Все формулы для силы тока: По какой формуле можно вычислить силу тока?

Содержание

Сила тока — Самое простое объяснение, формула, единица измерения

Сила тока с точки зрения гидравлики

Думаю, вы не раз слышали такое словосочетание, как «сила тока«. А для чего нужна сила? Ну как для чего? Чтобы совершать полезную или бесполезную работу. Главное, чтобы что-то делать.  Каждый из нас обладает какой-либо силой. У кого-то сила такая, что он может одним ударом разбить кирпич в пух и в прах, а другой не сможет поднять даже соломинку. Так вот, дорогие мои читатели, электрический ток тоже обладает силой.

Представьте себе шланг, с помощью которого вы поливаете свой огород

Давайте теперь проведем аналогию. Пусть шланг  — это провод, а вода в нем — электрический ток. Мы чуть-чуть приоткрыли краник и вода сразу же побежала по шлангу. Медленно, но все-таки побежала. Сила струи очень слабая.

А давайте теперь откроем краник на полную катушку. В результате струя хлынет с такой силой, что можно даже полить соседский огород.

В обоих случаях диаметр шланга одинаков.

А теперь представьте, что вы наполняете ведро. Напором воды из какого шланга вы его быстрее наполните? Разумеется из зеленого, где напор воды очень сильный. Но почему так происходит? Все дело в том, что объем воды за равный промежуток времени из желтого и зеленого шланга выйдет тоже разный. Или иными словами, из зеленого шланга количество молекул воды выбежит намного больше, чем из желтого за равный период времени.

Разберем еще один интересный пример. Давайте допустим, что у нас есть большая труба, и к ней заварены две другие, но одна в два раза меньше диаметром, чем другая.

Из какой трубы объем воды будет выходить больше за секунду времени? Разумеется с той, которая толще в диаметре, потому что площадь поперечного сечения S2 большой трубы больше, чем площадь поперечного сечения S1 малой трубы. Следовательно, сила потока через большую трубу будет больше, чем через малую, так как объем воды, который протекает через поперечное сечение трубы S2, будет  в два раза больше, чем через тонкую трубу.

Что такое сила тока?

Итак, теперь давайте все что мы тут пописали про водичку применим к электронике. Провод — это шланг. Тонкий провод — это тонкий в диаметре шланг, толстый провод — это толстый в диаметре шланг, можно сказать — труба. Молекулы воды — это электроны. Следовательно, толстый провод при одинаковом напряжении можно протащить больше электронов, чем тонкий. И вот здесь мы подходим вплотную к самой терминологии силы тока.

Сила тока — это количество электронов, прошедших через площадь поперечного сечения проводника за какое-либо определенное время.

Все это выглядит примерно вот так. Здесь я нарисовал круглый проводок, «разрезал» его и получил ту самую площадь поперечного сечения. Именно через нее и бегут электроны.

За период времени берут 1 секунду.

Формула силы тока

Формула для чайников будет выглядеть вот так:

 

где

I — собственно сила тока, Амперы

N — количество электронов

t — период времени, за которое эти электроны пробегут через поперечное сечение проводника, секунды

Более правильная (официальная) формула выглядит вот так:

где

Δq  — это заряд за какой-то определенный промежуток времени, Кулон

Δt — тот самый промежуток времени, секунды

I — сила тока, Амперы

В чем прикол этих двух формул? Дело все в том, что электрон обладает зарядом приблизительно 1,6 · 10-19 Кулон. Поэтому, чтобы сила тока была в проводе (проводнике) была 1 Ампер, нам надо, чтобы через поперечное сечение прошел заряд в 1 Кулон = 6,24151⋅1018 электронов. 1 Кулон = 1 Ампер · 1 секунду.

Итак, теперь можно официально сказать, что если через поперечное сечение проводника за 1 секунду пролетят 6,24151⋅1018 электронов, то сила тока в таком проводнике будет равна 1 Ампер! Все! Ничего не надо больше придумывать! Так и скажите своему преподавателю по физике).

Если преподу не понравится ваш ответ, то скажите типа что-то этого:

Сила тока  — это физическая величина, равная отношению количества заряда прошедшего через поверхность (читаем как через площадь поперечного сечения) за какое-то время. Измеряется как Кулон/секунда. Чтобы сэкономить время и по другим морально-эстетическим нормам,  Кулон/секунду договорились называть Ампером, в честь французского ученого-физика.

Сила тока и сопротивление

Давайте еще раз глянем на шланг с водой и зададим себе вопросы. От чего зависит поток воды? Первое, что приходит в голову — это давление. Почему молекулы воды движутся в рисунке ниже слева-направо? Потому, что давление слева, больше чем справа. Чем больше давление, тем быстрее побежит водичка по шлангу — это элементарно.

Теперь такой вопрос: как можно увеличить количество электронов через площадь поперечного сечения?

Первое, что приходит на ум — это увеличить давление. В этом случае скорость потока воды увеличится, но ее много не увеличишь, так как шланг порвется как грелка в пасти Тузика.

Второе — это поставить шланг бОльшим диаметром. В этом случае у нас количество молекул воды через поперечное сечение будет проходить больше, чем в тонком шланге:

Все те же самые умозаключения можно применить и к обыкновенному проводу. Чем он больше в диаметре, тем больше он сможет «протащить» через себя силу тока. Чем меньше в диаметре, то желательно меньше его нагружать, иначе его «порвет», то есть он тупо сгорит. Именно этот принцип заложен в плавких предохранителях. Внутри такого предохранителя тонкий проводок. Его толщина зависит от того, на какую силу тока он рассчитан.

плавкий предохранитель

Как только сила тока через тонкий проводок  предохранителя превысит силу тока, на которую рассчитан предохранитель, то плавкий проводок перегорает и размыкает цепь. Через перегоревший предохранитель ток уже течь не может, так как проводок в предохранителе в обрыве.

сгоревший плавкий предохранитель

Поэтому, силовые кабели,  через которые «бегут» сотни и тысячи ампер, берут большого диаметра и стараются делать из меди, так как ее удельное сопротивление очень мало.

Сила тока в проводнике

Очень часто можно увидеть задачки по физике с вопросом: какая сила тока в проводнике? Проводник, он же провод, может иметь различные параметры: диаметр, он же площадь поперечного сечения; материал, из которого сделан провод; длина, которая играет также важную роль.

Да и вообще, сопротивление проводника рассчитывается по формуле:

формула сопротивления проводника

Таблица с удельным сопротивлением из разных материалов выглядит вот так.

таблица с удельным сопротивлением веществ

Для того, чтобы найти силу тока в проводнике, мы должны воспользоваться законом Ома для участка цепи. Выглядит он вот так:

закон Ома

 

Задача

У нас есть медный провод длиной в 1 метр и его площадь поперечного сечения составляет 1 мм2 . Какая сила тока будет течь в этом проводнике (проводе), если на его концы подать напряжение в 1 Вольт?

задача на силу тока в проводнике

Решение:

 

Как измерить силу тока?

Для того, чтобы измерить значение силы тока, мы должны использовать специальные приборы — амперметры. В настоящее время силу тока можно измерить с помощью цифрового мультиметра, который  может измерять и силу тока, и напряжение и сопротивление и еще много чего. Для того, чтобы измерить силу тока, мы должны вставить наш прибор в разрыв цепи вот таким образом.

Более подробно как это сделать, можете прочитать в этой статье.

Также советую посмотреть обучающее видео, где очень умный преподаватель объясняет простым языком, что такое «сила тока».

формула, единица измерения, определение простыми словами, прибор, какой буквой обозначается

Электричеством пользуются все и постоянно, поэтому знание его природы необходимо каждому. Разбираемся, каким прибором измеряется сила тока и какой буквой она обозначается. Наш эксперт поможет окончательно разобраться и сделать понятным физический смысл явления

Сила тока. Фото: shutterstock.com

Борис Михеев
Автор КП

Николай Герасимов
Старший преподаватель физики

Содержание

  1. Определение силы тока
  2. Природа
  3. Формула
  4. Единица измерения
  5. Прибор для измерения
  6. Вопросы и ответы

Электрический ток, текущий по проводу, можно сравнить с водой, текущей по шлангу. Струя воды может обладать как огромной силой, способной, например, сбить человека с ног, так и силой очень маленькой, как при капельном поливе, где её хватает лишь на то, чтобы капелька жидкости покинула шланг. Так вот, электрический ток тоже обладает силой.

Определение силы тока простыми словами

Сила тока – это упорядоченное движение заряженных частиц. Её величина может проявляться, например, в яркости лампы. Ток в мощном прожекторе обладает большой силой и совершает большую работу, что проявляется в том, что его лампа даёт много света. Лампа же ночника светит слабо, и в этом случае говорят, что сила тока маленькая.

Природа силы тока

Если посмотреть на определение силы тока, то можно выделить два условия, необходимые для его возникновения: наличие свободных зарядов и электрического поля, которое заставит двигаться все эти заряды в одну сторону, то есть упорядоченно. Например, в металлах такими свободными зарядами являются свободные электроны, которые очень плохо притягиваются к ядрам, и даже теплового движения достаточно, чтобы разорвать их связь. Таким образом, электрический ток имеет электромагнитную природу.

Формула силы тока

I = N/t

Где:

— собственно сила тока, Амперы;
— количество электронов;
— период времени, за которое эти электроны пробегут через поперечное сечение проводника, секунды.

Электромобиль — один из современных примеров использования электричества в нашей жизни. Фото: Pixabay.com
Единица измерения силы тока

Единица измерения силы тока

Единица измерения силы тока – Ампер, одна из основных единиц системы СИ.

Прибор для измерения силы тока

Приборы для измерения силы тока называются амперметры. Приборы для измерения малых токов порядка миллиампер (одна тысячная часть от ампера) или микроампер (одна миллионная часть от ампера) называются миллиамперметры и микроамперметры соответственно. Для измерения больших токов порядка килоампер (тысячи ампер) используют приборы, которые называются килоамперметры.

это интересно

Закон Джоуля-Ленца

Разберем задачи на закон Джоуля-Ленца и узнаем, где он применяется в жизни

подробнее

Популярные вопросы и ответы

Отвечает Николай Герасимов, старший преподаватель в Домашней школе по физике «ИнтернетУрок».

Какой буквой обозначается сила тока?

Сила тока обозначается буквой I.

Какова сила тока в проводнике?

Токи, с которыми мы можем встретиться, могут быть от нескольких миллиампер до сотен тысяч ампер. Например, токи, текущие по проводам в наших домах, редко превышают значения в 10 ампер. Однако стоит сразу отметить, что ток силой несколько десятков миллиампер вызывает неприятные ощущения, а ток силой 0,1 А (Ампера) может быть смертельным для человека. Все мы пользуемся зарядными устройствами для мобильных телефонов, ток в которых может достигать 1-2 А, поэтому нужно быть аккуратными при зарядке телефонов и обязательно соблюдать меры предосторожности.

Как измерить силу тока мультиметром?

Сегодня электрики нередко используют мультиметры – приборы, которые позволяют измерять силу тока, напряжение, сопротивление, электроёмкость конденсаторов и так далее. Для измерения силы тока нужно правильно подключить провода и выставить соответствующий режим работы. В разных приборах могут быть различные способы включения, но сектор для измерения силы тока обычно обозначен буквой «А», а начинать нужно с режима для измерения максимального тока, иначе прибор может сгореть. Также следует помнить, что амперметр нельзя подсоединять к источнику тока без потребителей, например электрической лампы. То есть ни в коем случае нельзя щупы мультиметра, работающего в режиме амперметра, присоединять непосредственно к клеммам электрической розетки.

Буклет с формулами Класс физики — 12 Текущее электричество

Скорость зарядного тока в любой части провода называется протекающим по нему электрическим током.

Электрический ток (I) = q/t. Его единицей СИ является ампер (А).

Обычное направление электрического тока – это направление движения положительного заряда.

Ток одинаков для всех участков проводника неоднородного сечения. Подобно потоку воды, зарядка течет быстрее, когда проводник мал в противоположном направлении, и замедляется, когда проводник более протяженный в поперечном сечении, так что уровень заряда остается неизменным.

При зарядке q вращается по окружности с частотой f, равной мощности,

я = qf

(Ток в металлическом проводнике течет за счет движения свободных электронов, в то время как электролиты и ионизированные газы теперь текут за счет электронов и направлений.)

Виды электрического тока

По величине и направлению электрический ток бывает двух видов

  1. Постоянный ток (DC) Его величина и направление не меняются со временем. Сеть, батарея или динамо-машина постоянного тока являются наиболее постоянными источниками тока.
  2. Переменный ток (AC) Электрический ток, величина которого непрерывно изменяется и время от времени меняет свое направление, называется переменным током. Динамо-машина переменного тока является текущим источником обмена.
  • Сопротивление R= V/i

Где I = сила тока

я = текущий

  • Изменение сопротивления в зависимости от температуры:

R = R0(1 + αΔT)

Где-R t -сопротивление при температуре t°C,

R 0 -стойкость при температуре 0°С,

α -температурный коэффициент сопротивления.

Проводимость = обратная величина удельного сопротивления или σ = 1/ρ = 1/RA

  • Напряжение на клеммах:

Случай-1 : Когда батарея подает ток

V = E – ir

Где – V-концевой P.D., E – ЭДС ячейки, r-внутреннее сопротивление ячейки,

R- внешнее сопротивление.

Случай-2 : Когда аккумулятор заряжается

В = Е + г

  • Законы Кирхгофа:
  1. Первый закон Кирхгофа: ∑i = 0 на любом перекрестке
  2. Второй закон Кирхгофа: ∑i R = 0 в замкнутом контуре.
  • Условие балансировки для моста из пшеничного камня: p/q = r/s, где P, Q, R и S — сопротивления моста 9.0024

  • Метровый мост

Где – x – неизвестное сопротивление данного провода, R – сопротивление в коробке сопротивлений, l 1 – балансировочная длина от левого конца моста до жокея.

ρ=Lπr2X

Где — ρ-удельное сопротивление провода,

Х-сопротивление провода,

А – Площадь поперечного сечения провода,

l-длина провода.

  • Измеритель потенциала:

ЭДС ячейки во вторичной цепи

E с = Iρ

(i) Сравнение ЭДС двух ячеек

E1/E2 = L1/L2

Где – E 1 – ЭДС первой ячейки, E 2 – ЭДС второй ячейки, l 1 и l 2 – балансировочные длины отдельных ячеек соответственно.

(ii) Для определения внутреннего сопротивления ячейки:

r = R (L1 — L2)/L2

Следуйте решениям NCERT для класса 12 по физике , подготовленным Physics Wallah. Если каким-либо учащимся необходимо пройти онлайн-тест, чтобы проверить свои концепции или понимание, они могут посетить викторину по текущему электричеству.

Загрузите Pdf буклета с формулами класса 12​t физика главы Current Electricity по ссылке, указанной ниже

18.3 Electric Field — Physics

Раздел Цели обучения

К концу этого раздела вы сможете делать следующее:

  • Вычислять напряженность электрического поля
  • Создание и интерпретация рисунков электрических полей

Поддержка учителей

Поддержка учителей

Цели обучения в этом разделе помогут вашим учащимся освоить следующие стандарты:

  • (5) Учащийся знает природу сил в физическом мире. Ожидается, что студент:
    • (С)
      описать и рассчитать, как величина электрической силы между двумя объектами зависит от их зарядов и расстояния между ними.

Основные термины раздела

электрическое поле испытательный заряд

Поддержка учителей

Поддержка учителей

Спросите учащихся, видели ли они фильмы, в которых используется концепция полей как силовых полей . Попросите их описать, как работают такие поля. Опишите, как можно рассматривать гравитацию как поле, которое окружает массу и с которым взаимодействуют другие массы. Объясните, что электрические поля очень похожи на гравитационные поля.

Возможно, вы слышали о силовом поле в научно-фантастических фильмах, где такие поля применяют силы в определенных точках в космосе, чтобы удержать злодея в ловушке или защитить космический корабль от вражеского огня. Концепция поля очень полезна в физике, хотя она несколько отличается от того, что вы видите в кино.

Поле — это способ концептуализации и отображения силы, которая окружает любой объект и действует на другой объект на расстоянии без видимой физической связи. Например, гравитационное поле, окружающее Землю и все другие массы, представляет гравитационную силу, которая возникла бы, если бы в данной точке поля была помещена другая масса. Майкл Фарадей, английский физик девятнадцатого века, предложил концепцию электрического поля. Если вы знаете электрическое поле, то можете легко рассчитать силу (величину и направление), действующую на любой электрический заряд, который вы поместите в поле.

Электрическое поле создается электрическим зарядом и сообщает нам силу на единицу заряда во всех точках пространства вокруг распределения заряда. Распределение заряда может быть одноточечным; распределение заряда, скажем, по плоской пластине; или более сложное распределение заряда. Электрическое поле распространяется в пространстве вокруг распределения заряда. Теперь рассмотрите возможность размещения пробного заряда в поле. Пробный заряд — это положительный электрический заряд, заряд которого настолько мал, что не возмущает существенно заряды, создающие электрическое поле. Электрическое поле действует на пробный заряд в заданном направлении. Приложенная сила пропорциональна заряду пробного заряда. Например, если мы удвоим заряд пробного заряда, сила, действующая на него, удвоится. Математически говоря, что электрическое поле представляет собой силу на единицу заряда, записывается как

E→=F→qtestE→=F→qtest

18.15

где мы рассматриваем только электрические силы. Обратите внимание, что электрическое поле представляет собой векторное поле, направленное в том же направлении, что и сила, действующая на положительный пробный заряд. Единицы электрического поля N/C.

Если электрическое поле создается точечным зарядом или сферой с однородным зарядом, то величина силы между этим точечным зарядом Q и пробным зарядом определяется законом Кулона

F=k|Qqtest|r2F =k|Qqtest|r2

, где используется абсолютное значение, потому что мы учитываем только величину силы. Тогда величина электрического поля равна

E=Fqtest=k|Q|r2.E=Fqtest=k|Q|r2.

18,16

Это уравнение дает величину электрического поля, создаваемого точечным зарядом Q . Расстояние r в знаменателе — это расстояние от точечного заряда Q или от центра сферического заряда до интересующей точки.

Если тестовый заряд удалить из электрического поля, электрическое поле все еще существует. Чтобы создать трехмерную карту электрического поля, представьте себе размещение пробного заряда в разных местах поля. В каждом месте измерьте силу, действующую на заряд, и используйте векторное уравнение E→=F→/qtestE→=F→/qtest для расчета электрического поля. Нарисуйте стрелку в каждой точке, где вы поместите пробный заряд, чтобы представить силу и направление электрического поля. Длина стрелок должна быть пропорциональна напряженности электрического поля. Если вы соедините эти стрелки вместе, вы получите линии. На рис. 18.17 показано изображение трехмерного электрического поля, создаваемого положительным зарядом.

Рисунок
18.17

Трехмерное представление электрического поля, создаваемого положительным зарядом.

Поддержка учителей

Поддержка учителей

[BL][OL]Укажите, что все силовые линии электрического поля берут начало от заряда.

[AL]Обратите внимание, что количество линий, пересекающих воображаемую сферу, окружающую заряд, одинаково независимо от размера сферы, которую вы выберете. Спросите, могут ли учащиеся использовать это, чтобы показать, что количество силовых линий, пересекающих поверхность на единицу площади, показывает, что напряженность электрического поля уменьшается пропорционально обратному квадрату расстояния.

Простое рисование линий электрического поля в плоскости, пересекающей заряд, дает двумерные карты электрического поля, показанные на рис. 18.18. Слева — электрическое поле, создаваемое положительным зарядом, а справа — электрическое поле, создаваемое отрицательным зарядом.

Обратите внимание, что силовые линии электрического поля направлены от положительного заряда к отрицательному. Таким образом, положительный пробный заряд, помещенный в электрическое поле положительного заряда, будет отталкиваться. Это согласуется с законом Кулона, согласно которому одноименные заряды отталкиваются друг от друга. Если мы поместим положительный заряд в электрическое поле отрицательного заряда, положительный заряд притянется к отрицательному заряду. Противоположное верно для отрицательных тестовых зарядов. Таким образом, направление линий электрического поля согласуется с тем, что мы находим, используя закон Кулона.

Уравнение E=k|Q|/r2E=k|Q|/r2 говорит о том, что электрическое поле становится сильнее по мере приближения к заряду, который его генерирует. Например, на расстоянии 2 см от заряда Q ( r = 2 см) электрическое поле в четыре раза сильнее, чем на расстоянии 4 см от заряда ( r = 4 см). Снова взглянув на рис. 18.17 и рис. 18.18, мы видим, что линии электрического поля становятся более плотными по мере приближения к заряду, который их генерирует. На самом деле плотность линий электрического поля пропорциональна напряженности электрического поля!

Рисунок
18.18

Линии электрического поля от двух точечных зарядов. Красная точка слева несет заряд +1 нКл, а синяя точка справа несет заряд -1 нКл. Стрелки указывают направление, в котором будет двигаться положительный пробный заряд. Линии поля сгущаются по мере приближения к точечному заряду.

Карты электрического поля могут быть составлены для нескольких зарядов или для более сложных распределений зарядов. Электрическое поле от нескольких зарядов можно найти, сложив электрические поля от каждого отдельного заряда. Поскольку эта сумма может быть только одним числом, мы знаем, что только одна линия электрического поля может проходить через любую заданную точку. Другими словами, линии электрического поля не могут пересекаться друг с другом.

На рис. 18.19(а) показана двухмерная карта электрического поля, создаваемого зарядом + q и соседним зарядом — q . Трехмерная версия этой карты получается путем вращения этой карты вокруг оси, проходящей через оба заряда. Положительный пробный заряд, помещенный в это поле, будет испытывать силу в направлении силовых линий в его местоположении. Таким образом, он будет отталкиваться от положительного заряда и притягиваться к отрицательному заряду. Рисунок 18.19(b) показывает электрическое поле, создаваемое двумя зарядами − q . Обратите внимание, как силовые линии отталкиваются друг от друга и не перекрываются. Положительный пробный заряд, помещенный в это поле, будет притягиваться к обоим зарядам. Если вы находитесь далеко от этих двух зарядов, где далеко значит намного дальше, чем расстояние между зарядами, электрическое поле выглядит как электрическое поле от одного заряда -2 q .

Рисунок
18.19

(а) Электрическое поле, создаваемое точечным положительным зарядом (слева) и точечным отрицательным зарядом той же величины (справа). (б) Электрическое поле, создаваемое двумя равными отрицательными зарядами.

Поддержка учителей

Поддержка учителей

Попросите учащихся интерпретировать карты электрического поля. Где поле сильнее? Где поле слабее? В каком направлении поле увеличивается или уменьшается? Где поле наиболее однородно? Могут ли они проверить, что величина заряда одинакова в данной панели? Чем отличается поле двух отрицательных зарядов от поля положительного и отрицательного зарядов?

Виртуальная физика

Исследование электрического поля

Эта симуляция показывает вам электрическое поле из-за зарядов, которые вы размещаете на экране. Начните с установки верхнего флажка на панели параметров с правой стороны, чтобы отобразить электрическое поле. Перетащите заряды из ведер на экран, перемещайте их и наблюдайте за электрическим полем, которое они образуют. Чтобы более точно увидеть величину и направление электрического поля, перетащите датчик электрического поля или датчик электрического поля из нижнего ведра и перемещайте его по экрану.

Исследования PhET: заряды и поля.
Перемещайте точечные заряды по игровому полю, а затем просматривайте электрическое поле, напряжения, эквипотенциальные линии и многое другое.

Нажмите, чтобы просмотреть содержимое

Два положительных заряда размещены на экране. Какое утверждение описывает электрическое поле, создаваемое зарядами?

  1. Постоянно везде.

  2. Рядом с каждым зарядом ноль.

  3. Между зарядками ноль.

  4. Наибольшая сила на полпути между зарядами.

Смотреть физику

Электростатика (часть 2): интерпретация электрического поля

В этом видеоролике объясняется, как рассчитать электрическое поле точечного заряда и как интерпретировать карты электрического поля в целом. Обратите внимание, что лектор использует d для расстояния между частицами вместо r . Обратите внимание, что точечные заряды бесконечно малы, поэтому все их заряды сосредоточены в одной точке. Когда рассматриваются более крупные заряженные объекты, расстояние между объектами должно измеряться между центрами объектов.

Проверка захвата

Верно или неверно — если точечный заряд имеет силовые линии электрического поля, которые указывают на него, заряд должен быть положительным.

  1. правда
  2. ложь

Рабочий пример

Какова плата?

Посмотрите на рисунок электрического поля на рис. 18.20. Какова относительная сила и знак трех зарядов?

Рисунок
18.20

Карта электрического поля трех заряженных частиц.

Стратегия

Мы знаем, что электрическое поле простирается от положительного заряда и заканчивается отрицательным зарядом. Мы также знаем, что количество силовых линий электрического поля, которые касаются заряда, пропорционально заряду. Заряд 1 имеет 12 полей, выходящих из него. В заряд 2 входит шесть силовых линий. В заряд 3 входит 12 силовых линий.

Решение

Линии электрического поля выходят из заряда 1, так что это положительный заряд. Линии электрического поля проходят через заряды 2 и 3, поэтому они являются отрицательными зарядами. Отношение зарядов равно q1:q2:q3=+12:-6:-12q1:q2:q3=+12:-6:-12. Таким образом, величина зарядов 1 и 3 вдвое превышает величину заряда 2.

Обсуждение

Хотя мы не можем определить точный заряд каждой частицы, мы можем получить много информации из электрического поля относительно величины и знака зарядов. и где сила пробного заряда будет наибольшей (или наименьшей).

Рабочий пример

Электрическое поле от дверной ручки

Дверная ручка, которую можно принять за сферический металлический проводник, приобретает заряд статического электричества q=-1,5 нКл. q=-1,5 нКл. Чему равно электрическое поле на расстоянии 1,0 см от дверной ручки? Диаметр дверной ручки 5,0 см.

Стратегия

Поскольку дверная ручка является проводником, весь заряд распределяется по внешней поверхности металла. Кроме того, поскольку дверная ручка считается идеально сферической, заряд на поверхности распределяется равномерно, поэтому мы можем рассматривать дверную ручку так, как если бы весь заряд был сосредоточен в центре дверной ручки. Справедливость этого упрощения будет доказана в следующем курсе физики. Теперь нарисуйте дверную ручку и определите вашу систему координат. Используйте +x+x, чтобы указать внешнее направление, перпендикулярное двери, с x=0x=0 в центре дверной ручки (как показано на рисунке ниже).

Если диаметр дверной ручки 5,0 см, ее радиус 2,5 см. Мы хотим знать электрическое поле на расстоянии 1,0 см от поверхности дверной ручки, что составляет расстояние r = 2,5 см + 1,0 см = 3,5 см, r = 2,5 см + 1,0 см = 3,5 см от центра дверной ручки. Мы можем использовать уравнение E=k|Q|r2E=k|Q|r2, чтобы найти величину электрического поля. Направление электрического поля определяется знаком заряда, который в данном случае отрицательный.

Решение

Введение заряда Q=-1,5 нКл=-1,5×10-9.

Обсуждение

Похоже на огромное электрическое поле. К счастью, требуется электрическое поле примерно в 100 раз сильнее (3×106 Н/Кл3×106 Н/Кл), чтобы заставить воздух расщепляться и проводить электричество. Кроме того, вес взрослого человека составляет около 70 кг × 9,8 м/с2 ≈ 700 Н70 кг × 9,8 м/с2 ≈ 700 Н, так почему вы не чувствуете силы, действующей на протоны в вашей руке, когда вы тянетесь к дверной ручке? Причина в том, что ваша рука содержит равное количество отрицательного заряда, который отталкивает отрицательный заряд дверной ручки. Из-за поляризации в вашей руке может развиться очень небольшая сила, но вы никогда этого не заметите.

Практические задачи

15.

Какова величина электрического поля на расстоянии 20 см от точечного заряда q = 33 нКл?

  1. 7,4 × 10 3 Н/З
  2. 1,48 × 10 3 Н/З
  3. 7,4 × 10 12 Н/З
  4. 0

16.

Заряд -10 нКл находится в начале. В каком направлении электрическое поле от заряда указывает на x + 10 см?

  1. Электрическое поле направлено в сторону от отрицательных зарядов.
  2. Электрическое поле указывает на отрицательные заряды.
  3. Электрическое поле направлено в сторону положительных зарядов.
  4. Электрическое поле направлено в сторону от положительных зарядов.

Проверьте свое понимание

17.

Когда линии электрического поля сближаются, что это говорит вам об электрическом поле?

  1. Электрическое поле обратно пропорционально плотности линий электрического поля.
  2. Электрическое поле прямо пропорционально плотности линий электрического поля.
  3. Электрическое поле не связано с плотностью линий электрического поля.
  4. Электрическое поле обратно пропорционально квадратному корню из плотности силовых линий электрического поля.

Опубликовано

в

от

Метки:

Комментарии

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *