заряд набран полностью, токопотребления вообще нет, источник питания как бы отключается. В это время конденсатор сам начинает отдавать накопленный заряд. То есть, он на время становится своеобразным источником питания. Поэтому его и сравнивают с аккумулятором.
Где и для чего используются
Как уже говорили, сложно найти схему без конденсаторов. Их применяют для решения самых разных задач:
Конденсаторы встречаются часто и область их применения широка. Но надо знать как правильно их подключить.
Как подключать конденсаторы
В электротехнике есть два основных вида соединения деталей — параллельное и последовательное. Конденсаторы также можно подключать по любому из указанных способов. Есть ещё особая — мостовая схема. Она имеет собственную область использования.
В схеме может быть последовательное и параллельное соединение конденсаторов
Параллельное подключение конденсаторов
При параллельном соединении все конденсаторы объединены двумя узлами. Чтобы параллельно подключить конденсаторы, скручиваем попарно их ножки, обжимаем пассатижами, потом пропаиваем. У некоторых конденсаторов большие корпуса (банки), а выводы маленькие. В таком случае используем провода (как на рисунке ниже).
Так физически выглядит параллельное подключение конденсаторов
Если конденсаторы электролитические, следите за полярностью. На них должны стоять «+» или «-«. При их параллельном подключении соединяем одноимённые выводы — плюс к плюсу, минус — к минусу.
Расчёт суммарной ёмкости
При параллельном подключении конденсаторов их номинальная ёмкость складывается. Просто суммируете номиналы всех подключённых элементов, сколько бы их ни было. Два, три, пять, тридцать. Просто складываем. Но следите, чтобы размерность совпадала. Например, складывать будем в микрофарадах. Значит, все значения переводим в микрофарады и только после этого суммируем.
Расчёт ёмкости при параллельном подключении конденсаторов
Когда на практике применяют параллельное соединение конденсаторов? Например, тогда, когда надо заменить «пересохший» или сгоревший, а нужного номинала нет и бежать в магазин некогда или нет возможности. В таком случае подбираем из имеющихся в наличии. В сумме они должны дать требуемое значение. Все их проверяем на работоспособность и соединяем по приведенному выше принципу.
Пример расчёта
Например, включили параллельно два конденсатора — 8 мкФ и 12 мкФ. Следуя формуле, их номиналы просто складываем. Получаем 8 мкФ + 12 мкФ = 20 мкФ. Это и будет суммарная ёмкость в данном случае.
Пример расчёта конденсаторов при параллельном подключении
Последовательное соединение
Последовательным называется соединение, когда выход одного элемента соединяется со входом другого. Сравнить можно с вагонами или цепочкой из лампочек. По такому же принципу последовательно соединяют и конденсаторы.
Вот что значит последовательно соединить конденсаторы
При подключении полярных электролитических «кондеров» надо следить за соблюдением полярности. Плюс первого конденсатора подаете на минус второго и так далее. Выстраиваете цепочку.
Существуют неполярные (биполярные) электролитические конденсаторы. При их соединении нет необходимости соблюдать полярность.
Как определить ёмкость последовательно соединенных конденсаторов
При последовательном соединении конденсаторов суммарная ёмкость элементов будет меньше самого маленького номинала в цепочке. То есть, ёмкость последовательно соединённых конденсаторов уменьшается. Это также может пригодиться при ремонте техники — замена конденсатора требуется часто.
Последовательно соединённые конденсаторы
Использовать формулу расчёта приведённую выше не очень удобно, поэтому её обычно используют в преобразованном виде:
Формула расчёта ёмкости при последовательном соединении
Это формула для двух элементов. При увеличении их количества она становится значительно сложнее. Хотя, редко можно встретить больше двух последовательных конденсаторов.
Пример расчёта
Какая суммарная ёмкость будет если конденсаторы на 12 мкФ и 8 мкФ соединить последовательно? Считаем: 12*8 / (12+8) = 96 / 20 = 4,8 мкФ. То есть, такая цепочка соответствует номиналу 4,8 мкФ.
Пример расчета ёмкости при последовательном подключении конденсаторов
Как видите, значение меньше чем самый маленький номинал в последовательности. А если подключить таким образом два одинаковых конденсатора, то результат будет вполовину меньше номинала. Например, рассчитаем для двух ёмкостей по 12 мкФ. Получим: 12*12 / (12 + 12) = 144 / 24 = 6 мкФ. Проверим для 8 мкФ. Считаем: 8*8 / (8+8) = 64 / 16 = 4 мкФ. Закономерность подтвердилась. Это правило можно использовать при подборе номинала.
Почему электролитические конденсаторы выходят из строя и что делать
Зачастую, чтобы отремонтировать вышедшую из строя электронную технику, достаточно найти и заменить вздувшиеся конденсаторы. Дело в том, что срок жизни их небольшой — 1000-2000 тысячи рабочих часов. Потом он обычно выходит из строя и требуется его замена. И это при нормальном напряжении не выше номинального. Так происходит потому, что диэлектрик в конденсаторах, чаще всего, жидкий. Жидкость понемногу испаряется, меняются параметры и, рано или поздно, конденсатор вздувается.
Электролитические конденсаторы имеют специальные насечки на верхушке корпуса, чтобы при выходе из строя избежать взрыва
Высыхает электролит не только во время работы. Даже просто «от времени». Это конструктивная особенность электролитических конденсаторов. Поэтому не стоит ставить выпаянные из старых схем конденсаторы или те, которые несколько лет (или десятков лет) хранятся в мастерской. Лучше купить «свежий», но проверьте дату производства.
Можно ли продлить срок эксплуатации конденсаторов? Можно. Надо улучшить теплоотвод. Чем меньше греется электролит, тем медленнее высыхает. Поэтому не стоит ставить аппаратуру вблизи отопительных приборов.
Для улучшения отвода тепла ставят радиаторы
Второе — надо следить за тем, чтобы хорошо работали кулера. Третье — если рядом стоят детали, которые активно греются во время работы, надо конденсаторы каким-то образом от температуры защитить.
Как подобрать замену
Если часто приходится менять один и тот же конденсатор, его лучше заменить на более «мощный» — той же ёмкости, но на большее напряжение. Например, вместо конденсатора на 25 вольт, поставить конденсатор на 35 вольт. Только надо иметь в виду, что более мощные конденсаторы имеют большие размеры. Не всякая плата позволяет сделать такую замену.
Конденсатор той же ёмкости, но рассчитанный на большее напряжение, имеет больший размер
Можно поставить параллельно несколько конденсаторов с тем же напряжением, подобрав номиналы так, чтобы получить требуемую ёмкость. Что это даст? Лучшую переносимость пульсаций тока, меньший нагрев и, как следствие, более продолжительный срок службы.
Что будет, если поставить конденсатор большей ёмкости?
Часто приходит в голову идея поставить вместо сгоревшего или вздувшегося конденсатор большей ёмкости. Ведь он должен меньше греться. Так, во всяком случае, кажется. Ёмкость практически никак не связана со степенью нагрева корпуса. И в этом выигрыша не будет.
Устройство электролитического конденсатора
По нормативным документам отклонение номинала конденсаторов допускается в пределах 20%. Вот на эту цифру можете спокойно ставить больше/меньше. Но это может привести к изменениям в работе устройства. Так что лучше найти «родной» номинал. И учтите, что не всегда можно ставить большую ёмкость. Можно если конденсатор стоит на входе и сглаживает скачки питания. Вот тут большая ёмкость уместна, если для её установки достаточно места. Это точно нельзя делать там, где конденсатор работает как фильтр, отсекающий заданные частоты.
Можно менять на ту же ёмкость, но чуть более высокое напряжение. Это имеет смысл. Но размеры такого конденсатора будут намного больше. Не в любую плату получится его установить. И учтите, что корпус его не должен соприкасаться с другими деталями.
Как соединить конденсаторы
Конденсаторы можно соединять последовательно и параллельно. Результирующую емкость в обоих случаях рассчитывают по формулам. Такое соединение применяют в случаях, когда отсутствуют конденсаторы с требуемыми параметрами, но есть другие.
Любые конденсаторы можно соединять лишь тогда, когда они разряжены и отключены от остальных элементов схемы. Не разряжайте их коротким замыканием — используйте подходящую нагрузку. Подключайте ее изолированными проводами, не касаясь токоведущих частей. Разрядив конденсатор, проверьте вольтметром, что он действительно разряжен, также пользуясь щупами с изолированными проводами и ручками и не касаясь токоведущих частей.
Перед проведением расчетов емкости конденсаторов следует перевести в одинаковые единицы. В данном случае пользоваться системой СИ нерационально, поскольку входящая в нее единица — фарада — является очень большой. В зависимости от того, какие конденсаторы вы соединяете, можно пользоваться пикофарадами, нанофарадами или микрофарадами.
Соединяя конденсаторы параллельно, результирующую емкость рассчитайте, просто просуммировав емкости всех конденсаторов. Рабочее же напряжение этой конструкции будет равно наименьшему из рабочих напряжений входящих в нее конденсаторов.
При последовательном соединении конденсаторов вначале найдите обратную величину емкости каждого из них, затем сложите эти величины, а затем найдите обратную величину суммы. Обратной величиной называют результат деления единицы на число. Выглядит этот так: Cрезульт=1/(1/С1+1/С2+ … +1/Сn), где Cрезульт — результирующая емкость, а C1…Cn — емкости конденсаторов в последовательной цепочке. С рабочим напряжением такой конструкции сложнее. В теории, при последовательном соединении конденсаторов одинаковой емкости достаточно сложить их рабочие напряжения, а если их емкости разные, то напряжения распределятся на них обратно пропорционально емкостям. На практике же разброс параметров и утечки могут привести к непредсказуемому распределению напряжений. Поэтому надежнее всего руководствоваться тем же правилом, что и при параллельном соединении: рабочее напряжение всей конструкции равно рабочему напряжению того из конденсаторов, у которого оно наименьшее.
При смешанном (последовательно-параллельном) соединении конденсаторов разделяйте конструкцию на группы конденсаторов, соединенных только последовательно или только параллельно. Рассчитайте параметры каждой из групп, а затем рассматривайте ее как один конденсатор с соответствующими параметрами. После этого посмотрите, как соединены эти группы — последовательно или параллельно — и произведите по соответствующей формуле расчет параметров всей конструкции. Полярные конденсаторы подключайте в одинаковой полярности, и в такой же полярности включайте конструкцию в схему, где она будет работать. Соединять встречно-последовательно два полярных конденсатора даже одинаковой емкости для получения неполярного не рекомендуется — разброс параметров и утечки могут привести к выходу их из строя. Хотя бы один полярный конденсатор делает полярной всю конструкцию.
Иногда электролитические конденсаторы шунтируют (присоединяя параллельно) керамическими значительно меньшей емкости. В этом случае считать что-либо по формулам не нужно, потому что прибавлением емкости можно пренебречь. А делают так не для увеличения емкости, а для фильтрации высокочастотных помех, которые не убираются электролитическими конденсаторами по причине паразитной индуктивности.
Как открутить штуцер | Как проверить обратный клапан | Как выставить зажигание по лампочке |
Как подключить камеру заднего вида на магнитолу | Как сделать автомобильную антенну | Как открыть капот Газели |
Что произойдет, если мы неправильно подключим полярный конденсатор?
Что происходит при подключении электролитического поляризованного конденсатора в обратной полярности?
Существуют различные типы конденсаторов, такие как полярные (конденсаторы постоянной емкости, например, электролитические, псевдоконденсаторы, ELD и суперконденсаторы) и неполярные конденсаторы (керамические, слюдяные, пленочные, бумажные и переменные конденсаторы). Конденсаторы играют активную и важную роль как в цепях переменного, так и постоянного тока (например, фильтры, RC-цепи, связь и развязка, улучшение коэффициента мощности, генераторы, демпферы, пускатели двигателей и т. д.). Давайте остановимся на теме поляризованных электролитических конденсаторов.
Электролитический полярный конденсатор представляет собой тип полярного конденсатора, который имеет полярность на своих клеммах, обозначенную катодом и анодом (положительная и отрицательная клеммы).
В электролитическом конденсаторе изолирующий слой, используемый в качестве диэлектрика (твердого, жидкого или газообразного материала), зажат между двумя электродами. Есть две металлические пластины, где первая пластина в качестве положительного «анода» покрыта изолирующим оксидным слоем посредством анодирования, а электролит используется в качестве второй клеммы, известной как «катод». Существует три типа электролитических конденсаторов, а именно алюминиевые, танталовые и ниобиевые конденсаторы.
В алюминиевых электролитических конденсаторах электроды состоят из чистого алюминия, однако анодный (положительный) электрод изготавливается путем формирования изолирующего слоя из оксида алюминия (Al 2 O 3 ) путем анодирования. Электролит (твердый или нетвердый) помещается на изолирующую поверхность анода. Этот электролит технически действует как катод. Второй алюминиевый электрод помещается поверх электролита, который служит его электрическим соединением с отрицательной клеммой конденсатора.
Алюминиевая фольга с бумагой между ними намотана вместе. Их пропитывают электролитом, а затем покрывают кожухом из алюминия. Этого достаточно, давайте сосредоточимся на теме прямо сейчас.
- Связанный пост: Разница между батареей и конденсатором
Содержание
Что происходит с конденсатором, если он подключен к обратному напряжению?
Мы знаем, что конденсатор блокирует постоянный ток и пропускает переменный. Полярный, т.е. электролитический конденсатор должен быть подключен к правильным клеммам источника питания постоянного тока для правильной работы при использовании в цепях постоянного тока. Другими словами, положительный и отрицательный источник постоянного тока должны быть подключены к положительной и отрицательной клеммам конденсатора соответственно.
Несчастные случаи реальны и часто происходят намеренно или случайно. Теперь давайте посмотрим, что произойдет, если полярный или электролитический конденсатор подключить к обратной клемме источника питания постоянного тока, т.е. минус к плюсу, и наоборот.
Полярный электролитический конденсатор взорвется при обратной полярности
Давайте обсудим последний сценарий как первый, чтобы быть в безопасности в первую очередь. В случае обратного включения конденсатор вообще не будет работать, а если приложенное напряжение выше значения номинала конденсатора, начнет протекать больший ток утечки и нагревать конденсатор, что приведет к повреждению диэлектрической пленки (алюминиевой слой очень тонкий и его легко сломать) по сравнению с приложенным постоянным напряжением) даже взорвать конденсатор.
Соблюдайте осторожность при подключении поляризованного конденсатора к источнику питания постоянного тока с помощью соответствующих клемм. В противном случае обратное напряжение может повредить общий конденсатор с треском или взрывом за очень короткое время (несколько секунд). Это может привести к серьезной травме или опасному пожару (танталовые конденсаторы с этим справляются).
Алюминиевые слои в электролитическом конденсаторе выдерживают только прямое напряжение постоянного тока (так же, как диод прямого смещения). Обратное постоянное напряжение на полярном конденсаторе приведет к его выходу из строя из-за короткого замыкания между двумя его выводами через диэлектрический материал (так же, как диод обратного смещения, работающий в области пробоя). Это явление известно как клапанный эффект.
Имейте в виду, что электролит, используемый в фольге и электролитическом конденсаторе, может заживить и преобразовать конденсатор в его нормальное состояние, если в конденсаторе прошло очень низкое обратное напряжение. Поэтому, если вы приложили обратное напряжение к полярному конденсатору и используете его для хобби, вы должны протестировать и проверить конденсатор перед установкой в цепь или заменить его новым в случае коммерческого и промышленного использования.
- Связанный пост: Разница между конденсатором и суперконденсатором
Поляризованный конденсатор взорвется при обратном напряжении
В случае обратного напряжения (отрицательный источник к положительной клемме и наоборот) алюминиевый электролитический конденсатор взорвется из-за теории ионов водорода. При неправильном подключении проводов на электролитическом катоде возникает положительное напряжение, а на оксидном слое появляется отрицательное напряжение. В этой ситуации ионы водорода (H 2 ), собранные в оксидном слое, будут проходить через диэлектрическую среду между двумя пластинами и достигать металлического слоя, где они превращаются в газообразный водород. Давление, создаваемое газообразным водородом, достаточно для разрыва конденсатора, а корпус может взорваться со взрывом и паром.
Удельное сопротивление электролитического конденсатора уменьшается при перепутывании клемм
При перепутывании положительной и отрицательной клемм. Водород будет генерироваться без образования оксидной пленки, необходимой для диэлектрической среды. По этой причине удельное сопротивление электролитического конденсатора, подключенного в обратном направлении, меньше по сравнению с правильным подключением, т. Е. Положительным и отрицательным источником к положительной и отрицательной клеммам соответственно. Весь этот процесс потерпит неудачу и повредит общий конденсатор.
- Связанный пост: Какова роль конденсатора в потолочном вентиляторе?
Полярный конденсатор действует как короткое замыкание при обратной установке
Диэлектрическая среда, используемая между двумя электродами электролитического конденсатора, является однонаправленной, т. е. она пропускает ток только и только в одном направлении, как и диод с PN-переходом. В случае обратного подключения диэлектрическая среда не будет выступать в роли сопротивления или изоляционного материала. Газообразный водород будет генерироваться в течение нескольких секунд, и конденсатор будет действовать как короткое замыкание для источника постоянного тока, что приведет к выходу из строя конденсатора (с вздутием верхней части или общим износом компонента).
- Сообщение по теме: Почему дроссель действует как короткое замыкание в источнике постоянного тока?
Полезно знать:
- Поляризованный и электролитический конденсаторы нельзя подключать к сети переменного тока (как прямое, так и обратное подключение), так как они специально разработаны для правильной работы только и только в цепях постоянного тока. . В этом случае конденсатор немедленно взорвется. Весь сценарий мы обсудим в следующей статье.
- Неполярный электролитический конденсатор на самом деле представляет собой два последовательно соединенных электролитических конденсатора, соединенных спиной к спине (так же, как диоды, соединенные спиной к спине, или две батареи, соединенные последовательно). Эти конденсаторы используются эпизодически из-за низкой надежности и эффективности, большого количества потерь и способности выдерживать низкое напряжение.
Связанный пост: Разница между переменным и постоянным током (ток и напряжение)
Предупреждение:
Всегда проверяйте положительный и отрицательный выводы электролитических и полярных конденсаторов. Тот, на котором напечатана отметка «-» (минус или полоса со стрелкой) или короткий вывод, известен как «Катод» или отрицательный вывод, а другой с длинным выводом известен как «Анод» или положительный вывод.
Маленький чувак, как поляризованный конденсатор, очень опасен и радостно взрывается и пускает кровь в случае замены и переворачивания его клемм или большей утечки или прямого тока и напряжения, отличного от номинального напряжения. Пожалуйста, наденьте защитные очки и не прикасайтесь к какой-либо части схемы во время игры и создания схем с использованием конденсаторов.
Похожие сообщения:
- Почему трансформатор не работает от источника постоянного тока вместо переменного?
- AC или DC – что опаснее и почему?
- Почему в электронных схемах используется постоянный ток вместо переменного?
- Что произойдет, если аккумулятор подключен к сети переменного тока?
- Что происходит с аккумулятором при подключении проводов с обратной полярностью
- Почему мы не можем хранить переменный ток в батареях вместо постоянного?
URL-адрес скопирован
Показать полную статью
Связанные статьи
Кнопка «Вернуться к началу»
Конденсаторы: все, что вам нужно знать
Узнайте все, что вам нужно знать о конденсаторах, включая емкость, измерение электрического заряда и различные типы конденсаторов.
Конденсаторы играют важную роль в семействе пассивных электронных компонентов, и их применение повсеместно.
Помните вспышку в своем цифровом фотоаппарате? Конденсаторы делают это возможным. Или возможность изменить канал на вашем телевизоре? Снова конденсаторы. Эти ребята — маленькие батарейки, которые «могут», и вам нужно знать о них все, что нужно знать, прежде чем вы начнете работать над своим первым проектом в области электроники.
Это как бутерброд с мороженым
Проще говоря, конденсатор накапливает электрический заряд , как батарея. Также называемые конденсаторами , вы найдете эти ребята в приложениях, требующих накопления энергии, подавления напряжения и даже фильтрации сигналов. И как они выглядят? Ну, бутерброд с мороженым!
Подумайте о вкусном бутерброде с мороженым. У вас есть корочка с двух сторон и плитка ванильного мороженого посередине. Эта композиция из двух внешних слоев и одного внутреннего слоя и есть то, как выглядит конденсатор.
Видите сходство?
Вот из чего они сделаны:
- Начиная снаружи. В верхней и нижней части конденсатора вы найдете набор металлических пластин, также называемых проводниками. Электрический заряд находит эти металлические пластины очень привлекательными.
- Сидя посередине. Среди этих двух металлических пластин вы найдете изолятор или материал, к которому не притягивается электричество. Этот изолятор обычно называют диэлектриком, и он может быть изготовлен из бумаги, стекла, резины, пластика и т. д.
- Соединение вместе. Две металлические пластины в верхней и нижней части крышки соединены двумя электрическими клеммами, соединяющими ее с остальной частью цепи. Один конец конденсатора подключается к питанию, а другой течет к земле.
Между двумя проводящими электродами помещается диэлектрический материал.
Конденсаторы всех форм и размеров
Конденсаторы
бывают разных форм и размеров, каждый из которых определяет, насколько хорошо они могут удерживать заряд. Три наиболее распространенных типа конденсаторов, с которыми вы столкнетесь, включают керамический конденсатор, электролитический конденсатор и суперконденсатор:
Керамические конденсаторы
Это конденсаторы, с которыми вы, вероятно, будете работать в своем первом проекте электроники с использованием макетной платы. В отличие от своих электролитических аналогов, керамические конденсаторы держат меньший заряд, но и пропускают меньше тока. Они также оказались самыми дешевыми конденсаторами из всех, так что запасайтесь! Вы можете быстро идентифицировать сквозной керамический конденсатор, глядя на маленькие желтые или красные лампочки с двумя торчащими выводами.
Электролитические конденсаторы
Эти ребята выглядят как маленькие жестяные банки, которые вы найдете на печатной плате, и могут удерживать огромный электрический заряд в своей крошечной площади. Это также единственный тип поляризованных конденсаторов, а это означает, что они будут работать только при определенной ориентации. На этих электролитических конденсаторах есть положительный контакт, называемый анодом, и отрицательный контакт, называемый катодом. Анод всегда должен быть подключен к более высокому напряжению. Если вы подключите его наоборот, с катодом, получающим более высокое напряжение, то приготовьтесь к взрыву колпачка!
Несмотря на способность удерживать большое количество электрического заряда, электролитические конденсаторы также хорошо известны тем, что они пропускают ток быстрее, чем керамические конденсаторы. Из-за этого они не лучший выбор, когда вам нужно сохранить энергию.
Суперконденсаторы
Supercaps — супергерои семейства конденсаторов, которые могут хранить большое количество энергии! К сожалению, суперконденсаторы не очень хорошо справляются с избыточным напряжением, и вы окажетесь без конденсатора, если превысите максимальное напряжение, указанное в техническом описании. ПОП!
В отличие от электролитических конденсаторов, вы обнаружите, что суперконденсаторы используются для хранения и разрядки энергии, как батарея. Но, в отличие от батареи, суперконденсаторы высвобождают весь свой заряд сразу, и вы никогда не получите от них срок службы, который вы бы получили от обычной батареи.
Символы конденсаторов
Определить конденсатор на вашей первой схеме очень просто, так как они бывают только двух типов: стандартные и поляризованные. Посмотрите на символ стандартного конденсатора ниже. Вы заметите, что это всего лишь две простые строки с пробелом между ними. Это две металлические пластины, которые вы найдете сверху и снизу физического конденсатора.
Поляризованный конденсатор выглядит немного по-другому и имеет дугообразную линию в нижней части, а также положительный вывод наверху. Эта положительная клемма очень важна и указывает, как должен быть подключен этот поляризованный конденсатор. Положительная сторона всегда подключается к источнику питания, а сторона дуги подключается к земле.
Кто изобрел эти штуки?
Хотя многие считают английского химика Майкла Фарадея пионером современного конденсатора, он не был первым, кто его изобрел. То, что сделал Фарадей, было важно — он продемонстрировал первые практические образцы конденсатора и способы его использования для накопления электрического заряда в своих экспериментах. И благодаря Фарадею у нас также есть способ измерить заряд, который может удерживать конденсатор, известный как емкость и измеряемый в фарадах!
До Майкла Фарадея некоторые записи указывают на то, что покойный, покойный немецкий ученый Эвальд Георг фон Клейст изобрел первый конденсатор в 1745 году. Несколько месяцев спустя голландский профессор по имени Питер ван Мусшенбрук придумал аналогичный конструкции, ныне известной как Лейденская банка. Странное время, верно? Однако все это было просто совпадением, и оба ученых получили равные заслуги в своих первоначальных изобретениях конденсатора.
Знаменитый Бенджамин Франклин 9Позже 0164 усовершенствовал конструкцию лейденской банки, созданную Мусшенбруком. Франклин также смог обнаружить, что использование плоского куска стекла было отличной альтернативой использованию целой банки. Так родился первый плоский конденсатор, получивший название «Площадь Франклина».
Конденсаторы в действии
Давайте подробно рассмотрим, как работают эти мощные конденсаторы, на практическом примере. Вы уже пользовались цифровой камерой, верно? Тогда вы знаете, что есть несколько коротких моментов между тем, когда вы нажимаете кнопку, чтобы сделать снимок, и тем, когда выключается вспышка.
Что здесь происходит? К вспышке прикреплен конденсатор, который заряжается после того, как вы нажмете кнопку, чтобы сделать снимок. Как только этот конденсатор полностью заряжается от батареи камеры, вся эта энергия вырывается наружу ослепляющей вспышкой света!
Как они работают
Так как же все это произошло? Вот взгляд изнутри в таинственный мир конденсатора:
- Запускается с зарядки. Электрический ток от источника питания сначала поступает в конденсатор и застревает на первой пластине. Почему он застревает? Потому что есть изолятор, который не пропускает отрицательно заряженную электронику.
- Накопление зарядов. По мере того, как все больше и больше электронов прилипает к этой первой пластине, она становится отрицательно заряженной и в конечном итоге отталкивает все лишние электроны, с которыми не может справиться, на другую пластину. Затем эта вторая пластина становится положительно заряженной.
- Заряд сохранен. Пока две пластины конденсатора продолжают заряжаться, отрицательные и положительные электроны отчаянно пытаются соединиться, но этот надоедливый изолятор в середине не позволяет им, создавая электрическое поле. Вот почему колпачок продолжает удерживать и накапливать заряд, потому что существует бесконечный источник напряжения между отрицательной и положительной сторонами двух пластин, которые не разрешены.
- Заряд высвобождается. Рано или поздно две пластины нашего конденсатора не смогут удерживать заряд, так как они на пределе своих возможностей. Но что происходит сейчас? Если в вашей цепи есть путь для протекания электрического заряда куда-то еще, тогда все электроны в вашей шапке разрядятся, в конце концов прекратив свое напряжение, поскольку они будут искать другой путь друг к другу.
Измерение этого заряда
Как можно измерить, сколько заряда хранится в конденсаторе? Каждый колпачок рассчитан на определенную емкость. Измеряется в фарадах в честь английского химика Майкла Фарадея. Поскольку один фарад удерживает тонну электрического заряда, вы обычно видите конденсаторы, измеряемые в пикофарадах или микрофарадах. Вот полезная диаграмма, показывающая, как распределяются эти измерения:
Name | Abbreviation | Farads |
Picofarad | pF | 0.000000000001 F |
Nanofarad | nF | 0.000000001 F |
Microfarad | uF | 0,000001 Ф |
Миллифарад | мФ | 0,001 Ф |
Килофарад | кФ | 1000 F |
Теперь, чтобы выяснить, сколько заряда в данный момент хранится в конденсаторе, вам понадобится следующее уравнение:
В этом уравнении общий заряд представлен как (Ом) , и отношение этого заряда можно найти, умножив емкость конденсатора ( C ) на приложенное к нему напряжение ( В ). Здесь следует отметить одну вещь: емкость конденсатора напрямую связана с его напряжением. Таким образом, чем больше вы увеличиваете или уменьшаете источник напряжения в цепи, тем больше или меньше заряда будет иметь ваш конденсатор.
Емкость в параллельных и последовательных цепях
При параллельном соединении конденсаторов в цепи общую емкость можно найти, сложив вместе все емкости по отдельности.
При последовательном соединении конденсаторов общая емкость вашей цепи пропорциональна сумме всех емкостей. Вот краткий пример: если у вас есть два конденсатора по 10 Ф, соединенных последовательно, то их общая емкость составит 5 Ф.
Запуск колпачков в работу
мужчина чинит электронику
Теперь, когда у нас есть четкое представление о том, что такое конденсаторы, как они работают и как их измеряют, давайте рассмотрим три распространенных приложения, в которых используются конденсаторы. Сюда входят такие приложения, как развязывающие конденсаторы, накопители энергии и емкостные сенсорные датчики.
Развязывающий конденсатор
В наши дни вам будет трудно найти схему, которая не включает интегральную схему или ИС. В этих типах схем конденсаторы выполняют важную работу, удаляя все высокочастотные шумы, присутствующие в сигналах источника питания, которые питают ИС.
Почему это необходимая работа для нашего конденсатора? Любое колебание напряжения может быть фатальным для микросхемы и даже привести к неожиданному отключению питания микросхемы. Размещая конденсаторы между ИС и источником питания, они гасят колебания напряжения, а также действуют как второй источник питания, если первичный источник питания падает достаточно, чтобы отключить ИС.
Аккумулятор энергии
Конденсаторы имеют много общих характеристик с батареями, включая их способность накапливать энергию. Однако, в отличие от батареи, конденсаторы не могут удерживать такую же мощность. Но хотя они не могут угнаться за количеством, они компенсируют это своим энтузиазмом, чтобы разрядиться как можно быстрее! Конденсаторы могут отдавать энергию намного быстрее, чем батарея, что делает их идеальными для питания вспышки в камере, настройки радиостанции или переключения каналов на телевизоре.
Емкостные сенсорные датчики
Одно из последних достижений в области применения конденсаторов связано с бурным развитием технологий сенсорных экранов. Стеклянные экраны, из которых состоят эти сенсорные датчики, имеют очень тонкое прозрачное металлическое покрытие. Когда ваш палец касается экрана, это создает падение напряжения, определяя точное местоположение вашего пальца!
Практичность — выбор конденсатора
Давайте перейдем к сфере практичности и поговорим о том, на что следует обратить внимание при выборе следующего конденсатора. Необходимо учитывать пять переменных, в том числе:
- Размер. Сюда входят как физический размер конденсатора, так и его общая емкость. Не удивляйтесь, если выбранный вами конденсатор является самой большой частью вашей печатной платы, так как чем больше емкость вам нужна, тем больше они получаются.
- Допуск — Как и их аналоги резисторов, конденсаторы также имеют переменный допуск. Вы найдете допуск для конденсаторов в диапазоне от ± 1% до ± 20% от его рекламируемого значения.
- Максимальное напряжение — Каждый конденсатор имеет максимальное напряжение, которое он может выдержать. Иначе он взорвется! Вы найдете максимальное напряжение от 1,5 В до 100 В.
- Эквивалентное последовательное сопротивление (ESR) — Как и любой другой физический материал, выводы конденсатора имеют очень небольшое сопротивление. Это может стать проблемой, если вам нужно помнить о тепле и потерях мощности.
- Ток утечки — В отличие от наших батарей, конденсаторы будут пропускать накопленный заряд. И хотя он разряжается медленно, вы должны обратить внимание на то, насколько сильно протекает ваш конденсатор, если его основная функция заключается в хранении энергии.
Все заряжено
Вот и все, что вам нужно знать о конденсаторах, чтобы полностью зарядиться для вашего следующего проекта в области электроники! Конденсаторы — это очаровательная небольшая группа, способная накапливать электрический заряд для различных приложений, и они могут даже выступать в качестве вторичного источника питания для этих чувствительных интегральных схем.
Добавить комментарий