Из чего делают транзисторы: травление и осаждение. Разбор / Хабр

Содержание

травление и осаждение. Разбор / Хабр

Современное производство процессоров иначе как произведением технологического искусства назвать просто язык не поворачивается. Когда начинаешь разбираться с тем какое количество в нем тонкостей и элегантных технологических решений, то просто взрывается мозг. Сегодня мы вам расскажем о двух важнейших этапах при производстве процессоров, а также объясним что общего между созданием процессоров и ковровыми бомбардировками, зачем нужно греть материалы сфокусированным лучом электронов и как получают металлический пар из самого тугоплавкого металла в мире.

Начнем, как обычно у нас принято, с основ. Как мы уже не раз говорили: транзистор — основа всех процессоров. Но сам по себе одиночный транзистор мало что может. В современных чипах их миллиарды!

Кроме того, все эти транзисторы надо друг с другом связать в правильной последовательности, то есть фактически проложить провода от одного транзистора к другому.

Только вдумайтесь, вам надо в правильной последовательности связать друг с другом миллиард крошечных транзисторов. К каждому транзистору надо подвести по три провода — сток, исток и затвор. Плюс ко всему сам транзистор — это сложный сендвич, в котором в правильной последовательности расположены полупроводники различных типов, изоляторы и металлические контакты.

Давайте просто представим, забыв о том, что транзисторы в тысячи раз меньше толщины человеческого волоса, что вы весь из себя такой Флэш и умеете делать, скажем 100 транзисторов в секунду! Знаете сколько времени у вас уйдет на создание одного чипа М1 от Apple? Пять лет! На создание всего лишь одного чипа! Для одного MacBook! Этот метод явно не подходит, надо думать что-то другое.

Тут то и приходит на помощь наша святая троица, а именно процессы Фотолитографии, Травления и Осаждения! Эти три типа процессов являются базой для создания всех современных процессоров. Да и не только процессоров: эти же процессы являются основой при создании экранов, будь то OLED или LCD, матриц фотокамер, различных модемов, датчиков и например МЕМСов.

Об одном из процесов мы уже вам рассказывали в нашем материале про Экстремальную Ультрафиолетовую литографию.

Литография позволяет нам получить нужный трехмерный рисунок на поверхности чипа.

Создание транзистора


Давайте представим, что создание транзистора — это как постройка дома. Вам необходимо сначала разметить землю, понять, где у вас будут коммуникации, где фундамент — это и есть литография.

Затем вы вызываете трактор, который приезжает и выкапывает для вас ровненькую траншею именно той геометрии, которую вы разметили — это и есть травление, то есть процесс удаления материала из только определенных областей. Чем глубже трактор копает — тем глубже получится траншея, так же и с травлением.

Ну и наконец-то заливка бетоном вашего фундамента — это осаждение. Получение в конце концов именно того фундамента, который изначально был нанесен с помощью литографии.

Комбинацией этих процессов и создается наш дом, мы размечаем участок, травим и осаждаем где надо и наш дом растет слой за слоем, так же и с транзисторами. В результате получаем сложную слоистую структуру из разных материалов. Только таких домов надо строить сотни миллиардов одновременно!

Травление


Давайте перейдем к травлению. Как мы можем убрать какой-то материал? Ведь трактором траншею в несколько нанометров не вырыть.

В целом, есть два вида травления — сухое и мокрое. При использовании мокрого травления наш материал помещается в специальную ванну или поливается сверху определенным раствором. Этот раствор химически реагирует и растворяет тот материал, который мы хотим убрать, это и удаляет материал с поверхности. Но у такого метода есть минусы, которые при создании маленьких транзисторов очень важны — жидкость затекает во все места, ведь это жидкость и травление происходит равномерно во все стороны, а не вертикально вниз, как мы хотим. Это называется подтрав под маску! Здесь маска закрывает на нашем чипе те участки, которые мы не хотим удалять, то есть травить!

Поэтому при производстве часто используют сухое травление. Для этого надо создать плазму! Как и в Экстремальной УФ-литографии нам нужно прибегнуть к помощи четвертого агрегатного состояния вещества! Только если там плазма нужна была для создания света с определенной длинной волны, то здесь она нужна совсем для другого.

Видите ли, плазма это не просто светящийся газ — она полна разных частиц, атомов, электронов, а также различных положительных и отрицательных ионов. Вот в этих ионах и кроется ключевая особенность. Ведь ионы мало того, что имеют какой-то заряд, так еще и очень реактивны, а это нам и нужно! Сейчас объясним…

Поскольку ионы имеют какой-то заряд, то мы можем их направить в нужное нам место, просто приложив к нужному нам месту противоположный заряд. То есть представим что наши ионы обладают положительным зарядом, мы к нашему чипу прикладываем отрицательное напряжение и ионы летят в него. Более того мы можем регулировать с какой силой ионы бьют по поверхности нашего будущего чипа! Подаем больше напряжения — ионы летят быстрее.

Это и есть та самая ковровая бомбардировка, ведь ионы наши относительно тяжелые и если подать достаточное напряжение, то они врезаются в поверхность материала как бомбы в землю, и просто разносят всю его поверхность! Это процесс, кстати, так и называется — ионная бомбардировка поверхности.

Это физическая составляющая процесса плазмохимического травления материала. Но есть и вторая — химическая.

Как я уже говорил, наши ионы очень активны и если правильно подобрать газ, из которого сделана наша плазма, то ионы будут химически реагировать с материалом чипа и просто образовывать новые соединения, которые будут просто улетать!

Например, при травлении Кремния или Нитрида Галлия, про которые мы вам недавно рассказывали, применяют плазму из гексафторида серы, в смеси с аргоном, или кислородом!

При этом, как и в случае с жидким травлением, те участки, которые мы хотим сохранить, мы можем покрыть специальной маской, которая останется нетронутой в процессе сухого травления, а открытые участки просто улетят!

Вот так путем игры с разными параметрами в процессе травления можно получать идеально гладкие, вертикальные отверстия абсолютно любой формы и глубины.

И более того травление можно осуществлять одновременно по всей поверхности огромной пластины кремния!

Осаждение


С траншеями для нашего дома, ой то есть транзистора, мы разобрались. Теперь надо в них залить наш фундамент, сделать стены и проложить коммуникации.

Для этого надо осадить различные материалы — это могут быть как металлы, например, медь для контактов транзистора или диэлектрики для изоляции в тех местах, где нам надо.

Ну или например нам надо осадить другой тип полупроводника на чип, как нам это нужно делать, например, в новых LTPO экранах, где используются транзисторы на основе поликристаллического кремния и соседний транзистор на основе оксида индия цинка и галлия!

В принципе, методов осаждения целая куча! Мы же расскажем вам о двух основных и начнем с самого взрывного.

Представьте, что вам надо нанести куда-то очень тонкий слой Вольфрама. Просто отрезать и приклеить точно не получится — я напоминаю что мы тут говорим контактах в несколько единиц нанометров. Как это сделать?

И тут, вы удивитесь, но принцип несильно отличается от того, когда вы наливаете холодное пиво в бокал в теплый летний день. Ведь на холодном бокале тут же начинают образовываться капельки воды: эти капельки — конденсат пара из воздуха. Вот с Вольфрамом надо сделать точно так же.

Но только тут есть одна проблема — если для того, чтобы образовался водяной пар нужно 100 градусов, то у вольфрама температура парообразования составляет почти 6000 градусов! Пока его так разогреешь, все вокруг уже расплавится. Как же его испарить вообще?

Для этого надо прибегнуть к так называемым электронно-лучевым технологиям, а по факту используют сфокусированный в одну точку луч электронов с очень большими энергиями!

А источником такого луча зачастую тоже является вольфрамовая нить, прям как в старых лампах накаливания, только тут она сильно толще. На эту нить подается ток, и она начинает во все стороны испускать электроны. Часть из них ускоряют до нескольких тысяч вольт и фокусируют в единую точку на поверхности того материала, который мы хотим испарить, в данном случае на Вольфраме.

Думали ли вы, что с помощью лампочки Ильича можно делать процессоры для современных iPhone?

Так вот эта точка может разогреваться до безумных температур! Таких высоких, что даже Вольфрам, который является самым тугоплавким металлом в мире, превращается в пар. Фактически локально формируется маленькую лужа Вольфрама и часть этой лужи и испаряют.

Этот пар летит и конденсируется на любой холодной поверхности, в частности на нашем чипе, где он осаждается, формируя необходимые нам контакты для наших транзисторов!

Но это опять же физические процесс, а есть и химические, когда, как в случае с травлением, на поверхности нашего материала, в нужных местах происходят специальные химические реакции.

Хорошим примером такого процесса является так называемое химическое осаждение из газовой фазы. Она активно применяется не только для производства процессоров, но и для создания органических светодиодов для гибких OLED-экранов!

Кстати, CVD — Chemical Vapor Deposition (химическое осаждение пара) — это один из методов выращивания искусственного алмаза, которые потом применяют, например, для алмазных резаков!

При чем самое крутое, что все эти процессы, как осаждения, так и травления, можно проводить для нескольких пластин одновременно, на каждой из которых сотни, а то и тысячи процессоров! Если бы не эта возможность, то каждый процессор стоил бы просто баснословных денег!

Выводы

Конечно, здесь мы перечислили только самые базовые процессы, но даже они дают понимание о том, какие невероятные технологические решения стоят за производством того, чем мы пользуемся каждый день.

А ведь есть и другие потрясающие процессы на современных производствах. Например, атомно-слоевое осаждение, которое позволяет получить идеальные пленки с возможностью контроля толщины до одного атома, или процессы ионной имплантации.

Стоит также сказать, что для процессов, о которых мы сегодня вам рассказали, надо зачастую сначала  создавать очень глубокий вакуум в установках, иногда даже больше, чем в космосе, однако это тема для отдельного материала! В общем, вы поняли — нам есть что вам рассказать интересного! Мы готовим вам целую серию материалов.

Кстати, автор сценария этого ролика Глеб Янкевич со своими коллегами тоже занимается травлением. Если интересно, почитать их последнюю статью о травлении карбида кремния в Nature Scientific Reports.

Как делают транзисторы

На сегодняшний день, среди достаточного количества разновидностей транзисторов выделяют два класса: p-n — переходные транзисторы биполярные и транзисторы с изолированным полупроводниковым затвором полевые. Другое название, которое можно встретить при описании полевых транзисторов — МОП металл — окисел — полупроводник. Обусловлено это тем, что в качестве диэлектрического материала в основном используется окись кремния SiO 2. Немного пояснений.




Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам.

Содержание:

  • Транзисторы с вакуумным каналом — комбинация лучших черт полупроводников и электронных ламп
  • Биполярный транзистор. Транзисторный эффект. Как делают транзисторы
  • Транзисторы
  • В США изобрели 2D-транзистор
  • MOSFET транзисторы
  • Основы электроники для чайников: что такое транзистор и как он работает

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: КАК РАБОТАЕТ ТРАНЗИСТОР — ОБЪЯСНЯЮ НА ПАЛЬЦАХ

Транзисторы с вакуумным каналом — комбинация лучших черт полупроводников и электронных ламп



Переменный резистор и мощный транзистор, в моем варианте подключены навесным монтажом, на проводках. На плате обозначены контакты переменного резистора R2, R2.

В схеме предусмотрена индикация включения на светодиоде. Включение — отключение осуществляется тумблером, путем коммутации питания вольт, подводимого к первичной обмотке трансформатора.

Первые варианты схем были с применением германиевых транзисторов, более поздние варианты были с применением современной элементной базы. Я создал самый настоящий процессор, который можно запрограммировать! Всем читать статью на Хабре! Данный транзистор необходимо будет прикрепить на радиатор.

В случае крепления радиатора к металлическому корпусу блока питания, например как это сделано у меня, нужно будет поставить слюдяную прокладку между радиатором и металлической пластиной транзистора, к которой должен прилегать радиатор. Для улучшения теплоотдачи от транзистора к радиатору, нужно применить термопасту. Реклама на канале: Группа в ВК: Как делают транзисторы. Очистка методом зонной This video explains the theory behind how computers count and shows, in simple steps, how you can For more information, please visit.

January Start Как и из чего делают современные процессоры. Технология изготовления ЦП и этапы производства. Музыка из Внутри транзистора П есть белый порошок. На кристалле кт линии. На транзисторах серии мп с двух сторон Thanks everyone for your most kind comments. For anyone wondering, my computer was inspired by Bill Buzbee»s work on his Magic-1 homebrew Minicomputer Данный видеоролик — краткое введение в двоичную логику, короткий рассказ про основные микросхемы логики Search for:.

Самодельный процессор из транзисторов. Какие технологии применяются для их изготовления. Самодельное зарядное для гаджетов. Самодельные шапки на день рождение. Самодельные фаркопы на вектру а.

Самодельные снегоходы на низком давлении. Кто делает самодельной игрушки. Чертеж самодельного реечного дровокола. Самодельная педаль для тиг сварки. Самодельный трактор бизон отзывы.

Биполярный транзистор. Транзисторный эффект. Как делают транзисторы

Часть 1 О полупроводниках вообще и о диодах. Часть 2 Транзисторы. Часть 3 Как заставить машину считать при помощи транзистора. Действительно, разбираясь в том, как работают транзисторы, нельзя обойти вниманием вопрос миниатюризации.

Транзи́стор (англ. transistor), полупроводнико́вый трио́д — радиоэлектронный компонент из полупроводникового материала, обычно с тремя выводами.

Транзисторы

Транзистор transistor — полупроводниковый элемент с тремя выводами обычно , на один из которых коллектор подаётся сильный ток, а на другой база подаётся слабый управляющий ток. То есть транзистор — это своеобразный клапан , который при определённой силе тока, резко уменьшает сопротивление и пускает ток дальше с коллектора на эмиттер. Происходит это потому, что при определенных условиях, дырки имеющие электрон, теряют его принимая новый и так по кругу. Если к базе не прилагать электрический ток, то транзистор будет находиться в уравновешенном состоянии и не пропускать ток на эмиттер. В современных электронных чипах, количество транзисторов исчисляется миллиардами. Используются они преимущественно для вычислений и состоят из сложных связей. Полупроводниковые материалы, преимущественно применяемые в транзисторах это: кремний , арсенид галлия и германий. Также существуют транзисторы на углеродных нанотрубках , прозрачные для дисплеев LCD и полимерные наиболее перспективные. Ток может течь, как в сторону эмиттера , так и в сторону коллектора.

В США изобрели 2D-транзистор

Компонент представляет 3-е поколение проприетарной технологической платформы изготовления полевых транзисторов на базе нитрид-галлиевых гетероструктур на субстрате из карбида кремния. Новинка выпускается в 4-выводном корпусе TO с отдельным выводом истока. Между выводами стока и истока предусмотрен защитный зазор 8 мм. В транзистор встроен быстрый диод с низким обратным зарядом восстановления. Сфера применения транзистора включает системы альтернативной энергетики на возобновляемых источниках энергии, оборудование зарядки электромобилей, высоковольтные схемы преобразования постоянного тока, импульсные блоки питания, а также системы промышленной автоматизации, где требуется увеличить частоту при сохранении уровня производительности.

Войдите , пожалуйста.

MOSFET транзисторы

Электроника окружает нас всюду. Но практически никто не задумывается о том, как вся эта штука работает. На самом деле все довольно просто. Именно это мы и постараемся сегодня показать. А начнем с такого важного элемента, как транзистор. Расскажем, что это такое, что делает, и как работает транзистор.

Основы электроники для чайников: что такое транзистор и как он работает

Одна область принимается за входную и называется истоком , другая служит выходом сток. Между ними наращивается изолирующая подложка из диоксида кремния или другого подходящего диэлектрика толщиной около нм. На подложку наносится слой металла, который и будет управляющим электродом затвором. И как всё это работает? Наша задача — контролировать протекание тока между истоком и стоком через затвор.

В компьютере есть деталь под названием транзистор. Представьте, что это кран на Как делают кубиты и в чём сложность. Максимально упрощённо.

Шаг 2. Нанесение защитной пленки диэлектрика SiO2. К примеру, принято говорить, что новый процессор Intel Pentium 4 с ядром Northwood выполнен по 0,микронной технологии, а будущее поколение процессоров будет основано на нанометровом технологическом процессе. В чем же разница между этими технологическими процессами и как она отражается на возможностях самих процессоров?

Вам нужно всего два компонента, чтобы собрать простейший инвертор, преобразующий постоянный ток 12 В в В переменного тока. Абсолютно никаких дорогих или дефицитных элементов или деталей. Все можно собрать за 5 минут! Даже паять не надо! Скрутил проволокой и все.

Переменный резистор и мощный транзистор, в моем варианте подключены навесным монтажом, на проводках.

Теория и практика. Кейсы, схемы, примеры и технические решения, обзоры интересных электротехнических новинок. Уроки, книги, видео. Профессиональное обучение и развитие. Сайт для электриков и домашних мастеров, а также для всех, кто интересуется электротехникой, электроникой и автоматикой.

В настоящее время транзистор является основой схемотехники подавляющего большинства электронных устройств и интегральных микросхем. Транзисторами также называются дискретные электронные приборы, которые, выполняя функцию одиночного транзистора, имеют в своем составе много элементов, конструктивно являясь интегральной схемой, например составной транзистор или многие транзисторы большой мощности [2]. В биполярном транзисторе используются полупроводники с обоими типами проводимости, он работает за счет взаимодействия двух, близко расположенных на кристалле, p-n переходов и управляется изменением тока через база-эмиттерный переход, при этом вывод эмиттера всегда является общим для управляющего и выходного токов.



Как работают транзисторы? — Объясните это Stuff

Ваш мозг содержит около 100 миллиардов клеток, называемых нейронами, — крошечные переключатели, которые позволяют вам думать и запоминать вещи.
Компьютеры содержат миллиарды
миниатюрных «мозговых клеток». Они называются транзисторами и
они сделаны из кремния, химического элемента, обычно встречающегося в песке.
Транзисторы произвели революцию в электронике с момента их появления.
изобретенный более полувека назад Джоном Бардином, Уолтером Браттейном и
Уильям Шокли. Но что это такое и как они работают?

Фото: Насекомое с тремя ногами? Нет, обычный транзистор на электронной плате. Хотя простые схемы содержат такие отдельные транзисторы, сложные схемы внутри компьютеров также содержат микрочипы, внутри каждого из которых могут быть тысячи, миллионы или сотни миллионов транзисторов. (Технически, если вас интересуют более сложные детали, это кремниевый PNP-транзистор усилителя 5401B. Я объясню, что все это означает, через мгновение.)

Содержание

  1. Что на самом деле делает транзистор?
  2. Как делают транзистор?
  3. Силиконовые бутерброды
  4. Как работает переходной транзистор
  5. Как работает полевой транзистор (FET)
  6. Как работают транзисторы в калькуляторах и компьютерах?
  7. Кто изобрел транзистор?
  8. Узнать больше

Что на самом деле делает транзистор?

Фото: Подробный обзор модели 5401B.

Транзистор очень прост и очень сложен. Давайте начнем с
простая часть. Транзистор — это миниатюрный электронный компонент,
может выполнять две разные работы. Он может работать либо как усилитель, либо как переключатель:

При работе в качестве усилителя требуется
в крошечном электрическом токе на одном конце (
входной ток) и производит гораздо больший электрический ток (выходной
тока) на другом. Другими словами, это своего рода усилитель тока. Это входит
действительно полезно в таких вещах, как слуховые аппараты, одна из первых вещей
люди использовали транзисторы для. В слуховом аппарате есть крошечный микрофон.
который улавливает звуки окружающего мира и превращает их в
колеблющиеся электрические токи. Они подаются на транзистор, который
усиливает их и приводит в действие крошечный громкоговоритель,
поэтому вы слышите гораздо более громкую версию звуков вокруг вас.
Уильям Шокли, один из изобретателей транзистора, однажды объяснил студенту транзисторные усилители в более
юмористическим способом: «Если взять тюк сена и привязать его к
хвост мула, а затем зажег спичку и поджег стог сена,
и если вы затем сравните энергию, израсходованную вскоре после этого
мул с энергией, затраченной вами на зажигание спички,
вы поймете концепцию усиления».0003

Транзисторы также могут работать как переключатели. А
Крошечный электрический ток, протекающий через одну часть транзистора, может создать гораздо большую
ток течет через другую его часть. Другими словами, малый
ток переключается на больший. По сути, так работают все компьютерные чипы. За
например, микросхема памяти
содержит сотни миллионов или даже миллиарды транзисторов,
каждый из которых может быть включен или выключен индивидуально. Поскольку каждый
транзистор может находиться в двух различных состояниях, он может
хранить два разных числа, ноль и единицу. С миллиардами транзисторов чип может хранить миллиарды нулей и единиц, и
почти столько же обычных цифр и букв (или символов, как мы их называем). Подробнее об этом чуть позже.

Фото: Компактные слуховые аппараты были одним из первых применений транзисторов, и это относится примерно к концу 1950-х или 1960-м годам. Размером с колоду игральных карт, он был предназначен для ношения в кармане пиджака или на нем. На другой стороне корпуса есть микрофон, который улавливает окружающие звуки. Вы можете ясно видеть четыре маленьких черных транзистора внутри, которые усиливают эти звуки, а затем направляют их в маленький громкоговоритель (внизу), который находится в вашем ухе.

Самое замечательное в машинах старого образца было то, что вы могли
их друг от друга, чтобы понять, как они работают. Это никогда не было слишком сложно, с
немного толкать и тыкать, чтобы узнать, какой бит сделал что и как
дело привело к другому. Но электроника совсем другая. это все
об использовании электронов для управления электричеством. Электрон – это
минута
частица внутри атома. Он такой маленький, он весит чуть меньше
0,0000000000000000000000000000001 кг! Работают самые современные транзисторы
управляя движением отдельных электронов, так что вы можете
представьте, какие они маленькие. В современном компьютерном чипе размер
ноготь, вы, вероятно, найдете от 500 миллионов
и два миллиарда отдельных транзисторов. Нет никакой возможности разобрать транзистор, чтобы узнать, как он работает.
работает, поэтому мы должны понимать это с помощью теории и воображения.
Во-первых, полезно знать, из чего сделан транзистор.

Как делают транзистор?

Фото: Кремниевая пластина. Фото предоставлено Исследовательским центром Гленна НАСА (NASA-GRC).

Транзисторы изготовлены из кремния, химического элемента, содержащегося в песке, который обычно не проводит
электричество (он не позволяет электронам легко проходить через него).
Кремний — это полупроводник, а значит,
ни на самом деле
проводник (что-то вроде металла, который пропускает электричество) ни
изолятор (что-то вроде пластика, который останавливает ток). Если
мы обрабатываем кремний примесями (процесс, известный как легирование),
мы можем заставить его вести себя по-другому
путь. Если мы легируем кремний химическими элементами мышьяком, фосфором,
или сурьмы, кремний получает несколько дополнительных «свободных» электронов, которые
может проводить электрический ток, поэтому электроны будут вытекать
из него более естественно. Поскольку электроны имеют отрицательный заряд, кремний
обработанный таким образом, называется n-типом (отрицательный
тип). Мы также можем легировать кремний другими примесями, такими как бор,
галлий и алюминий. В кремнии, обработанном таким образом, их меньше.
«свободные» электроны, поэтому электроны в близлежащих материалах будут стремиться влиться в него. Мы называем этот вид кремния p-типа (положительный тип).

Вкратце, мимоходом, важно отметить, что ни кремний n-типа, ни кремний p-типа на самом деле не имеют заряда в себе : оба являются электрически нейтральными. Это правда, что у кремния n-типа есть дополнительные «свободные» электроны, которые увеличивают его проводимость, в то время как у кремния p-типа этих свободных электронов меньше, что помогает увеличить его проводимость противоположным образом. В каждом случае дополнительная проводимость возникает из-за добавления нейтральных (незаряженных) атомов примесей к кремнию, составляющему нейтральный для начала — и мы не можем создавать электрические заряды из воздуха! Более подробное объяснение потребовало бы, чтобы я представил идею под названием
ленточная теория, которая немного выходит за рамки этой статьи. Все, что нам нужно помнить, это то, что «дополнительные электроны» означают дополнительные свободных электронов, которые могут свободно перемещаться и помогают проводить электрический ток.

Силиконовые бутерброды

Теперь у нас есть два разных типа силикона. Если мы сложим их вместе
в слоях, делая бутерброды из материала p-типа и n-типа, мы можем сделать
различные виды электронных компонентов, которые работают во всех видах
способы.

Рисунок: соедините кремний n-типа с кремнием p-типа, и вы получите n-p переход, который является основой диодов и транзисторов.

Предположим, мы соединяем кусок кремния n-типа с кусочком p-типа.
силикон и поставить электрические контакты с обеих сторон. Увлекательно и полезно
вещи начинают происходить на стыке двух
материалы. Если мы обратимся
на токе, мы можем заставить электроны течь через переход от
со стороны n-типа на сторону p-типа и наружу по схеме. Этот
происходит из-за отсутствия электронов на стороне р-типа
переход перетягивает электроны со стороны n-типа и наоборот. Но
если
мы реверсируем ток, электроны вообще не будут течь. Что у нас есть
сделанный здесь называется диод (или выпрямитель).
это электронный
компонент, пропускающий ток только в одном направлении. Это
полезно, если вы хотите превратить переменный (двусторонний) электрический ток в
постоянный (односторонний) ток. Диоды тоже можно сделать так, чтобы они излучали
светятся, когда через них проходит электричество. Вы могли видеть эти
светодиоды на карманных калькуляторах и электронных
дисплеи на стереоаппаратуре Hi-Fi.

Принцип работы переходного транзистора

Фото: Типичный кремниевый PNP-транзистор (A1048, предназначенный для усилителя звуковой частоты).

Теперь предположим, что вместо этого мы используем три слоя силикона в нашем бутерброде.
из двух. Мы можем сделать бутерброд p-n-p (с кусочком n-типа
кремния в качестве заполнения между двумя ломтиками p-типа) или n-p-n
сэндвич (с p-типом между двумя плитами n-типа). Если мы
присоединить электрические контакты ко всем трем слоям сэндвича, мы можем
сделать компонент, который будет либо усиливать ток, либо включать его, либо
выключен — другими словами, транзистор. Посмотрим, как это работает в случае
n-p-n транзистор.

Итак, мы знаем, о чем говорим, давайте дадим имена трем
электрические контакты. Мы позвоним двум контактам, соединенным с двумя
кусочки кремния n-типа эмиттер и коллектор,
и контакт
соединенный с кремнием p-типа, мы назовем его основанием. Когда нет
ток
течет в транзисторе, мы знаем, что кремнию p-типа не хватает
электронов (показанных здесь маленькими знаками плюс, представляющими положительные
заряды), а два куска кремния n-типа имеют дополнительные электроны
(показаны маленькими знаками минус, представляющими отрицательные заряды).

Другой способ взглянуть на это — сказать, что хотя n-тип имеет
избыток электронов, p-тип имеет дырки, где электроны
должно быть. Обычно отверстия в основании действуют как барьер, предотвращая любое
при этом протекает значительный ток от эмиттера к коллектору.
транзистор находится в выключенном состоянии.

Транзистор работает, когда электроны и дырки начинают двигаться
через два перехода между кремнием n-типа и p-типа.

Давайте
подключите транзистор к некоторой мощности. Допустим, мы присоединяем небольшой
положительное напряжение на базу, делает эмиттер отрицательно заряженным, и
сделать коллектор положительно заряженным. Электроны вытягиваются из
эмиттер в базу, а затем из базы в коллектор. А также
транзистор переходит в состояние «включено»:

Небольшой ток, который мы включаем на базе, создает большой ток
поток между эмиттером и коллектором. Повернув небольшой вход
ток в большой выходной ток, транзистор действует как усилитель. Но
он также действует как переключатель в то же время. Когда нет тока на
база, между коллектором и
эмиттер. Включите базовый ток и течет большой ток. Итак, база
ток включает и выключает весь транзистор. Технически это
тип транзистора называется биполярным, потому что
два разных вида (или «полярности») электрического заряда (отрицательные электроны и
положительные отверстия) участвуют в протекании тока.

Мы также можем понять транзистор, представив его как пару диодов. С
база положительная, а эмиттер отрицательный, переход база-эмиттер подобен прямому смещению.
диод, с электронами, движущимися в одном направлении через переход (слева направо в
диаграмме) и отверстия, идущие в обратном направлении (справа налево). База-сборщик
переход подобен диоду с обратным смещением. Положительное напряжение коллектора тянет
большая часть электронов проходит через внешнюю цепь и попадает во внешнюю цепь (хотя некоторые электроны действительно рекомбинируют с дырками в базе).

Как работает полевой транзистор (FET)

Работа всех транзисторов основана на управлении движением электронов, но
не все они делают это одинаково. Подобно переходному транзистору, полевой транзистор
(полевой транзистор) имеет три разных вывода, но они
имеют названия исток (аналог эмиттера), сток
(по аналогии с
коллектор), и затвор (аналог основания). В полевом транзисторе
слои
кремний n-типа и p-типа устроены немного по-разному и
покрытые слоями металла и оксида. Это дает нам устройство, называемое
МОП-транзистор (поле оксида металла и полупроводника)
эффектный транзистор).

Хотя в истоке и стоке n-типа есть дополнительные электроны,
они не могут течь от одного к другому из-за отверстий в
ворота р-типа между ними. Однако, если мы присоединим положительный
напряжение на затвор, там создается электрическое поле, позволяющее
электроны текут по тонкому каналу от истока к стоку. Этот
«эффект поля» позволяет течь току и включает транзистор:

транзистор потому что только один вид («полярность»)
электрического заряда участвует в том, чтобы заставить его работать.

Как работают транзисторы в калькуляторах и компьютерах?

На практике вам не нужно ничего знать о
электроны и дырки, если вы не собираетесь
чтобы зарабатывать на жизнь разработкой компьютерных чипов! Все, что вам нужно знать, это то, что
транзистор работает как усилитель или переключатель, используя небольшой ток
чтобы включить больший. Но есть еще одна вещь, которую стоит знать:
как все это помогает компьютерам хранить
информацию и принимать решения?

Мы можем соединить несколько транзисторных переключателей, чтобы сделать что-то
называется логическим вентилем, который сравнивает несколько
входные токи и в результате дает другой выход. Логические ворота позволяют компьютерам делать
очень простые решения с использованием математической техники, называемой булевой алгеброй. Ваш мозг принимает решения точно так же. Например,
используя «входные данные» (вещи, которые вы знаете) о погоде и о том, что у вас есть в
вашей прихожей, вы можете принять такое решение: «Если идет дождь И я
возьми зонт, я пойду в
магазины». Это пример булевой алгебры с использованием так называемого И
«оператор» (слово «оператор» — это всего лишь немного математического жаргона для
заставить вещи казаться сложнее, чем они есть на самом деле). Ты можешь сделать
аналогичные решения с другими операторами. «Если ветрено ИЛИ идет снег,
тогда я надену пальто»
пример использования оператора ИЛИ. Или как насчет «Если идет дождь И я
есть зонт ИЛИ у меня есть пальто, тогда можно выходить на улицу». Используя И,
ИЛИ и другие операторы, называемые
NOR, XOR, NOT и NAND, компьютеры могут складывать или сравнивать двоичные числа.
Эта идея является краеугольным камнем компьютерных программ: логическое
серия инструкций, которые заставляют компьютеры что-то делать.

Обычно переходной транзистор «выключен» при отсутствии базы
тока и переключается в положение «включено», когда протекает базовый ток. Это означает, что это
потребляет электрический ток для включения или выключения транзистора. Но
такие транзисторы можно соединить с логическими вентилями, чтобы их выход
соединения возвращаются на свои входы. Транзистор
затем остается включенным даже при отключении базового тока. Каждый раз новый
база
течет ток, транзистор «щелкает» или выключается. Остается в одном из
эти стабильные состояния (либо включено, либо выключено) до тех пор, пока другой ток
приходит и переворачивает его в другую сторону. Такая договоренность
известен как триггер, и он превращает
транзистор в простой
запоминающее устройство, в котором хранится ноль (когда он выключен) или единица (когда он
на). Триггеры — это основная технология, используемая в микросхемах компьютерной памяти.

Кто изобрел транзистор?

Произведение искусства: оригинальная конструкция точечного транзистора, изложенная в
Американский патент Джона Бардина и Уолтера Браттейна (2 524 035), поданный в июне 1948 г. (примерно через шесть месяцев после
оригинальное открытие) и награжден 3 октября 1950 года. Это простой PN-транзистор с
тонкий верхний слой германия P-типа (желтый) на нижнем слое германия N-типа (оранжевый).
Три контакта: эмиттер (E, красный), коллектор (C, синий) и база (G, зеленый).
Вы можете прочитать больше в оригинальном патентном документе, который указан в ссылках ниже.
Работа предоставлена ​​Управлением по патентам и товарным знакам США.

Транзисторы были изобретены в Bell Laboratories в Нью-Джерси в 1947 году.
тремя блестящими американскими физиками: Джоном Бардином (1908–1991), Уолтером
Браттейн (1902–1987) и Уильям
Шокли (1910–1989).

Группа под руководством Шокли пыталась
разработать новый тип усилителя для телефонной системы США, но что
они на самом деле изобрели оказались гораздо более распространенными
Приложения. Бардин и Браттейн создали первый практичный транзистор.
(известный как точечный транзистор) во вторник, 16 декабря, 1947.
Хотя Шокли сыграл большую роль в этом проекте, он был
разъяренный и взволнованный тем, что его оставили в стороне. Вскоре после этого, во время
остановиться в гостинице на конференции по физике, он в одиночку вычислил
теория переходного транзистора — гораздо лучшего устройства, чем
транзистор с точечным контактом.

В то время как Бардин ушел из Bell Labs, чтобы стать академиком (он продолжил
добиться еще большего успеха, изучая сверхпроводники в Иллинойском университете),
Браттейн остался на некоторое время, прежде чем уйти на пенсию, чтобы стать учителем.
Шокли основал собственную компанию по производству транзисторов и помог вдохновить
современное явление, которое называется «Силиконовая долина» (процветающий район
вокруг Пало-Альто, Калифорния, где корпорации электроники
собрались). Двое его сотрудников, Роберт Нойс и Гордон Мур, ушли
основал Intel, крупнейшего в мире производителя микрочипов.

Бардин, Браттейн и Шокли ненадолго воссоединились несколько лет спустя, когда
они разделили высшую науку в мире
награда, т.
Нобелевская премия по физике 1956 г.,
за их открытие. Их история
захватывающая история о
интеллектуальный блеск борется с мелкой завистью, и это хорошо
стоит прочтения
больше о. Вы можете найти несколько замечательных рассказов об этом среди книг и
веб-сайты, перечисленные ниже.

Подробнее

На этом сайте

  • Компьютеры: краткая история
  • Флэш-память
  • Интегральные схемы
  • Логические элементы
  • Тиристоры

Другие веб-сайты

  • The Journey Inside: образовательный веб-сайт Intel, посвященный транзисторам и интегральным схемам.
  • Transistorized !: веб-сайт PBS о Бардине, Браттейне, Шокли и истории транзисторов.
  • Транзистор: узнайте о транзисторах в увлекательной игровой форме с помощью игр и интерактивов на веб-сайте Нобелевской премии.
    [Архивировано через Wayback Machine.]

Книги

Технические и практические
  • Марка: Electronics by Charles Platt. O’Reilly, 2015. Четкий, хорошо иллюстрированный учебник для начинающих в области электроники и отличное место для начала увлеченного подростка. Эксперимент 10 начинается с покрытия транзисторов.
  • Начало работы в области электроники, Форрест М. Мимс III. Издательство Master Publishing, 2003 г. Надежное введение с множеством примеров схем, которые можно попробовать.
  • Искусство электроники, Пол Горовиц, Уинфилд Хилл. Издательство Кембриджского университета, 2015 г. Это гораздо более подробный учебник для студентов, которым я сам пользовался в колледже.
  • Почему вещи такие, какие они есть, Б.С. Чандрасекар. Издательство Кембриджского университета, 1998. Относительно простое для понимания, в основном не математическое введение в физику твердого тела; по сути, это объясняет, как на самом деле работают твердые тела изнутри. Глава 10 объясняет электрические токи и полупроводники.
Исторический
  • Электронная революция: изобретение будущего Дж. Б. Уильямса. Springer, 2017. Обширный обзор того, как электроника изменила нашу жизнь за последнее столетие или около того.
  • Хрустальный огонь: The
    Изобретение транзистора и рождение века информации Майклом Риорданом и Лилиан Ходдесон. WW Norton & Co., 1998. Очень читаемая история транзисторов и интегральных схем.

Статьи

Технические
  • Этот 40-летний транзистор изменил индустрию связи Джоанна Гудрич, IEEE Spectrum, 26 декабря 2019 г. Празднование быстро переключающихся транзисторов с высокой подвижностью электронов (HEMT), изобретенных в 1979 Такаши Мимура из Fujitsu.
  • Приветствую перовскитные транзисторы Дэвида Шнайдера. IEEE Spectrum, 16 января 2019 г. Как кристаллы перовскита можно «нарисовать» на подложке для изготовления полевых транзисторов.
  • Является ли NanoRing от Qualcomm транзистором (ближайшего) будущего? Сэмюэл К. Мур. IEEE Spectrum, 14 декабря 2017 г. Как и почему Qualcomm остановилась на устройствах, называемых нанокольцами, в качестве потенциально новых типов транзисторов.
  • Размеры затвора транзисторов в один нанометр были достигнуты Декстером Джонсоном. IEEE Spectrum, 7 октября 2016 г. Будущее за нанотранзисторами из углеродных нанотрубок?
  • Преемник транзистора, установленный Венди М. Гроссман, чтобы скоро наступить век «Машины». Scientific American, 22 июля 2014 г. В основе компьютеров завтрашнего дня могут лежать мемристоры, а не транзисторы.
  • Представляем вакуумный транзистор: устройство, сделанное из ничего, Джин-Ву Хан и Мейя Мейяппан. IEEE Спектр. 23 июня 2014 года. Частично вакуумная лампа, частично транзистор, он может работать в 10 раз быстрее, чем кремний, утверждают исследователи NASA Ames.
  • Intel переходит на 3D-технологии, реконструируя транзистор Чарльз Артур, Guardian, 4 мая 2011 г. Создание «трехмерных» транзисторов позволяет инженерам втиснуть еще больше их в одно и то же пространство.
  • Прыжок в микромир после транзистора
    Джон Маркофф. The New York Times, 31 августа 2009 г. Какие устройства могут заменить транзисторы?
Исторический
  • В картинках: Transistor History: BBC News, 15 ноября 2007 г. Фотографии пионеров транзисторов, первых транзисторов и схем.
  • Утерянная история транзистора Майкла Риордана. IEEE Spectrum, 30 апреля 2004 г.
  • .

  • Транзисторная физика У. Шокли. Американский ученый, 19 января.54, стр. 41–72.

Патенты

  • Патент США: 2,524,035: Трехэлектродный элемент схемы с использованием полупроводниковых материалов: оригинальный патент на точечный транзистор, поданный Джоном Бардином и Уолтером Браттейном 17 июня 1948 г. и выданный в октябре 1950 г.
  • Патент США: 2 569 347: элемент схемы, использующий полупроводниковый материал: это было яростное продолжение первоначального патента Шокли, поданного 26 июня 1948 г. (примерно через 10 дней после первоначального патента Бардина / Браттейна) и выданного 25 сентября 19 г.51.
  • Патент США: 2 502 488: Полупроводниковый усилитель: еще один патент Шокли, поданный в сентябре 1948 г. и выданный в апреле 1950 г.

Видео

Технический
  • MAKE представляет: The Transistor: отличное, понятное 9-минутное введение в тему транзисторов от Collin Cunningham из MAKE. Объясняет разницу между маломощными (сигнальными) транзисторами и мощными устройствами, почему транзисторы лучше электронных ламп и для чего мы можем использовать транзисторы. Также есть очень хорошее объяснение оригинальных точечных транзисторов Бардина и Браттейна.
Исторический

Нам повезло, что у нас есть сохранившиеся архивные кадры трех первопроходцев в области транзисторов!

  • Интервью Уильяма Шокли, 1969 г.: Шокли объясняет, как были изобретены транзисторы и какую роль он в этом сыграл.
  • Искра гениальности: История Джона Бардина в Университете Иллинойса: 23-минутный документальный фильм о жизни и работе Бардина.
  • Архивы AT&T: доктор Уолтер Браттейн о физике полупроводников: посмотрите, как доктор Браттейн объясняет теорию полупроводников и физику твердого тела (29минут).

Также из архивов вам могут понравиться эти:

  • Архивы AT&T: Бутылка волшебства: Как электронные лампы сделали возможным усиление междугородних телефонных звонков. Транзисторы были следующим логическим шагом и изначально разрабатывались именно для той же цели.
  • Архивы AT&T: Транзистор: Этот документальный фильм 1953 года исследует вероятное социальное влияние транзисторов.

Что такое транзистор?

Транзисторы — это устройства, управляющие движением электронов, а следовательно, и электричеством. Они работают как водопроводный кран — они не только запускают и останавливают поток, но и контролируют силу тока. С электричеством транзисторы могут как коммутировать, так и усиливать электронные сигналы, позволяя вам точно контролировать ток, проходящий через печатную плату.

Транзисторы, изготовленные в Bell Labs, изначально изготавливались из германия. Тамошние ученые знали, что чистый германий — хороший изолятор. Но добавление примесей (процесс, называемый легирование ) превратил германий в слабый проводник, или полупроводник . Полупроводники — это материалы, обладающие промежуточными свойствами между изоляторами и проводниками, обеспечивающие электропроводность в различной степени.

Реклама

Время изобретения транзисторов выбрано не случайно. Для правильной работы транзисторам требуются чистые полупроводниковые материалы. Так уж получилось, что сразу после Второй мировой войны улучшения в очистке германия, а также достижения в области легирования сделали германий пригодным для применения в полупроводниках.

В зависимости от элемента, использованного для легирования, полученный слой германия был либо отрицательного типа (N-тип), либо положительного типа (P-тип). В слое N-типа легирующий элемент добавлял электроны к германию, облегчая выброс электронов. И наоборот, в слое P-типа определенные легирующие элементы заставляли германий терять электроны, таким образом, электроны из соседних материалов текли к нему.

Поместите N-тип и P-тип рядом друг с другом, и вы создадите P-N диод . Этот диод пропускает электрический ток, но только в одном направлении, что является полезным свойством при построении электронных схем.

Следующим шагом стали полноценные транзисторы. Чтобы создать транзисторы, инженеры наложили легированный германий на два слоя вплотную друг к другу в конфигурации P-N-P или N-P-N. Точка контакта была названа переходом, отсюда и название перехода транзистора .

При подаче электрического тока на центральный слой (называемый базой) электроны будут перемещаться со стороны N-типа на сторону P-типа. Первоначальная небольшая струйка действует как переключатель, который позволяет течь гораздо большему току. В электрической цепи это означает, что транзисторы действуют как переключатель и усилитель.

В настоящее время вместо германия в коммерческой электронике используются полупроводники на основе кремния, которые более надежны и доступны по цене, чем транзисторы на основе германия. Но как только технология прижилась, германиевые транзисторы широко использовались более 20 лет.

Процитируйте это!

Пожалуйста, скопируйте/вставьте следующий текст, чтобы правильно цитировать эту статью HowStuffWorks.


Опубликовано

в

от

Метки:

Комментарии

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *