Содержание
Как не оконфузиться при выборе автоматического выключателя / Хабр
Краткая заметка по поводу выбора автоматических выключателей. Искренне надеюсь, что читатель не узнает для себя ничего нового.
У поста есть видеоверсия на моем ютуб канале. Реалии времени заставляют меня делать еще и видео:
Определимся с целью
Для начала нужно определиться — для чего нам автоматический выключатель в электрощите. Задача автоматического выключателя — прежде всего защитить стационарную кабельную линию от протекания токов свыше предельно допустимых. Если ток превышен — то проводники нагреваются, с плавлением и разрушением изоляции или расплавлением самих проводников. И если не случится пожара, то случится дорогостоящий ремонт, с работами по замене замурованной в стенах электропроводки. А ток может быть превышен, если к линии подключили слишком много потребителей (происходит перегрузка) или если происходит короткое замыкание. Неправильный выбор характеристик автоматического выключателя — путь к дорогостоящему ремонту, а при особенной везучести — к пожару.
Номинальный ток
Поняв, что автоматический выключатель должен защитить кабельную линию от протекания тока свыше допустимого, мы должны понять, какой же ток допустимый. Чаще всего ссылаются на вот эту табличку из ПУЭ (таблица 1.3.4):
Но, на мой субъективный взгляд, у этой таблички есть существенный недостаток, и он указан в источнике — эта табличка составлена для окружающей температуры +25, температуры земли +15 и температуры жилы (!!!) +65. Длительная работа изоляции при повышенной температуре ускоряет процесс старения полимеров, поэтому мое личное мнение — указанные в таблице цифры стоит уменьшить хотя бы на 1/4. Если кабель проложен таким образом, что его охлаждение затруднено, то предельно допустимый рабочий ток также уменьшают. Например если кабель расположен в пучке с другими кабелями или под слоем теплоизоляции.
И вот в этом месте подходим к самой неочевидной вещи. В таблице указаны предельно допустимые токи, а на автоматических выключателях указан номинальный ток. Номинальный ток автоматического выключателя, указанный на нем — это ток, который может длительно проходить через автоматический выключатель и не вызывать его отключения. Для определения тока отключения заглянем в документацию, в график время-токовых характеристик:
Но это график конкретного экземпляра автоматического выключателя. В реальном мире, у автоматических выключателей есть разброс характеристик, даже у выключателей взятых из одной коробки. Поэтому на графике изображена область, в которой окажется характеристика случайно взятого автоматического выключателя.
В результате, если взять определенный ток, то мы получим диапазон значений времени, за которое сработает автоматический выключатель. От и до, как например вот здесь:
Думаю очевидно, что в расчетах стоит полагать, что нам попался самый плохой экземпляр, и берется самое худшее значение.
В автоматическом выключателе есть два расцепителя — тепловой, который достаточно точный, но медленный, и электромагнитный — очень быстрый, но неточный. (В посте (https://serkov.su/blog/?p=5563) я разбирал, как к такому пришли, и почему лучше пока ничего не придумали.) В итоге получается нелинейная зависимость времени срабатывания от протекающего тока. Для наглядности возьмем автоматический выключатель, на котором указан номинальный ток 16А. При перегрузке будет работать тепловой расцепитель:
До тока в 1,13 от номинального, расцепления совсем не произойдет (16*1,13=18,08А)
При токе в 1,45 от номинального тепловой расцепитель сработает, но за время менее 1 часа (!). (16*1,45=23,2А)
При токе в 2,55 от номинального тепловой расцепитель сработает за время менее 60 сек. (16*2,55= 40А)
При превышении тока еще сильнее — сработает электромагнитный расцепитель, но об этом чуть позже.
Все это становится понятнее, если взглянуть на график:
Откуда взялись эти магические цифры? Из стандарта (у нас в стране — ГОСТ 60898-1-220). Просто разработчики условились, что разброс параметров срабатывания расцепителей должны быть в этих пределах. Причем скорее всего взяли просто две удобные точки времени — 1 час и 1 минута, и воспользовались статистическими данными, чтобы получить кратности номинального тока.
Ну и чтобы совсем жизнь мёдом не казалась, стоит добавить, что в зависимости от температуры окружающей среды применяют коэффициенты. На жаре тепловой расцепитель прогревается и срабатывает быстрее, а вот на морозе наоборот.
А теперь сценарий везунчика по жизни. В частный дом заходит кабель, сечением 1,5 мм2. Щиток с автоматическим выключателем находится в холодном предбаннике, когда на улице мороз -35. Кабель от щитка идет через стену под слоем утеплителя. Автоматический выключатель на 16А почти час (!) будет пропускать ток в (16*1,45*1,25(поправочный на температуру, рис.4) = 29А. При 19А по табличке из ПУЭ у нас жилы будут горячими — +65С, а под слоем утеплителя изоляция уже начнет плавиться.
Еще раз резюмирую: Номинальный ток автоматического выключателя НЕ РАВЕН предельно допустимому току кабеля. Предельный ток кабеля должен вызывать отключение автоматического выключателя в адекватное время.
Тип электромагнитного расцепителя
Тепловой расцепитель медленный, что плохо при коротком замыкании — токи могут быть огромными, и даже за одну секунду могут наделать бед. Поэтому в конструкцию автоматического выключателя добавили электромагнитный расцепитель, который срабатывает за доли секунды. Но он настроен на ток в разы превышающий номинальный.
Дело в том, что некоторые виды потребителей при включении потребляют ток в разы, превышающий ток в рабочем режиме. Например мотор в пылесосе в момент включения кратковременно потребляет ток в 2-3 раза больший, но после разгона мотора, потребление снижается. Возможно вы замечали, как лампочки накаливания слегка притухают в момент включения чего-то как раз из-за этого. Вот график потребления тока мотора пылесоса:
Чтобы эти пусковые токи не заставляли сработать электромагнитный расцепитель, его характеристику сдвинули в зону бОльших токов, что бы такие кратковременные превышения тока были в зоне теплового расцепителя, который в силу своей инерционности такие краткосрочные процессы не замечает.
В итоге получилась линейка автоматических выключателей с одинаковыми тепловыми расцепителями, но с разными электромагнитными. Из-за огромного разброса параметров электромагнитных расцепителей — получились большие разбросы кратности тока срабатывания:
Характеристика В — электромагнитный расцепитель сработает при превышении тока в 3-5 раз
Характеристика С — электромагнитный расцепитель сработает при превышении тока в 5-10 раз
Характеристика D — электромагнитный расцепитель сработает при превышении тока в 10-20 раз
Вот они на графике:
Есть и другие характеристики (K, Z и т.д) но встречаются крайне редко и под заказ, поэтому опустим их.
Если по какой-то причине стартовые токи кратковременно попадут в зону действия электромагнитного расцепителя то возможны ложные срабатывания. И именно для исключения таких ложных срабатываний и сделали несколько типов характеристик.
Некоторые производители для упрощения указывают стартовые токи, вот например светодиодный драйвер уважаемой фирмы при включении кушает солидные 55А (из-за зарядки конденсатора в блоке питания), производитель даже сразу посчитал, сколько светодиодных драйверов можно подключить параллельно на один автоматический выключатель:
4 штуки с характеристикой В и 7 штук на автомат с характеристикой С. Кто бы мог подумать, что 150 ватт светодиодного света могут вышибать 16А автомат! Ситуация становится еще хуже, если используются некачественные светодиодные светильники, где производитель не только не предусмотрел плавный старт, да даже пусковой ток не регламентирует!
Если используется большое количество светодиодных светильников — то придется делить их на группы, чтобы одновременный пуск не вызывал срабатывание автоматического выключателя. Пытливый читатель задастся вопросом — а почему бы не взять просто автоматический выключатель с характеристикой «C» или «D»? Тогда бы пусковые токи не вызывали бы ложных срабатываний! Но не все так просто….
Ток короткого замыкания
Можно иногда услышать выражение «сопротивление цепи фаза-нуль», оно по сути про то же. Ток короткого замыкания — это величина тока в цепи, в случае если из-за повреждения случается короткое замыкание (прямое соединение фазного проводника и нейтрального, или соединение фазного и заземления) в самом дальнем участке. В идеальном мире с идеальными проводниками ток короткого замыкания был бы бесконечным. Но в реальном мире кабели имеют собственное сопротивление, и чем они длиннее тоньше — тем выше их собственное сопротивление. При обычной работе это не так важно — их собственное сопротивление много меньше сопротивления нагрузки. Но если случится короткое замыкание, ток будет ограничен именно этим собственным сопротивлением всех проводников в цепи + внутреннее сопротивление источника тока.
А теперь смотрим. В деревне Вилларибо измеренный ток короткого замыкания линии 278 Ампер, и электрик поставил автоматический выключатель С16:
Как видим все отлично — при коротком замыкании тока будет достаточно, чтобы электромагнитный расцепитель сработал. А вот в деревне Вилабаджо очень плохая проводка, и ток короткого замыкания всего 124 А. Смотрим на график:
В самом худшем случае, электромагнитный расцепитель типа «С» сработает при токе в 10 раз больше номинального (16*10=160А). А значит при 124А возможна ситуация, когда электромагнитный расцепитель при коротком замыкании не сработает, а пока тепловой расцепитель успеет сработать — по линии будет гулять ток в 124А, что может закончиться плохо. В таком случае деревне Вилабаджо нужно или менять проводку, чтобы уменьшить потери, или использовать автоматический выключатель типа В16, у которого электромагнитный расцепитель сработает в худшем случае при токе 5*16=80А. Теперь вы понимаете, почему характеристика типа D (10-20 *Iном) в некоторых случаях изощренный способ стрелять себе в ногу?
Как же определить ток короткого замыкания? Для проектируемых линий его можно расчитать — длина кабеля известна, сечение тоже. Для линий уже находящихся в эксплуатации — только измерять, поскольку никто не знает, на что пришлось пойти электрикам при ремонте поврежденных участков.
Для определения тока короткого замыкания есть специальные приборы. Показывать современные не интересно, поэтому покажу суровый советский олдскул, который есть у меня. М-417 измеряет сопротивление цепи путем измерения падения напряжения на известном сопротивлении, а ток короткого замыкания необходимо рассчитывать:
Щ41160, творение сумрачного советского гения. Устраивает короткое замыкание на доли секунды и измеряет ток непосредственно. В коричневой коробочке на проводе — предохранитель на 100А.:
Как правило, ток короткого замыкания измеряют при введении линии в эксплуатацию, и планово, раз в несколько лет. Только после измерения тока короткого замыкания можно сказать, правильно ли подобрана защита.
Ток короткого замыкания равен …Oh shi….
Если ток короткого замыкания будет черезчур большим? Вот тут мы сталкиваемся с отключающей способностью автоматического выключателя. В момент размыкания контактов выключателя загорается электрическая дуга, которая сама по себе проводит ток и гаснет неохотно. Для ее принудительного разрушения в конструкции автоматических выключателей предусмотрены дугогасительные камеры. Вот здесь на высокоскоростной съемке видно как работает дугогасительная камера:
На автоматическом выключателе в прямоугольной рамке нанесена величина отключающей способности в амперах — это максимальный ток, который способен разомкнуть автоматический выключатель без поломки. Вот на фото автоматические выключатели с отключающей способностью в 3000, 4500, 6000 и 10000 А:
Для наглядности я их разобрал. Большая отключающая способность заставляет не только делать дугогасительные камеры больше, но и усиливать другие конструктивные части, например защиту от прогара вбок.
Отключающая способность автоматического выключателя должна быть больше тока короткого замыкания в линии. Как правило, 6000 А достаточно для большинства применений. 4500А обычно достаточно для работы в линиях старых домов, но может быть недостаточным в новых сетях.
Коммутационная стойкость
При каждом включении/отключении автомата меж контактов загорается дуга, которая постепенно разрушает контактную группу. Производитель часто указывает количество циклов включения/отключения, который должны выдержать контакты:
Отсюда легко видеть, что автоматический выключатель не замена нормальному выключателю при частом использовании. Если пожадничать, и вместо пускателя с контактором заставить сотрудника включать/отключать мешалку дергая автомат по 10 раз в день, то автомат может прийти в негодность менее чем за пару лет. Вот фото автоматического выключателя, контакты которого пришли в негодность из-за большого тока:
Помните, каждая коммутация и срабатывание автоматического выключателя «съедает» его ресурс.
Класс токоограничения
Наверное самая мистическая характеристика. Указывается в виде цифры в квадратике. Про нее в рунете написано мало и чаще ерунда. Класс токоограничения, если упрощать, говорит о количестве электричества, которое успеет пройти через автоматический выключатель при коротком замыкании прежде, чем он отключит цепь, и говорит о быстродействии. Всего классов три:
Что интересно, отечественными стандартами класс токоограничения не регламентируется, поэтому на картинке выше нет кириллицы. Цифры в таблице — это величина интеграла Джоуля. Отечественные производители указывают класс просто потому что «так принято», а не того требуют отечественные стандарты 🙂 В быту на данный параметр можно не обращать внимание — классы хуже третьего встречаются в продаже не часто.
Селективность
Вам бы не хотелось, чтобы при перегрузке или коротком замыкании срабатывал автоматический выключатель где-то на столбе у ввода в дом. При последовательном соединении автоматов защиты, подбором их характеристик можно добиться селективности — свойству срабатывать защите ближайшей к повреждению, без срабатывания вышестоящей. И у меня две новости.
Хорошая — можно воспользоваться специальными таблицами, которые есть у многих производителей, и подобрать пары автоматических выключателей, которые при перегрузке будут обеспечивать селективность. На графике это видно как непересекающиеся графики работы расцепителей:
Но по графику вы могли понять, что плохая новость — обеспечить полную селективность автоматических выключателей при коротком замыкании затруднительно. Кривые пересекаются в области больших токов. Поэтому чаще всего речь о частичной селективности. Например, если синий график — автомат В10, а фиолетовый В40, то ток селективности составит 120А (значение взято из таблиц одного производителя для конкретной модели автоматов). Тоесть при токах меньше тока селективности — все отлично. При токах больше — сработать могут оба устройства защиты.
В бытовой серии модульных автоматических выключателей обеспечивать селективность, даже частичную, довольно трудно. Лишь большие и мощные устройства защиты, например на подстанциях, имеют тонкие настройки уставок расцепителей для обеспечения селективности с вышестоящими устройствами защиты.
Да скажи уже что ставить!?
Прежде всего то, что предусмотрено проектом.
Ну а если уж совсем среднестатистический случай с кучей оговорок, то:
Линия 1,5 мм2 — Автомат В10 с отключающей способностью 6000А
Линия 2,5 мм2 — Автомат В16 с отключающей способностью 6000А
Применение автоматического выключателя с характеристикой «C» или «D» вместо «B» должно иметь вескую причину.
Плюшки
Автоматические выключатели разных производителей могут содержать разные приятности/полезности, которые напрямую на защитные функции не влияют, но могут быть полезны:
Это различные шторки/колпачки/крышечки для пломбирования вводного автомата по требованию электросетевой компании.
Это визуальный индикатор фактического состояния контактов, такой индикатор останется красным, если контакты из-за перегрузки сварились
Это окошки для дополнительных нашлепок с электромагнитными расцепителями, контактами
Это дополнительное окошко у клемм для использования гребенки при подключении
и прочее и прочее.
-
Номинальный ток автоматического выключателя не равен предельно допустимому для кабеля! В силу особенностей конструкции автоматический выключатель может длительное время пропускать через себя токи значительно больше номинальных и не отключаться.
-
Разные типы электромагнитных расцепителей позволяют избежать ложных срабатываний, но использовать тип С, и в особенности тип D нужно понимая что к чему.
-
Если ток короткого замыкания в вашей линии мал — то использование автоматического выключателя требует вдумчивого подхода.
-
Если ток короткого замыкания в вашей линии огромен, то отключающая способность автоматического выключателя должна быть еще больше.
-
А чтобы знать ток короткого замыкания, его нужно измерить специализированным прибором. И только после измерения можно сказать, будет ли правильно работать защита
Хочу сказать спасибо всем, кто принимал участие в рецензировании черновика. Буду рад указаниям на фактические ошибки в статье и ценным дополнениям.
Выбор автоматического выключателя по характеристикам.
Автоматический выключатель – низковольтный коммутационный аппарат, обеспечивающий защиту электрической цепи от токовых перегрузок, связанных с подключением большого количества приборов (суммарная мощность которых превышает допустимую), неисправностью приборов или тока короткого замыкания (КЗ). Если выключатель не сработает вовремя и не обесточит линию, большая сила тока может вывести из строя бытовые приборы, а также привести к высокому нагреву кабеля с последующим возгоранием изоляции. Поэтому основная задача автоматического выключателя – определить появление чрезмерного тока и отключить сеть раньше, не допуская пожароопасной ситуации или повреждений приборов. В соответствии с требованиями Правил устройств электроустановок (ПУЭ), эксплуатация сети без автоматов защиты – запрещена. Для того, чтобы правильно подобрать необходимые автоматы защиты, нужно знать основные характеристики автоматических выключателей: это номинальный ток и время-токовая характеристика.
Номинальный ток – максимальный ток, который может протекать через автоматический выключатель бесконечно долго, не отключая защищаемую электрическую сеть.
Время-токовая характеристика — это зависимость времени срабатывания от силы тока, протекающего через автоматический выключатель.
Принцип работы автоматического выключателя
Основные органы срабатывания автоматического выключателя – Тепловой расцепитель (биметаллическая пластина) и электромагнитный расцепитель (соленоидом с сердечником). При нормальной работе электрической сети и подключенных в сеть приборов, через автоматический выключатель протекает электрический ток. Биметаллическая пластина от воздействия повышенного тока нагревается и изгибается приводя в действие механизм расцепления. В зависимости от категории автоматического выключателя, время срабатывания будет происходить быстрее или медленнее.
Категории (типы) автоматических выключателей
Автоматические выключатели делятся на типы в зависимости от чувствительности мгновенного расцепителя. Обозначаются класс латинскими буквами A, B, C и D.
Автоматические выключатели типа А (2 – 3 значения номинального тока) срабатывают без выдержки времени (неселективные). Применяются в основном для защиты цепей с большой протяженностью и для защиты микропроцессорных устройств.
Автоматические выключатели типа B (от 3 до 5 значений номинального тока). То есть выключатель с маркировкой В16 сработает при силе тока от 48А до 80А. Данные выключатели широко используются в быту, в основном в домах со старой проводкой, на дачах или в сельской местности.
Автоматические выключатели типа C (от 5 до 10 значений номинального тока). Выключатель с маркировкой С16 сработает при силе тока от 80А до 160А. Используются выключатели типа С в основном в новых многоквартирных домах, где в сеть может быть подключено много бытовой техники (стиральная машина, утюг, холодильник, кондиционер, посудомоечная машина, электрический чайник, микроволновая печь, пылесос и пр.).
Автоматические выключатели типа D (от 10 до 20 номинальных токов) используются для защиты цепей, питающих электрические установки с высокими пусковыми токами (компрессоры, электромоторы, станки, насосы и подъемные механизмы) и применяются в основном в производственных помещениях. Также устройства с характеристикой D используют в общих сетях зданий, где они выполняют подстраховочную роль, если в отдельных помещениях по каким-то причинам не произошло своевременного отключения электроэнергии.
Зависимость времени отключения от силы тока нагляднее всего можно изобразить в виде графика.
Автоматические выключатели типа K приборы типа K имеют большой разброс в величинах тока, необходимых для электромагнитного расцепления. Так, для цепи переменного тока этот показатель должен превышать номинальный в 12 раз, а для постоянного – в 18. Срабатывание электромагнитного соленоида происходит не более чем через 0,02 сек. Срабатывание теплового расцепителя в таком оборудовании может произойти при превышении величины номинального тока всего на 5%.
Автоматические выключатели типа Z приборы типа Z тоже имеют разные токи срабатывания соленоида электромагнитного расцепления, но разброс при этом не столь велик, как в АВ категории K. В цепях переменного тока для их отключения превышение токового номинала должно быть трехкратным, а в сетях постоянного – величина электротока должна быть в 4,5 раза больше номинальной.
Количество полюсов автоматических выключателей
Однополюсные автоматические выключатели используются для защиты цепей с приборами освещения и розетками, куда подключаются обычные однофазные бытовые приборы.
Для защиты однофазной проводки, куда подключаются отопительные приборы, водонагреватели, электрические плиты, стиральные машины в качестве защиты между щитом и помещением устанавливаются двухполюсные автоматические выключатели.
Двухполюсные АВ при отключении обеспечивает разрыв не только «фазы», но и «нуля».
Нельзя устанавливать два однополюсных выключателя для защиты фазного и нулевого провода! Для этих целей применяют двухполюсные автоматы, которые отключают «ноль» и «фазу» одновременно.
В трехфазной сети, в основном в промышленности, применяются 3-х полюсные автоматические выключатели.
4-х полюсные выключатели являются вводными автоматами и обеспечивают защиту 3-х фазной электросети: 3 фазы + нейтраль.
Вводной автоматический выключатель обязательно должен отключать все фазы и рабочий «ноль», так как имеется вероятность поражения электрическим током при проведении обслуживания или работ с проводкой.
Кривые срабатывания автоматического выключателя. Кривая отключения B, C, D, K и Z
Автоматический выключатель — это защитное устройство, используемое в каждой электрической цепи для предотвращения любой потенциальной опасности. Во всем мире используются различные типы автоматических выключателей из-за их различных характеристик и областей применения. Необходимо иметь автоматический выключатель, обеспечивающий достаточную защиту, чтобы можно было безопасно работать с ним, не опасаясь каких-либо потенциальных опасностей. Вот почему лучше всего узнать об этих типах автоматических выключателей и о том, какие виды защиты они предлагают, прежде чем покупать их.
Содержание
Что такое автоматический выключатель?
Автоматический выключатель представляет собой электрическое устройство, обеспечивающее защиту от тока короткого замыкания. Он разрывает цепь в случае перегрузки и короткого замыкания. Токи короткого замыкания, возникающие из-за этих условий неисправности, могут повредить электрические устройства, а также вызвать пожар в здании, который также может представлять опасность для жизни человека.
Автоматический выключатель мгновенно отключает подачу питания, чтобы уменьшить дальнейшие повреждения. Автоматический выключатель имеет два типа расцепителей: тепловой и магнитный расцепители.
Тепловой расцепитель: тепловой расцепитель используется для защиты от перегрузки. В нем используется биметаллический контакт, который изгибается при изменении температуры. Ток, протекающий через биметаллическую пластину, нагревает контакты и отключает автоматический выключатель.
Скорость изгиба биметаллической полосы зависит от силы тока. Следовательно, чем больше ток перегрузки, тем быстрее срабатывает автоматический выключатель.
Магнитный расцепитель: Магнитный расцепитель используется для защиты от тока короткого замыкания. он включает в себя соленоид, который создает сильное магнитное поле из-за высокого тока короткого замыкания, чтобы мгновенно отключить автоматический выключатель.
Похожие сообщения:
- MCB (миниатюрный автоматический выключатель) – конструкция, работа, типы и применение
- MCCB (автоматический выключатель в литом корпусе) – конструкция, типы и работа
Что такое кривая отключения?
Кривая отключения, также известная как диаграмма текущего времени, представляет собой графическое представление реакции автоматического выключателя. Он показывает текущую взаимосвязь со временем срабатывания устройства защиты.
Зачем нужны разные кривые срабатывания?
Автоматические выключатели используются для максимально быстрого отключения источника питания в случае перегрузки по току. Но он не должен срабатывать так быстро и ненужно, чтобы это стало проблемой.
Перегрузка по току может произойти при нормальных условиях, таких как пусковой ток двигателя. Пусковой ток — это огромное потребление тока во время пуска двигателя, которое вызывает провалы напряжения в главной линии. Автоматический выключатель должен выдерживать пусковой ток и обеспечивать некоторую задержку перед отключением.
Таким образом, выбранный автоматический выключатель не должен срабатывать слишком быстро, чтобы создать помехи, и не должен срабатывать слишком поздно, чтобы причинить какой-либо ущерб. Здесь в игру вступают характеристики срабатывания автоматических выключателей.
Кривая отключения показывает, как быстро автоматический выключатель сработает при определенном токе. Различные кривые отключения классифицируют автоматические выключатели по категориям, где каждая категория используется для определенных типов нагрузок. Очень важно выбрать автоматический выключатель, обеспечивающий необходимую защиту от перегрузки по току.
Related Posts:
- Типы автоматических выключателей – работа и применение
- Воздушный автоматический выключатель (ACB): конструкция, работа, типы и применение
Как читать кривую срабатывания?
На следующем рисунке показан график кривой отключения.
Горизонтальная ось X представляет кратное значение тока, протекающего через автоматический выключатель. В то время как ось Y представляет время срабатывания автоматического выключателя в логарифмическом масштабе.
Тепловая область показывает реакцию расцепителя с биметаллическими контактами при перегрузке по току. Кривая показывает, что время срабатывания автоматического выключателя уменьшается с увеличением тока. Первая кривая на графике показывает реакцию теплового расцепителя.
В то время как магнитная область показывает реакцию соленоида на ток короткого замыкания, такой как ток короткого замыкания.
Как видно из графика, автоматический выключатель не имеет фиксированного времени срабатывания, и мы не можем предсказать точную точку срабатывания. Это связано с тем, что на отключение влияют условия окружающей среды, такие как температура. Думайте об этом как о зоне кота Шредингера, мы не знаем, когда произойдет спотыкание, если событие не произойдет.
Типы автоматических выключателей на основе кривых срабатывания
Автоматические выключатели делятся на следующие пять типов в зависимости от их кривых срабатывания.
Тип B
Этот тип автоматического выключателя предназначен для мгновенного срабатывания, когда рабочий ток в 3-5 раз превышает номинальный. Время их срабатывания составляет от 0,04 до 13 секунд. Они подходят для бытового применения, где перенапряжения очень низкие, например, для освещения и резистивных нагрузок.
Они чувствительны и не должны использоваться в местах, где обычные перенапряжения вызывают ненужное срабатывание.
Тип C
Автоматический выключатель типа C срабатывает мгновенно при скачках тока в 5-10 раз превышающих номинальный ток. время его срабатывания составляет от 0,04 до 5 секунд. Поскольку они могут выдерживать более высокие импульсные токи, они используются в коммерческих приложениях, таких как защита небольших двигателей, трансформаторов и т. д. его номинальный ток. Время его срабатывания составляет от 0,04 до 3 секунд. Такие автоматические выключатели могут выдерживать высокие пусковые токи больших двигателей. Поэтому они подходят для работы с большими нагрузками в промышленных условиях.
Тип K
Автоматические выключатели такого типа срабатывают при токе, в 10–12 раз превышающем номинальный, с временем срабатывания от 0,04 до 5 секунд. Эти автоматические выключатели также используются для тяжелых индуктивных нагрузок в промышленности.
Автоматические выключатели типа Z
Автоматические выключатели типа Z являются наиболее чувствительными автоматическими выключателями, которые мгновенно отключаются, когда рабочий ток превышает номинальный в 2–3 раза. Они используются для чувствительного оборудования, требующего очень низких настроек отключения при коротком замыкании.
Похожие сообщения:
- Основное различие между предохранителем и автоматическим выключателем
- Разница между автоматическими выключателями MCB, MCCB, ELCB и RCB, RCD или RCCB
- Как прочитать данные паспортной таблички MCB, напечатанные на нем?
- Как найти правильный размер автоматического выключателя? Калькулятор выключателя и примеры
- Автоматический выключатель постоянного тока высокого напряжения – типы, работа и применение
- Можно ли использовать автоматический выключатель переменного тока для цепи постоянного тока и наоборот?
- Электронный автоматический выключатель — схема и работа
- Автоматический выключатель Smart WiFi — конструкция, установка и работа
- Почему мощность автоматического выключателя оценивалась в МВА, а теперь в кА и кВ?
- Как подключить главную панель 120 В и 240 В? Установка коробки выключателя — США — NEC
- Как подключить однофазный потребительский блок 230 В (блок выключателя) с УЗО? МЭК, Великобритания и ЕС
Этот пост был опубликован WWW. ELECTRICALTECHNOLOGY.ORG.
URL-адрес скопирован
Показать полную статью
Связанные статьи
Кнопка «Вернуться к началу»
Часто задаваемые вопросы — Schneider Electric
{"searchBar":{"inputPlaceholder":"Поиск по ключевому слову или задать вопрос","searchBtn":"Поиск","error":"Пожалуйста, введите ключевое слово для поиска" }}
В чем разница между продуктами RCBO и RCCB Acti 9?
— RCBO: устройство от Acti 9диапазон, используемый для функций полной защиты (защита от перегрузки + защита от короткого замыкания + защита от утечки на землю с различной чувствительностью) — ВДТ: является…
Почему я не могу использовать ИБП APC отечественной модели на корабле
Проблема: В Северной Америке можно ожидать примерно 120 вольт при измерении от горячего к нейтральному и от горячего к земле. Однако большие корабли используют дельта-мощность. То есть есть два горячих…
Можно ли смоделировать функциональные блоки PTO в SoMachine Basic?
Проблема: Можно ли смоделировать функциональные блоки PTO в SoMachine Basic? Линейка продуктов: M221, TM221 Решение: Как и в случае с блоками PID, вы не можете имитировать блоки функций PTO в SoMachine Basic. Вы будете…
Какое имя пользователя и пароль по умолчанию для Com’X 510?
Пароль и имя пользователя по умолчанию для ComX 510: Пользователь = admin Пароль = admin См. ссылку для получения дополнительной информации о продукте:. ..
Популярные видео FAQsПопулярные видео
Видео: Как настроить клавиатуру ATV61/71 VW3A1101 на…
Видео: Как снять катушку на TeSys LC1F серии F…
Видео: Как Ограничить использование памяти SQL Server?
Узнайте больше в разделе часто задаваемых вопросов по общим знаниямОбщие знания
Зачем выбирать УЗО типа B для трехфазных приводов с регулируемой скоростью?
Для 3-фазных преобразователей частоты особенно подходит УЗО типа B или B-Si. Он защищает от токов короткого замыкания со смещением постоянного тока, что характерно для трехфазных преобразователей мощности. В…
Добавить комментарий