Содержание
Изготовление лопастей для ветрогенератора своими руками
Использование альтернативных источников энергии – один из основных трендов нашего времени. Чистая и доступная энергия ветра может преобразовываться в электричество даже у вас дома, если построить ветряк и соединить его с генератором.
Соорудить лопасти для ветрогенератора своими руками можно из обычных материалов, не используя специального оборудования. Мы расскажем, какая форма лопастей эффективнее, и поможем подобрать подходящий чертеж для ветровой электростанции.
Содержание статьи:
- Как работает простой ветрогенератор?
- Какая форма лопасти является оптимальной?
- Из чего делают лопасти в домашних условиях?
- Канализационные трубы из поливинилхлорида
- Алюминий — тонкий, легкий и дорогой
- Стекловолокно или стеклоткань — для профессионалов
- Дешево и сердито: деревянная деталь для ветроколеса
- Чертежи и примеры лопастей
- Выполнение балансировки ветряка
- Выводы и полезное видео по теме
Как работает простой ветрогенератор?
Ветрогенератор – прибор, позволяющий преобразовывать энергию ветра в электричество.
Принцип работы его заключается в том, что ветер вращает лопасти, приводит в движение вал, по которому вращение поступает на генератор через редуктор, увеличивающий скорость.
Работа ветряной электростанции оценивается по КИЭВ — коэффициенту использования энергии ветра. Когда ветроколесо вращается быстро, оно взаимодействует с большим количеством ветра, а значит забирает у него большее количество энергии
Подразделяют две основные разновидности ветряных генераторов:
- ;
- горизонтальные.
Вертикально ориентированные модели построены так, чтобы ось пропеллера была расположена перпендикулярно земле. Таким образом, любое перемещение воздушных масс, независимо от направления, приводит конструкцию в движение.
Такая универсальность является плюсом данного типа ветряков, но они проигрывают горизонтальным моделям по производительности и эффективности работы
Горизонтальный ветрогенератор напоминает флюгер. Чтобы лопасти вращались, конструкция должна быть повернута в нужную сторону, в зависимости от направления движения воздуха.
Для контроля и улавливания изменений направления ветра устанавливают специальные приборы. КПД при таком расположении винта значительно выше, чем при вертикальной ориентации. В бытовом применении рациональней использовать ветрогенераторы этого типа.
Какая форма лопасти является оптимальной?
Один из главных элементов ветрогенератора – комплект лопастей.
Существует ряд факторов, связанных с этими деталями, которые сказываются на эффективности ветряка:
- вес;
- размер;
- форма;
- материал;
- количество.
Если вы решили сконструировать лопасти для самодельного ветряка, обязательно нужно учитывать все эти параметры. Некоторые полагают, что чем больше крыльев на винте генератора, тем больше энергии ветра можно получить. Другими словами, чем больше, тем лучше.
Однако это далеко не так. Каждая отдельная часть движется, преодолевая сопротивление воздуха. Таким образом, большое количество лопастей на винте требует большей силы ветра для совершения одного оборота.
Галерея изображений
Фото из
Лопасти ветряка в форме турбин
Вертикальное расположение лопастей
Ветряк нестандартной конфигурации
Лопасти в виде обычных лопаток
Кроме того, слишком много широких крыльев могут стать причиной образования так называемой «воздушной шапки» перед винтом, когда воздушный поток не проходит сквозь ветряк, а огибает его.
Форма имеет большое значение. От нее зависит скорость движения винта. Плохое обтекание становится причиной возникновения вихрей, которые тормозят ветроколесо
Самым эффективным является однолопастной ветрогенератор. Но построить и сбалансировать его своими руками очень сложно. Конструкция получается ненадежная, хоть и с высоким коэффициентом полезного действия. По опыту многих пользователей и производителей ветряков, самой оптимальной моделью является трехлопастная.
Вес лопасти зависит от ее размера и материала, из которого она будет изготовлена. Размер нужно подбирать тщательно, руководствуясь формулами для расчетов. Кромки лучше обрабатывать так, чтобы с одной стороны имелось закругление, а противоположная сторона была острой
Правильно подобранная форма лопасти для ветрогенератора является фундаментом его хорошей работы.
Для домашнего изготовления подходят такие варианты:
- парусного типа;
- крыльчатого типа.
Лопасти парусного типа представляют собой простые широкие полосы, как на ветряной мельнице. Эта модель наиболее очевидна и проста в изготовлении. Однако ее КПД настолько мал, что эта форма практически не применяется в современных ветрогенераторах. Коэффициент полезного действия в данном случае составляет около 10-12%.
Гораздо более эффективная форма – лопасти крыльчатого профиля. Здесь задействованы принципы аэродинамики, которые поднимают в воздух огромные самолеты. Винт такой формы легче приводится в движение и вращается быстрее. Обтекание воздухом значительно сокращает сопротивление, которое встречает на своем пути ветряк.
Правильный профиль должен напоминать крыло самолета. С одной стороны лопасть имеет утолщение, а с другой — пологий спуск. Воздушные массы обтекают деталь такой формы очень плавно
КПД этой модели достигает значения 30-35%. Хорошая новость заключается в том, что построить крыльчатую лопасть можно и своими руками с применением минимума инструментов. Все основные расчеты и чертежи можно легко адаптировать под свой ветряк и пользоваться бесплатной и чистой энергией ветра без ограничений.
Из чего делают лопасти в домашних условиях?
Материалы, которые подойдут для строительства ветрогенератора – это, прежде всего, пластик, легкие металлы, древесина и современное решение – стеклоткань. Главный вопрос заключается в том, сколько труда и времени вы готовы потратить на изготовление ветряка.
Галерея изображений
Фото из
Материал для самостоятельного изготовления лопастей ветряка подбирают с учетом собственного опыта в обработке, достаточной для ветровых нагрузок жесткости, легкости сверления и резки
По жесткости и способности хорошо держать ветровую нагрузку лидирует листовой металл. К тому же его можно гнуть, придавая аэродинамическую форму
Полимерные трубы — самый дешевый и практичный вариант. Они без проблем режутся и сверлятся, но могут быстро утратить жесткость. Их замена не станет проблемой ни для нового изготовления, ни для кошелька
Не вызовет осложнений работа с фанерой, ОСП, МДФ, но стоит учесть, что от постоянного атмосферного воздействия такие лопасти постепенно придут в непригодность
Лопасти из жесткого технологичного материала
Металлическая спиралевидная турбина
Лопасти ветряка из полимерной трубы
Сборка ветряка с фанерными лопастями
Канализационные трубы из поливинилхлорида
Самый популярный и широко распространенный материал для изготовления пластиковых лопастей для ветрогенератора является обыкновенная канализационная ПВХ-труба. Для большинства домашних генераторов с диаметром винта до 2 м хватит трубы 160 мм.
К преимуществам такого метода относят:
- невысокую цену;
- доступность в любом регионе;
- простоту работы;
- большое количество схем и чертежей в интернете, большой опыт использования.
Трубы бывают разными. Это известно не только тем, кто изготавливает самодельные ветряные электростанции, но всем, кто сталкивался с монтажом канализации или водопровода. Они отличаются по толщине, составу, производителю. Труба стоит недорого, поэтому не нужно пытаться еще больше удешевить свой ветряк, экономя на ПВХ-трубах.
Некачественный материал пластиковых труб может привести к тому, что лопасти треснут при первом же испытании и вся работа будет проделана впустую
Сначала нужно определиться с лекалом. Вариантов существует много, каждая форма имеет свои недостатки и преимущества. Возможно, имеет смысл сначала поэкспериментировать, прежде чем вырезать итоговый вариант.
Поскольку цена на трубы невысокая, а найти их можно в любом строительном магазине, этот материал отлично подойдет для первых шагов в моделировании лопастей. Если что-то пойдет не так, всегда можно купить еще одну трубу и попробовать сначала, кошелек от таких экспериментов не сильно пострадает.
Опытные пользователи энергии ветра заметили, что для изготовления лопастей для ветрогенератора лучше использовать оранжевые, а не серые трубы. Они лучше держат форму, не изгибаются после формирования крыла и дольше служат
Конструкторы-любители предпочитают ПВХ, так как во время испытаний сломанную лопасть можно заменить на новую, изготовленную за 15 минут прямо на месте при наличии подходящего лекала. Просто и быстро, а главное – доступно.
Фото-инструкция по изготовлению лопастей ветряка из полимерных труб поможет наглядно освоить шаги и последовательность процесса:
Галерея изображений
Фото из
Заранее вычерченный и перенесенный на картон шаблон лопастей переносим на обрезки полимерных труб, оставшиеся после устройства системы
По на меченным линиям вырезаем лопасти. Сначала прорезаем продольные линии, затем поперечные
С широкой стороны лопастей производим разметку выступа, необходимого для крепления лопастей к вращающемуся диску
Вырезаем выступа на всех лопастях, используя болгарку. Обрезанные края мелкой наждачной бумагой зачищаем от заусенцев
Так как слишком длинные монтажные пластины нам не пригодятся, сгибаем их пополам, чтобы разделить на две части
Болгаркой или электропилой разрезаем согнутую монтажную пластину вдоль сгиба
Используя молоток и деревянный брусок в качестве базы, выравниваем металлические монтажные пластины после резки
Обрезанные края монтажных металлических пластин зачищаем наждачкой, чтобы случайно не пораниться во время сборки
Шаг 1: Разметка абриса лопастей ветряка
Шаг 2: Раскрой лопастей блогаркой
Шаг 3: Разметка выступа для крепления
Шаг 4: Вырезание выступа и удаление заусенцев
Шаг 5: Подготовка металлических пластин
Шаг 6: Разрезание монтажной пластины на две части
Шаг 7: Выравнивание разрезанных пластин
Шаг 8: Зачистка орезанной стороны наждачкой
Все подготовительные шаги выполнены, теперь лопасти надо присоединить к вращающейся вслед за ветром детали:
Галерея изображений
Фото из
Приложив к выступу на лопасти обрезанную монтажную пластину, отмечаем через отверстия точки предстоящего крепления
Сверлим отверстия для установки крепежа, подложив под лопасть обрезок доски или брусок. Для этого лучше взять сверло диаметром чуть меньше, чем диаметр ножки шурупа
Оставшуюся после сверления полимерную стружку из отверстий надо аккуратно извлечь, стараясь не отрывать так, чтобы увеличился размер гнезд для крепления
На металлическом диске отмечаем центр, в который будет установлен анкерный болт, и вычерчиваем равносторонний треугольник, каждая вершина которого отметит положение монтажной пластины
Приклеим пластины к металлическому диску, расположив их в вершинах треугольника. Это нам облегчит работу во время сварки
В центре диска располагаем и привариваем гайку для введения в нее анкерного болта. Приклеенные пластины привариваем выпуклым швом
Прикручиваем вырезанные из труб лопасти к сваренной детали. Устанавливаем их так, чтобы изгиб у всех был направлен в одну сторону
На каждый шуруп с тыльной стороны накручиваем гайку. Для того чтобы крепеж не развинчивался при вращении лопастей, их желательно закрепить пайкой или сваркой
Шаг 9: Разметка точек крепления
Шаг 10: Сверление отверстий для крепления
Шаг 11: Подготовка отверстий к сборке
Шаг 12: Разметка диска для установки лопастей
Шаг 13: Приклеивание пластин перед сваркой
Шаг 14: Подготовка диска вращения к сборке
Шаг 15: Крепление пластиковых лопастей
Шаг 16: Закручивание гаек на шурупы
Алюминий — тонкий, легкий и дорогой
Алюминий – легкий и прочный металл. Его традиционно используют для изготовления лопастей для ветрогенераторов. Благодаря небольшому весу, если придать пластине нужную форму, аэродинамические свойства винта будут на высоте.
Основные нагрузки, которые испытывает ветряк во время вращения, направлены на изгиб и разрыв лопасти. Если пластик при такой работе быстро даст трещину и выйдет из строя, рассчитывать на алюминиевый винт можно гораздо дольше.
Однако если сравнивать алюминий и ПВХ-трубы, металлические пластины все равно будут тяжелее. При высокой скорости вращения велик риск повредить не саму лопасть, а винт в месте крепления
Еще один минус деталей из алюминия – сложность изготовления. Если ПВХ-труба имеет изгиб, который будет использован для придания аэродинамических свойств лопасти, то алюминий, как правило, берется в виде листа.
После вырезания детали по лекалу, что само по себе гораздо сложнее, чем работа с пластиком, полученную заготовку еще нужно будет прокатать и придать ей правильный изгиб. В домашних условиях и без инструмента сделать это будет не так просто.
Вместо недешевого алюминия можно использовать обрезки кровельной жести или куски профнастила, оставшиеся после укладки:
Галерея изображений
Фото из
Оставшиеся после укладки листы профилированной кровельной жести выравниваем молотком, расположив заготовки на ровной деревянной поверхности. Вычерчиваем на них абрис лопастей и оставляем вокруг по 1 см
Оставленный вокруг абриса 1 см с помощью ножниц и молотка загибаем. Это нужно для повышения жесткости и обеспечения безопасности в сборке
Аналогичным образом поступаем со всеми заготовленными для ветрогенератора лопастями. Для надежности по краю деталей можно «пройтись» плоскогубцами
Все лопасти складываем пачкой, чтобы проверить конгруэнтность. При больших отклонениях поправляем ситуацию доступным способом
Используя молоток, придаем лопастям форму желобов. В качестве шаблона изгиба лучше использовать трубу диаметром 320 мм
Для того чтобы лопасти можно было прикрепить к основанию с вмонтированным подшипником, размечаем точки и сверлим в них отверстия
Собираем вращающуюся часть ветрогенератора. Закрепляем лопасти на основании шурупами с гайками. Чтобы гайки не раскручивались при вращении, их желательно дополнительно закрепить пайкой или сваркой
Устанавливаем винт ветряка на мачту, подключаем к нему генератор, а его соединяем или напрямую с линией освещения, или с инвертором
Шаг 1: Подготовка материала к изготовлению лопастей
Шаг 2: Загибание кромок лопастей
Шаг 3: Обработка всех лопастей ветряка
Шаг 4: Подгонка всех лопастей под равный размер
Шаг 5: Придаине формы желобов
Шаг 6: Разметка отверстий для крепления
Шаг 7: Сборка рабочей части ветряка
Шаг 8: Установка ветрогенератора на мачту
Стекловолокно или стеклоткань — для профессионалов
Если вы решили подойти к вопросу создания лопасти осознанно и готовы потратить на это много сил и нервов, подойдет стекловолокно. Если ранее вы не имели дела с ветрогенераторами, начинать знакомство с моделирования ветряка из стеклоткани – не лучшая идея. Все-таки этот процесс требует опыта и практических навыков.
Лопасть из нескольких слоев стеклоткани, скрепленных эпоксидным клеем, будет прочной, легкой и надежной. При большой площади поверхности деталь получается полая и практически невесомая
Для изготовления берется стеклоткань – тонкий и прочный материал, который выпускается в рулонах. Помимо стекловолокна пригодится эпоксидный клей для закрепления слоев.
Начинают работу с создания матрицы. Это такая заготовка, которая представляет собой форму для будущей детали.
Матрица может быть изготовлена из дерева: бруса, доски или бревна. Прямо из массива вырубают объемный силуэт половины лопасти. Еще вариант – форма из пластика
Сделать заготовку самостоятельно очень сложно, нужно иметь перед глазами готовую модель лопасти из дерева или другого материала, а только потом по этой модели вырезают матрицу для детали. Таких матриц нужно как минимум 2. Зато, сделав удачную форму однажды, ее можно применять многократно и соорудить таким образом не один ветряк.
Дно формы тщательно смазывают воском. Это делается для того, чтобы готовую лопасть можно было легко извлечь впоследствии. Укладывают слой стекловолокна, промазывают его эпоксидным клеем. Процесс повторяют несколько раз, пока заготовка не достигнет нужной толщины.
Затем клей должен высохнуть. Некоторые рекомендуют поместить форму в вакуумный пакет и откачать воздух. Так клей лучше проникает во все слои стеклоткани, не оставляя непропитанных участков
Когда эпоксидный клей высохнет, половину детали аккуратно вынимают из матрицы. То же делают со второй половиной. Части склеивают между собой, чтобы получилась полая объемная деталь. Легкая, прочная, правильной аэродинамической формы лопасть из стекловолокна – вершина мастерства домашнего любителя ветряных электростанций.
Ее главный минус – сложность реализации задумки и большое количество брака на первых порах, пока не будет получена идеальная матрица, а алгоритм создания не будет отточен.
Дешево и сердито: деревянная деталь для ветроколеса
Деревянная лопасть – дедовский метод, который легко осуществим, но малоэффективен при сегодняшнем уровне потребления электричества. Сделать деталь можно из цельной доски легких пород древесины, например, сосны. Важно подобрать хорошо высушенную деревянную заготовку.
Если дерево будет сырым, в процессе высыхания винт может «повести» и он деформируется. Да и вес влажного дерева существенно выше сухого
Нужно выбрать подходящую форму, но учитывать тот факт, что деревянная лопасть будет не тонкой пластиной, как алюминиевая или пластиковая, а объемной конструкцией. Поэтому придать заготовке форму мало, нужно понимать принципы аэродинамики и представлять себе очертания лопасти во всех трех измерениях.
Придавать окончательный вид дереву придется рубанком, лучше электро. Для долговечности древесину обрабатывают антисептическим защитным лаком или краской
Главный недостаток такой конструкции – большой вес винта. Чтобы сдвинуть с места эту махину, ветер должен быть достаточно сильным, что трудноосуществимо в принципе. Однако дерево – доступный материал. Доски, подходящие для создания винта ветрогенератора, можно найти прямо у себя во дворе, не потратив ни копейки. И это главное преимущество древесины в данном случае.
КПД деревянной лопасти стремится к нулю. Как правило, время и силы, которые уходят на создание такого ветряка не стоят полученного результата, выраженного в ваттах. Однако, как учебная модель или пробный экземпляр деревянная деталь вполне имеет место быть. А еще флюгер с деревянными лопастями эффектно смотрится на участке.
С шагами изготовления ветряка с вырезанными из фанеры лопастями ознакомит следующая подборка фотоснимков:
Галерея изображений
Фото из
С отслужившего велосипеда снимаем генератор и сверлим в нем отверстия для крепления рабочей части ветряка — фанерного диска с лопастями
На листе фанеры вычерчиваем лопасти будущего ветрогенератора. Для того чтобы сократить расход материала, лучше расположить их не так, как показано на фото, а направить основанием в противоположные стороны
Все детали рабочей части фанерного ветряка сначала вычерчиваем на бумаге, затем переносим на лист фанеры
В соответствии с разметкой выпиливаем детали сначала грубо электролобзиком, потом дорабатываем вручную по необходимости
Учитывая условия работы собираемой мини электростанции, обрабатываем ее перед сборкой. Покрываем антисептической пропиткой и антипиреном
Срезанные на один угол отрезки бруска прикручиваем к центральному диску, к которому будут крепиться все детали фанерного винта ветрогенератора
К закрепленным на диске колышкам прикручиваем фанерные лопасти и генератор от отслужившего велосипеда
После сборки рабочей части ветрогенератора проверяем, насколько свободно вращается диск с генератором. Если что-то мешает, подтачиваем, поправляем
Шаг 1: Подготовка генератора от велосипеда
Шаг 2: Нанесение шаблона для лопастей
Шаг 3: Чертежи шаблонов деталей ветряка
Шаг 4: Выпиливание компонентов рабочей части
Шаг 5: Обработка деталей антисептиком
Шаг 6: Крепление скошенных колышков
Шаг 7: Установка велосипедного генератора
Шаг 8: Проверка свободного вращения винта
Рабочая часть готова и проверена на работоспособность, значит, осталось ее только покрасить и прикрутить к мачте:
Галерея изображений
Фото из
Зафиксируем фанерный винт ветрогенератора на опоре, вместе с которой он будет установлен на мачту. Прикрепим к нему хвостовую часть. Проверим ход системы на этом этапе
Снова разберем фанерный ветряк, чтобы подготовить его к покраске. Все детали покрываем грунтом, совместимым с защитно-декоративным составом
Окрашиваем детали ветряка в выбранные для этого приятные яркие цвета. Хорошо, если колер будет напоминать цветы из детских книжек или мультиков
К невысокой мачте лучше прикрепить ветряк после ее установки, чтобы не затруднять проведение работ. Можно поставить ее с уже зафиксированным прибором, но так сложнее
Шаг 9: Фиксация винта ветряка на опоре
Шаг 10: Обработка деталей грунтовкой
Шаг 11: Окрашивание деталей ветряка
Шаг 12: Крепление рабочей части на мачте
Чертежи и примеры лопастей
Сделать правильный расчет винта ветрогенератора, не зная основных параметров, которые отображаются в формуле, а так же не имея понятия, как эти параметры влияют на работу ветряка, очень сложно.
Лучше не тратить свое время, если желания вникать в основы аэродинамики нет. Готовые чертежи-схемы с заданными показателями помогут подобрать подходящую лопасть для ветряной электростанции.
Чертеж лопасти для двухлопастного винта. Изготавливается из канализационной трубы 110 диаметра. Диаметр винта ветряка в данных расчетах – 1 м
Подобный небольшой ветрогенератор не сможет обеспечить вас высокой мощностью. Скорей всего, вы вряд ли сможете выжать из этой конструкции больше 50 Вт. Однако двухлопастной винт из легкой и тонкой ПВХ-трубы даст высокую скорость вращения и обеспечит работу ветряка даже при небольшом ветре.
Чертеж лопасти для трехлопастного винта ветрогенератора из трубы 160 мм диаметра. Расчетная быстроходность в этом варианте – 5 при ветре 5 м/с
Трехлопастной винт такой формы может быть использован для более мощных агрегатов, примерно 150 Вт при 12 В. Диаметр всего винта в этой модели достигает 1,5 м. Ветроколесо будет вращаться быстро и легко запускаться в движение. Ветряк с тремя крыльями встречается в домашних электростанциях чаще всего.
Чертеж самодельной лопасти для 5-ти лопастного винта ветрогенератора. Изготавливается из трубы ПВХ диаметром 160 мм. Расчетная быстроходность – 4
Такой пятилопастной винт сможет выдавать до 225 оборотов в минуту при расчетной скорости ветра 5 м/с. Чтобы построить лопасть по предложенным чертежам, нужно перенести координаты каждой точки из колонок «Координаты лекала фронт/тыл» на поверхность пластиковой канализационной трубы.
По предложенной ниже таблице можно рассчитать диаметр ветряка с 2-16 лопастями. При этом можно подбирать размер с учетом желаемой мощности на выходе.
По таблице видно, что чем больше крыльев у ветрогенератора, тем меньше должна быть их длина для получения тока одинаковой мощности
Как показывает практика, обслуживать ветрогенератор больше 2 метров в диаметре достаточно сложно. Если в соответствии с таблицей вам необходим ветряк большего размера, подумайте над увеличением числа лопастей.
С правилами и принципами ознакомит статья, в которой пошагово изложен процесс производства вычислений.
Выполнение балансировки ветряка
Балансировка лопастей ветрогенератора поможет сделать его работу максимально эффективной. Для осуществления балансировки нужно найти помещение, где нет ветра или сквозняка. Разумеется, для ветроколеса больше 2 м в диаметре найти такое помещение будет сложно.
Лопасти собираются в готовую конструкцию и устанавливаются в рабочее положение. Ось должна располагаться строго горизонтально, по уровню. Плоскость, в которой будет вращаться винт, должна быть выставлена строго вертикально, перпендикулярно оси и уровню земли.
Винт, который не движется, нужно повернуть на 360/х градусов, где х = количество лопастей. В идеале сбалансированный ветряк не будет отклоняться ни на 1 градус, а останется неподвижным. Если лопасть повернулась под собственным весом, ее нужно немного подправить, уменьшить вес с одной стороны, устранить отклонение от оси.
Процесс повторяется до тех пор, пока винт не будет абсолютно неподвижным в любом положении. Важно, чтобы во время балансировки не было ветра. Это может исказить результаты испытаний
Также важно проконтролировать, чтобы все части вертелись строго в одной плоскости. Для проверки на расстоянии 2 мм с обеих сторон одной из лопастей устанавливают контрольные пластины. Во время движения ни одна часть винта не должна коснуться пластины.
Для эксплуатации ветрогенератора с изготовленными лопастями потребуется собрать систему, аккумулирующую полученную энергию, сохраняющую ее и передающую потребителю. Одним из компонентов системы является контроллер. О том, как сделать , узнаете, ознакомившись с рекомендованной нами статьей.
Выводы и полезное видео по теме
Построить ветряк своими руками из подручных материалов вполне возможно. Если начать с более простых моделей, то и первая попытка, вероятно, станет успешной. С опытом беритесь за более сложные задумки, чтобы получить максимально эффективный и мощный ветрогенератор.
Видео #1. Как сделать ветряк из труб ПВХ:
Видео #2. Ветрогенератор своими руками:
Видео #3. Ветряк из оцинкованной стали:
Если вы хотите использовать чистую и безопасную энергию ветра для бытовых нужд и не планируете тратить огромные деньги на покупку дорогостоящего оборудования, самодельные лопасти из обычных материалов будут подходящей идеей. Не бойтесь экспериментов, и вам удастся еще больше усовершенствовать существующие модели винтов ветряка.
Хотите рассказать, как собственноручно делали лопасти для ветряка, снабжающего электроэнергией дачу? Желаете поделиться полезной информацией с посетителями сайта или задать вопрос? Пишите, пожалуйста, комментарии в расположенном ниже блоке.
расчет лопастей для вертикального ветряка, чертежи, видео по изготовлению, из чего сделать
Домашние ветряные электростанции – независимый альтернативный способ получения электроэнергии.
Установка такого оборудования позволяет существенно снизить траты на электричество при условии, что в местности присутствуют ветра хотя бы от 4 м/с.
А чем выше скорость ветра, тем большее количество энергии вырабатывается устройством.
В этой статье будет рассмотрен пошаговый план изготовления лопастей ветрогенератора своими руками.
Содержание
-
1 Ветряные электростанции
-
2 Создание лопастей поэтапно
-
2.1 Лопасти из ПВХ-трубы
-
2.2 Алюминиевые лопасти
-
2.3 Лопасти из стекловолокна
-
Ветряные электростанции
Существует множество вариантов конструкции ветрогенераторов, для классификации которых есть базовые признаки:
- расположение вращательной оси: вертикальное и горизонтальное;
- количество лопастей: чаще от 1 до 6, но бывают варианты и с большим количеством;
- тип вращательной лопасти: в виде крыла или паруса;
- материал для изготовления лопасти: дерево, алюминий, ПВХ;
- конструкция винтового колеса: с фиксированным или переменным шагом.
Продуктивность работы ветрогенератора в большей степени зависит от лопастей: от того, насколько правильно рассчитаны их размеры и количество, и удачно ли подобран материал для изготовления.
Сделать лопасти своими руками не составит труда, но перед тем, как начать работу, нужно изучить некоторые факты:
- Чем длиннее лопасти, тем легче они поддаются движению ветра, даже самого слабого. Однако большая длина будет замедлять скорость вращения ветряного колеса.
- На чуткость ветряного колеса влияет и количество лопастей: чем их больше, тем проще будет запускаться вращение. При этом показатели мощности и скорости будут снижаться, а значит, такое устройство непригодно для выработки электроэнергии, но отлично подойдет для подъемных работ.
- От диаметра и скорости вращения ветряного колеса зависит уровень шума, исходящего от устройства. Это нужно учитывать при установке ветрогенератора вблизи жилых домов.
- Большее количество энергии от ветра можно получить, установив ветряк как можно выше над уровнем земли (оптимально от 6 до 15 м). Поэтому зачастую установка происходит на крыше здания или на высокой мачте.
Готовые лопасти для ветрогенератора
Создание лопастей поэтапно
При самостоятельном проектировании лопастей необходимо учитывать следующее:
- Для начала нужно определиться с формой лопасти. Для домашнего горизонтального ветрогенератора более удачной считается форма крыла. Благодаря своему строению она имеет меньшее аэродинамическое сопротивление. Такой эффект создается за счет отличия площадей внешней и внутренней поверхностей элемента, и поэтому появляется разница давления воздуха на стороны. Форма паруса имеет большее сопротивление и поэтому менее эффективна.
Так выглядит сопротивление ветра с разными моделями лопастей
- Дальше нужно определиться с количеством лопастей. Для местности, в которой присутствуют постоянные ветра, можно использовать быстроходные ветрогенераторы. Таким устройствам достаточно 2-3 лопастей для максимальной раскрутки двигателя. При использовании такого устройства в безветренной местности оно будет неэффективным, и будет просто простаивать в спокойную погоду. Еще одним недостатком трехлопастных ветрогенераторов является высокий уровень шума, по звуку напоминающий вертолет. Такая установка не рекомендуется вблизи густо заселенных домов.
Для наших широт, со слабыми и средними ветрами, лучше подойдут пяти- и шестилопастные ветряки, что позволит им улавливать слабый поток ветра и поддерживать стабильную работу двигателя
Это интересно: при правильных расчетах успешно вырабатывать электроэнергию может ветрогенератор как с одной, так и с двумя-тремя лопастями. А при наличии всего одной лопасти устройство будет работать при любой, даже самой незначительной скорости ветра!
- Расчет мощности ветряного устройства. Невозможно рассчитать точный показатель, поскольку мощность напрямую будет зависеть от погоды и движения ветра. Но существует прямая зависимость между диаметром ветряного колеса с количеством лопастей и мощностью оборудования.
Данные приведены для средней скорости ветра 4 м/с (для увеличения нажмите на картинку)
Разобравшись с данными в таблице и поняв взаимосвязь, можно с помощью создания правильного винтового колеса влиять на мощность будущей конструкции
- Выбор материала для создания лопастей. Выбор материалов для создания лопастей достаточно широк: ПВХ, стекловолокно, алюминий и др. Однако каждый из них имеет свои плюсы и минусы. Остановимся на выборе материала более подробно.
Лопасти для ветрогенератора из стеклопластика
Лопасти из ПВХ-трубы
ПВХ лопасти
При подборе правильного размера и толщины труб, полученное колесо будет обладать высокой прочностью и эффективностью. Следует учитывать, что при сильных порывах ветра, пластик недостаточной толщины может не выдержать нагрузку, и разлететься на мелкие кусочки.
Для того чтобы обезопасить конструкцию, лучше уменьшить длину лопастей и увеличить их количество до 6. Для получения такого количества деталей как раз хватит одной трубы.
Для создания лопасти нужно взять трубу с минимальной толщиной стенки 4 мм и диаметром 160 мм, и нанести с помощью готового шаблона и маркера разметку будущих элементов.
Для того чтобы не допустить ошибки при самостоятельных расчетах, лучше воспользоваться готовым шаблоном, который легко можно найти в интернете. Поскольку без специальных знаний в этом деле не обойтись.
После порезки трубы полученные элементы нужно зашлифовать и скруглить по краям. Чтобы соединить лопасти, изготавливается самодельный стальной узел, с достаточной толщиной и прочностью.
Алюминиевые лопасти
Такая лопасть прочнее и тяжелей, а значит, и вся конструкция, удерживающая винт, должна быть массивней и устойчивей. К последующей балансировке колеса тоже нужно отнестись с повышенным вниманием.
Чертеж стандартного алюминиевого элемента для шестилопастного колеса
По представленному шаблону из листа алюминия вырезается 6 одинаковых элементов, к внутренней стороне которых нужно приварить втулки с резьбой для дальнейшего крепления.
К соединительному узлу нужно приварить шпильки, которые будут соединяться с подготовленными на лопастях втулками.
Для того чтобы улучшить аэродинамические свойства такой лопасти, ей нужно придать правильную форму. Для этого ее нужно прокатать в неглубокий желоб так, чтобы между осью прокрутки и продольной осью заготовки образовался угол 10 градусов.
Лопасти из стекловолокна
Преимуществом этого материала является оптимальное соотношение массы и прочности, в сумме с аэродинамическими свойствами. Но работа со стеклотканью требует особого мастерства и большого профессионализма, поэтому в домашних условиях такое изделие создать сложно.
Лопасти из стекловолокна
Это важно: для бесперебойной работы ветрогенератора и долгих лет службы, ему требуется грамотный уход. Благодаря нескольким регулярным действиям самодельное устройство может проработать от 10 до 15 лет. К таким действиям относится смазывание подвижных элементов, проверка лопастей и подшипников на предмет повреждений, профилактика коррозии всех механизмов, регулировка болтов и покраска металлических деталей.
Можно сделать вывод, что наиболее подходящий материал для самостоятельной сборки ветряного колеса – ПВХ-труба. Она сочетает в себе прочность, легкость и хорошие аэродинамические характеристики. Причем, это очень доступный материал, а с работой справится даже новичок.
Из этого видео Вы узнаете, как сделать лопасти для ветрогенератора своими руками:
- Автор: Katya
- Распечатать
Оцените статью:
(4 голоса, среднее: 3 из 5)
Поделитесь с друзьями!
Конструкция лопастей ветряных турбин, плоских, изогнутых или изогнутых
Должны ли лопасти ветряных турбин быть плоскими, изогнутыми или изогнутыми
Ветер является бесплатным источником энергии, пока правительства не облагают его налогом, но ветер также очень непредсказуем и ненадежный источник энергии, поскольку она постоянно меняется как по силе, так и по направлению. Таким образом, чтобы получить максимальную отдачу от доступной энергии ветра, важно, чтобы конструкция лопастей ветряной турбины имела оптимальные характеристики.
Чтобы производить полезное количество энергии, ветряные турбины, как правило, должны быть большими и высокими, но для эффективной работы они также должны быть хорошо спроектированы и спроектированы, что также делает их дорогими. Большинство ветряных турбин, предназначенных для производства электроэнергии, состоят из двух- или трехлопастного пропеллера, вращающегося вокруг горизонтальной оси. Очевидно, что эти пропеллерные конструкции лопастей ветряных турбин преобразуют энергию ветра в полезную мощность на валу, называемую крутящим моментом.
Типовая конструкция лопасти ветряной турбины
Это достигается за счет извлечения энергии из ветра путем его замедления или замедления при прохождении через лопасти. Силы, тормозящие ветер, равны и противоположны подъемным силам тягового типа, вращающим лопасти.
Так же, как и крыло самолета, лопасти ветряных турбин благодаря своей изогнутой форме создают подъемную силу. Сторона с наибольшей кривизной создает низкое давление воздуха, в то время как воздух под высоким давлением давит на другую сторону аэродинамического профиля в форме лопасти. Конечным результатом является подъемная сила, перпендикулярная направлению потока воздуха над лопастями турбины. Хитрость здесь заключается в том, чтобы спроектировать лопасть ротора таким образом, чтобы создать правильную величину подъемной силы и тяги лопасти, обеспечивающую оптимальное замедление воздуха и, следовательно, лучшую эффективность лопасти.
Если лопасти гребного винта турбины вращаются слишком медленно, это позволяет беспрепятственно проходить слишком большому количеству ветра и, таким образом, не извлекает столько энергии, сколько потенциально могло бы быть. С другой стороны, если лопасть винта вращается слишком быстро, она кажется ветру большим плоским вращающимся диском, который создает большое сопротивление.
Тогда оптимальное отношение скорости законцовки, TSR, которое определяется как отношение скорости законцовки ротора к скорости ветра, зависит от профиля формы лопасти ротора, количества лопастей турбины и конструкции лопасти гребного винта ветряной турбины. сам. Итак, какая форма и конструкция лопасти лучше всего подходит для конструкции лопасти ветряной турбины.
Как правило, лопасти ветряных турбин имеют такую форму, чтобы генерировать максимальную мощность ветра при минимальных затратах на строительство. Но производители лопастей ветряных турбин всегда стремятся разработать более эффективную конструкцию лопастей. Постоянные усовершенствования конструкции ветряных лопастей привели к появлению новых конструкций ветряных турбин, которые стали более компактными, тише и способны генерировать больше энергии при меньшем ветре. Считается, что, слегка изгибая лопасти турбины, они могут улавливать на 5-10 процентов больше энергии ветра и работать более эффективно в районах, где скорость ветра обычно ниже.
Конструкция лопасти ветряной турбины
Итак, какой тип формы лопасти будет производить наибольшее количество энергии для ветряной турбины. Плоские лопасти являются самой старой конструкцией лопастей и использовались в течение тысяч лет на ветряных мельницах, но эта плоская широкая форма становится менее распространенным, чем другие типы конструкции лезвия. Плоские лопасти толкают против ветра, а ветер давит на лопасти.
Результирующее вращение очень медленное, потому что лопасти, которые вращаются обратно при ходе вверх после выработки мощности, противодействуют выходной мощности. Это связано с тем, что лопасти действуют как огромные лопасти, движущиеся в неправильном направлении, отталкиваясь от ветра, что дало им название лопастей несущего винта, основанных на сопротивлении.
Тем не менее, плоские лопасти имеют значительные преимущества для домашних мастеров по сравнению с другими конструкциями ветряных лопастей. Плоские лопасти ротора легко и дешево вырезать из листов фанеры или металла, при этом лопасти имеют постоянную форму и размер. Их также проще всего понять, требуя меньше навыков проектирования и строительства, но их эффективность и простота выработки электроэнергии очень низки.
Изогнутые лопасти очень похожи на длинное крыло самолета (также известное как аэродинамическое крыло), которое имеет изогнутую поверхность сверху. Изогнутая лопасть обтекается воздухом, при этом воздух движется над изогнутой верхней частью лопасти быстрее, чем под плоской стороной лопасти, что создает область меньшего давления сверху и, следовательно, подвергается воздействию аэродинамические подъемные силы, создающие движение.
Эти подъемные силы всегда перпендикулярны верхней поверхности изогнутой лопасти, что заставляет лопасть двигаться, вращаясь вокруг центральной ступицы. Чем быстрее дует ветер, тем больше подъемная сила создается на лопасти, следовательно, тем быстрее вращение.
Преимущество изогнутой лопасти ротора по сравнению с плоской лопастью заключается в том, что подъемная сила позволяет концам лопастей ветряной турбины двигаться быстрее, чем движется ветер, создавая большую мощность и более высокий КПД. В результате лопасти ветряных турбин с подъемной силой становятся все более распространенными. Кроме того, самодельные лопасти ветряных турбин из ПВХ можно вырезать из дренажных труб стандартного размера, имеющих уже встроенную изогнутую форму, придающую им наилучшую форму лопасти.
Изогнутые лопасти Расход воздуха и производительность
Но изогнутые лопасти также страдают от сопротивления по всей длине, которое пытается остановить движение лопасти. Сопротивление — это, по сути, трение воздуха о поверхность лопасти. Сопротивление перпендикулярно подъемной силе и направлено в том же направлении, что и воздушный поток вдоль поверхности лопасти. Но мы можем уменьшить эту силу сопротивления, сгибая или скручивая лопасть, а также сужая ее по длине, создавая наиболее эффективную конструкцию лопасти ветряной турбины.
Угол между направлением встречного ветра и наклоном лопасти по отношению к встречному ветру называется «углом атаки». По мере увеличения этого угла атаки создается большая подъемная сила, но по мере того, как угол становится еще больше, чем примерно 20 o , лопасть начинает уменьшать подъемную силу. Таким образом, существует идеальный угол наклона лопасти ротора, который создает наилучшее вращение, и лопасти ротора современных ветряных турбин на самом деле спроектированы с изгибом по длине от крутого шага в основании до очень мелкого шага на конце.
Энергия ветра для чайников
Поскольку скорость на конце вращающейся лопасти выше, чем у ее основания или центра, современные лопасти ротора закручиваются по своей длине на 10–20 o от основания до конца, поэтому что угол атаки уменьшается от того места, где воздух движется относительно медленно вблизи их корня, до места, где он движется намного быстрее на конце. Такой поворот лопасти максимизирует угол атаки по длине, обеспечивая наилучшие подъемную силу и вращение.
В заключение, длина лопасти ротора ветряной турбины определяет, сколько энергии ветра может быть получено при вращении вокруг центральной ступицы, а аэродинамические характеристики лопастей ветряной турбины сильно различаются между плоскими и изогнутыми лопастями. Плоские лезвия дешевы и просты в изготовлении, но имеют большое сопротивление, что делает их медленными и неэффективными.
Чтобы повысить эффективность лопастей ветряных турбин, лопасти ротора должны иметь аэродинамический профиль для создания подъемной силы и вращения турбины, но изогнутые лопасти с аэродинамическим профилем труднее изготовить, но они обеспечивают лучшую производительность и более высокие скорости вращения, что делает их идеальными для получения электроэнергии. поколение.
Но чтобы получить наилучшую конструкцию лопастей ветряных турбин, мы можем еще больше улучшить аэродинамику и эффективность, используя скрученные конические лопасти ротора пропеллерного типа. Поворот лопасти изменяет угол ветра вдоль лопасти, а комбинированный эффект скручивания и сужения лопасти по ее длине улучшает угол атаки, увеличивая скорость и эффективность при одновременном снижении сопротивления. Кроме того, конические лезвия прочнее и легче, чем прямые лезвия, так как меньше напряжение изгиба.
Конструкция лопастей ветряной турбины имеет решающее значение для того, чтобы ветряная турбина работала в соответствии с ожиданиями. Инновации и новые технологии, используемые для проектирования лопастей ветряных турбин, на этом не остановились, поскольку рассматриваются новые формулы и конструкции, которые ежедневно улучшают их производительность, эффективность и выходную мощность.
Чтобы узнать больше о «лопастях ветряных турбин» и о том, как они работают как часть ветроэнергетической системы, нажмите здесь, чтобы заказать книгу «Энергия ветра для чайников» на Amazon сегодня и узнать больше о ветряных турбинах, энергии ветра и ветрогенераторах. для создания собственной свободной энергии.
Уже в продаже
Достижения в области проектирования лопастей ветряных турбин и…
уже в продаже
Оптимальная конструкция лопасти ветряной турбины:…
Солнечный волшебник: БЕСПЛАТНОЕ электричество — навсегда! Пусть…
уже в продаже
Введение в аэродинамику ветряных турбин (Green…
Ветряные турбины: чем больше, тем лучше
Офис
Энергоэффективность и возобновляемая энергия
16 августа 2022 г.
С начала 2000-х годов ветряные турбины выросли в размерах — как по высоте, так и по длине лопастей — и вырабатывают больше энергии. Что движет этим ростом? Давайте посмотрим поближе.
Средняя высота ступицы турбины, диаметр ротора и паспортная мощность для наземных ветровых проектов из Отчета о рынке наземных ветровых установок : издание 2022 г. .
Высота ступицы ветряной турбины — это расстояние от земли до середины ротора турбины. Высота ступицы для наземных ветряных турбин коммунального масштаба увеличилась на 66% по сравнению с 19 годом.98–1999, до примерно 94 метров (308 футов) в 2021 году. Это примерно такая же высота, как Статуя Свободы! Прогнозируется, что средняя высота ступицы морских турбин в Соединенных Штатах вырастет еще выше — со 100 метров (330 футов) в 2016 году до примерно 150 метров (500 футов), что примерно равно высоте монумента Вашингтона в 2035 году.
Иллюстрация увеличения высоты турбины и длины лопастей с течением времени.
Башни турбины становятся выше, чтобы улавливать больше энергии, поскольку ветер обычно усиливается с увеличением высоты. Изменение скорости ветра с высотой называется сдвигом ветра. На больших высотах над землей ветер может течь более свободно, с меньшим трением о препятствия на поверхности земли, такие как деревья и другая растительность, здания и горы. Большинство башен ветряных турбин высотой более 100 метров, как правило, сосредоточены на Среднем Западе и Северо-востоке, двух регионах со сдвигом ветра выше среднего.
Расположение турбинных установок на высоких башнях из Отчета о рынке наземных ветровых установок : издание 2022 г.
Диаметр ротора
Диаметр ротора турбины, или ширина круга, охватываемого вращающимися лопастями (пунктирные кружки на втором рисунке), также увеличился с годами. Еще в 2010 году ни одна турбина в Соединенных Штатах не использовала роторы диаметром 115 метров (380 футов) или больше. Средний диаметр ротора в 2021 году составлял 127,5 метра (418 футов) — больше, чем футбольное поле.
Увеличенный диаметр ротора позволяет ветряным турбинам охватывать большую площадь, улавливать больше ветра и производить больше электроэнергии. Турбина с более длинными лопастями сможет захватывать больше доступного ветра, чем более короткие лопасти, даже в районах с относительно слабым ветром. Возможность собирать больше ветра при более низких скоростях ветра может увеличить количество областей, доступных для развития ветра по всей стране. Из-за этой тенденции площадь, охватываемая ротором, выросла примерно на 600% с 1998–1999 гг.
Емкость паспортной таблички
Помимо того, что ветряные турбины стали выше и больше, с начала 2000-х годов также увеличилась максимальная номинальная мощность или мощность. Средняя мощность вновь установленных ветряных турбин в США в 2021 году составила 3,0 мегаватт (МВт), что на 9% больше, чем в 2020 году, и на 319%, чем в 1998–1999 годах. В 2021 году увеличилось количество установленных турбин мощностью 2,75–3,5 МВт, при этом также увеличилась доля турбин мощностью 3,5 МВт и выше. Турбины большей мощности означают, что для выработки такого же количества энергии на ветровой электростанции требуется меньше турбин, что в конечном итоге приводит к снижению затрат.
Проблемы с транспортировкой и установкой
Если чем больше, тем лучше, почему в настоящее время не используются еще более крупные турбины? Хотя высота турбины и диаметр ротора увеличиваются, есть несколько ограничений. Транспортировка и установка больших лопастей турбины для наземного ветра непроста, поскольку их нельзя сложить или согнуть после изготовления. Это ограничивает маршруты, по которым могут двигаться грузовики, и радиус их поворотов. Башни турбины диаметром также трудно транспортировать, так как они могут не поместиться под мостами или эстакадами. Министерство энергетики решает эти проблемы с помощью своих исследовательских проектов. Например, Министерство энергетики разрабатывает турбины с более тонкими и гибкими лопастями, которые могут перемещаться по изгибам дорог и железнодорожных путей, чего не могут обычные лопасти. Министерство энергетики также поддерживает усилия по разработке высоких башен турбин , которые можно производить на месте, что устраняет проблемы с транспортировкой башен. Двумя компаниями, инициаторами этих усилий, являются Keystone Power Systems, которая использует спиральную сварку, чтобы свести к минимуму потребность в дорогостоящей стали, и GE Renewables, которая экспериментирует с 3D-печатью для создания настраиваемых оснований башен.
Добавить комментарий