Возникновение индукции тока: Электромагнитная индукция — урок. Физика, 8 класс.

Содержание

Чем можно вызвать появление индукционного тока

Магазины › Магнит › Почему при приближении Магнита к катушке Магнитный поток пронизывающий эту катушку менялся

Практическое применение Если менять магнитное поле вблизи неподвижного замкнутого проводника, то причиной индукционного тока является вихревое электрическое поле. Если двигать замкнутый проводник вблизи неподвижного магнита, то причиной индукционного тока является сила Лоренца.

Индукционный ток может быть вызван двумя различными способами:

  • перемещение рамки (или отдельных ее частей) в поле неподвижной катушки
  • Рамка неподвижна, но изменяется магнитное поле — или за счет движения катушки, или вследствие изменения силы тока I в ней, или в результате того и другого вместе
  • Индукционный ток может быть вызван перемещением рамки в поле неподвижной катушки или изменением магнитного поля вокруг неподвижной рамки.
  • При изменении магнитного поля вблизи неподвижного замкнутого проводника возникает вихревое электрическое поле, вызывающее индукционный ток.
  • При движении замкнутого проводника вблизи неподвижного магнита возникает сила Лоренца, вызывающая индукционный ток.
  • Индукционный ток возникает, когда рамка находится в переменном магнитном поле, изменяется площадь контура или происходит вращение рамки.
  • Направление индукционного тока зависит от того, увеличивается ли или уменьшается магнитный поток через контур.
  • Переменное магнитное поле порождает переменное электрическое поле, которое порождает электрический ток.
  • Самоиндукция возникает при изменении тока в контуре, что изменяет магнитный поток через поверхность, ограниченную контуром.
  • Индукция — это вид обобщения, связанный с предвосхищением результатов наблюдений и экспериментов на основе данных опыта.
  • Индукционный ток не возникает, если угол между линиями магнитной индукции и плоскостью рамки равен нулю.
  1. Что является причиной возникновения индукционного тока
  2. Какие способы возникновения индукционного тока
  3. В каком случае возникает явление электромагнитной индукции
  4. Что влияет на направление индукционного тока
  5. Что порождает ток
  6. Когда возникает явление самоиндукции
  7. Что такое индукция простыми словами
  8. В каком случае индукционный ток не возникает
  9. Почему в катушке возникает индукционный ток
  10. Что является источником электромагнитной индукции
  11. Что является источником магнитного поля
  12. Как найти индукционный ток
  13. В каком случае увеличивается сила индукционного тока
  14. Как зависит сила индукционного тока
  15. Что влияет на направление тока
  16. Что такое направление индукционного тока
  17. Чему равна сила индукционного тока
  18. Как индукционный ток выбирает свое направление
  19. Чем отличается ток от индукционного тока
  20. Что такое вектор индукции магнитного поля
  21. Что является причиной возникновения индукционного тока в кольце
  22. Как возникает вихревое электрическое поле
  23. Кто установил правило для определения направления индукционного тока

Что является причиной возникновения индукционного тока

Практическое применение Если менять магнитное поле вблизи неподвижного замкнутого проводника, то причиной индукционного тока является вихревое электрическое поле. Если двигать замкнутый проводник вблизи неподвижного магнита, то причиной индукционного тока является сила Лоренца.

Какие способы возникновения индукционного тока

Из формулы видно, что индукционный ток возникает в 3 случаях:

  • рамка находится в переменном магнитном поле;
  • изменяется площадь контура;
  • изменяется угол ∠α между нормалью и магнитной индукцией В, происходит вращение рамки.

В каком случае возникает явление электромагнитной индукции

Электромагни́тная инду́кция — явление возникновения электрического тока, электрического поля или электрической поляризации при изменении магнитного поля во времени или при движении материальной среды в магнитном поле.

Что влияет на направление индукционного тока

Направление индукционного тока в контуре зависит от того, увеличивается или уменьшается магнитный поток через этот контур.

Что порождает ток

Переменное магнитное поле создает переменное электрическое поле, которое, действуя на свободные заряды, создает электрический ток. Этот ток, будучи переменным, в свою очередь порождает переменное магнитное поле, создающее электрическое поле в том же проводнике, и т.

Когда возникает явление самоиндукции

Самоиндукция — это явление возникновения ЭДС индукции в проводящем контуре (в цепи) при изменении протекающего через контур тока. При изменении тока в контуре пропорционально меняется и магнитный поток через поверхность, ограниченную этим контуром.

Что такое индукция простыми словами

Индукция — это вид обобщения, связанный с предвосхищением результатов наблюдений и экспериментов на основе данных опыта. В индукции данные опыта «наводят» на общее, поэтому индуктивные обобщения рассматриваются обычно как опытные истины или эмпирические законы.

В каком случае индукционный ток не возникает

При вращении рамки 1 (задача 23.1.5) угол между линиями магнитной индукции (а, значит, и вектором индукции) и плоскостью рамки в любой момент времени равен нулю. Следовательно, магнитный поток через рамку 1 не изменяется (см. формулу (23.1)), и индукционный ток в ней не возникает.

Почему в катушке возникает индукционный ток

Причиной возникновения индукционного тока служит приближение северного полюса; по закону Ленца индукционный ток должен произвести отталкивание северного полюса и для этой цели должен создать на верхнем конце катушки А одноименный, т. е.

Что является источником электромагнитной индукции

Электромагнитная индукция это явление возникновения тока в замкнутом проводнике при прохождении через него магнитного потока, изменяющегося со временем. То есть благодаря этому явлению мы можем преобразовывать механическую энергию в электрическую, и это замечательно.

Что является источником магнитного поля

Источники магнитного поля

Магнитное поле создаётся (порождается) током заряженных частиц, или изменяющимся во времени электрическим полем, или собственными магнитными моментами частиц (последние для единообразия картины могут быть формальным образом сведены к электрическим токам).

Как найти индукционный ток

Направление индукционного тока определяется с помощью закона сохранения энергии. Индукционный ток во всех случаях направлен так, чтобы своим магнитным полем препятствовать изменению магнитного потока, вызывающего данный индукционный ток. Вихревое электрическое поле.

В каком случае увеличивается сила индукционного тока

Если внешний ток увеличивается, то растёт создаваемое им магнитное поле и его поток, что приводит к появлению индукционного тока, уменьшающего это увеличение. В этом случае индукционный ток направлен в сторону, противоположную основному.

Как зависит сила индукционного тока

Сила индукционного тока зависит от скорости изменения магнитного потока. Ток в цепи может существовать, когда на свободные заряды действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура равна ЭДС.

Что влияет на направление тока

Исторически принято, что направление тока совпадает с направлением движения положительных зарядов в проводнике. При этом, если единственными носителями тока являются отрицательно заряженные частицы (например, электроны в металле), то направление тока противоположно направлению движения заряженных частиц.

Что такое направление индукционного тока

Направление индукционного тока в контуре определяется правилом Ленца: Индукционный ток направлен так, чтобы своим магнитным полем противодействовать изменению магнитного потока, которым он вызван.

Чему равна сила индукционного тока

Для определения величины силы индукционного тока в указанном замкнутом проводнике применим формулу: I = εi / R = ΔФ / (R * Δt).

Как индукционный ток выбирает свое направление

Направление индукционного тока в кольце легко определить по правилу правой руки. Большой палец правой руки показывает направо, четыре согнутых пальца показывают направление тока в кольце. Если подносят магнит южным полюсом, — вектора магнитной индукции противонаправлены.

Чем отличается ток от индукционного тока

Электрический ток в замкнутом контуре, возникающий при изменении магнитного поля, называется индукционным. Индукционный ток, так же как и ток от гальванического элемента или аккумулятора, представляет собой упорядоченное движение электронов.

Что такое вектор индукции магнитного поля

Магни́тная инду́кция — векторная физическая величина, являющаяся силовой характеристикой магнитного поля, а именно характеристикой его действия на движущиеся заряженные частицы и на обладающие магнитным моментом тела.; единица измерения в СИ — тесла (Тл), в СГС — гаусс (Гс) (связь: 1 Тл = 104 Гс).

Что является причиной возникновения индукционного тока в кольце

Индукция магнитного поля, создаваемого постоянным магнитом, уменьшается с увеличением расстояния до него. Поэтому при приближении магнита к кольцу (задача 23.1.3) поток индукции магнитного поля магнита через кольцо изменяется, и в кольце возникает индукционный ток.

Как возникает вихревое электрическое поле

Итак, сущность явления электромагнитной индукции заключается в том, что вихревое электрическое поле возникает в любой точке пространства, если в этой точке существует изменяющееся во времени магнитное поле, независимо от того, есть там проводящий контур или нет.

Кто установил правило для определения направления индукционного тока

Ленц (1804–1865) в 1833 г. сформулировал правило для определения направления индукционного тока. В соответствии с этим правилом индукционный ток всегда направлен так, что созданное им магнитное поле противодействует изменению магнитного потока, который создал этот Индукционный ток (т.

Электромагнитная индукция. | Объединение учителей Санкт-Петербурга

Основные ссылки

CSS adjustments for Marinelli theme

Объединение учителей Санкт-Петербурга

Форма поиска

Поиск

Вы здесь

Главная » Электромагнитная индукция.

Электромагнитная индукция

1831 г. — М. Фарадей обнаружил, что в замкнутом проводящем контуре при изменении магнитного поля возникает так называемый индукционный ток. (Индукция, в данном случае, — появление, возникновение).

Индукционный ток в катушке возникает при

перемещении постоянного магнита относительно катушки;

при перемещении электромагнита относительно катушки;

при перемещении сердечника относительно электромагнита, вставленного в катушку;

при регулировании тока в цепи электромагнита;

при замыкании и размыкании цепи

Появление тока в замкнутом контуре при изменении магнит­ного поля, пронизывающего контур, свидетельствует о действии в контуре сторонних сил (или о возникно­вении ЭДС индукции).

Явление возникновения ЭДС в замкнутом проводящем контуре при изменении магнитного поля (потока), пронизывающего контур, назы­вается электромагнитной индукцией.

Или: явление возникновения электрического поля при изменении магнитного поля (потока), называется электромагнитной индукцией.

Закон электромагнитной индукции

При всяком изменении магнитного потока через проводящий замкнутый контур в этом контуре возникает электрический ток. I зависит от свойств контура (сопротивление):  .  e не зависит от свойств контура: .

ЭДС индукции в замкнутом контуре прямо пропорциональна скорости изменения магнитного потока через площадь, ограниченную этим контуром.

Основные применения электромагнитной индукции: генерирование тока (индукционные генераторы на всех электростанциях, динамомашины), трансформаторы.

 

Возникновение индукционного тока — следствие закона сохранения энергии!

В случае 1: При приближении магнита, увеличении тока, замыкании цепи: ; Магнитный поток Ф­ → ΔФ>0. Чтобы компенсировать это изменение (увеличение) внешнего поля, необходимо магнитное поле, направленное в сторону, противоположную внешнему полю: , где  — т.н. индукционное магнитное поле.

В случае 2: при удалении магнита, уменьшении тока, размыкании цепи: . Магнитный поток Ф  → ΔФ<0. Чтобы компенсировать это изменение (уменьшение), необходимо магнитное поле, сонаправленное с внешним полем: .

Источником магнитного поля является ток. Поэтому:

Возникающий в замкнутом контуре индукционный ток имеет такое направление, что созданный им поток магнитной индукции через площадь, ограниченную контуром, стремится компенсиро­вать то изменение потока магнитной индукции, которое вызывает данный ток (правило Ленца).

 

Ток в контуре имеет отрицательное направление (),еслипротивоположно (т. е. ΔΦ>0). Ток в контуре имеет положительное направление (), если  совпа­дает с ,   (т.е. ΔΦ<0).

Поэтому с учетом правила Ленца (знака) выражение для закона электромагнитной индукции записывается: .

Данная формула справедлива для СИ (коэффициент пропорциональности равен 1). В других системах единиц коэффициент другой.

Если контур (например, катушка) состоит из нескольких витков, то ,

где n – количество витков. Все предыдущие формулы справедливы в случае линейного (равномерного) изменения магнитного потока. В произвольном случае закон записывается через производную: , где e – мгновенное значение ЭДС индукции.

Теги: 

конспект

23.5: Закон индукции Фарадея — Закон Ленца

  1. Последнее обновление
  2. Сохранить как PDF
  • Идентификатор страницы
    2708
    • OpenStax
    • OpenStax

    Цели обучения

    К концу этого раздела вы сможете:

    • Рассчитать ЭДС, ток и магнитное поле, используя закон Фарадея.
    • Объясните физические результаты закона Ленца

    Закон Фарадея и Ленца

    Эксперименты Фарадея показали, что ЭДС, вызванная изменением магнитного потока, зависит лишь от нескольких факторов. Во-первых, ЭДС прямо пропорциональна изменению потока \(\Delta \Phi\). Во-вторых, ЭДС наибольшая, когда изменение во времени \(\Delta t\) наименьшее, то есть ЭДС обратно пропорциональна \(\Delta t\). Наконец, если катушка имеет \(N\) витков, будет создаваться ЭДС в \(N\) раз больше, чем для одиночной катушки, так что ЭДС прямо пропорциональна \(N\). Уравнение для ЭДС, индуцированной изменением магнитного потока, имеет вид \[ЭДС = -N \frac{\Delta \Phi}{\Delta t}.\label{23.3.1}\].0044 Закон индукции Фарадея . Единицами ЭДС, как обычно, являются вольты.

    Знак минус в законе индукции Фарадея очень важен. Минус означает, что ЭДС создает ток I и магнитное поле B, которые противодействуют изменению потока \(\Delta \Phi\) — это известно как закон Ленца . Направление (заданное знаком минус) эдс настолько важно, что его называют законом Ленца по имени русского Генриха Ленца (1804–1865), который, подобно Фарадею и Генри, независимо исследовал аспекты индукции. Фарадей знал об этом направлении, но Ленц сформулировал его так ясно, что ему приписывают его открытие. (См. рис. 1.)

    Рисунок \(\PageIndex{1}\): (a) Когда этот стержневой магнит вталкивается в катушку, напряженность магнитного поля в катушке увеличивается. Ток, наведенный в катушке, создает другое поле в направлении, противоположном направлению стержневого магнита, чтобы противостоять увеличению. Это один из аспектов закона Ленца: индукция противостоит любому потоку заряда. (b) и (c) — две другие ситуации. Убедитесь сами, что показанное направление индуцированной \(B_{катушки}\) действительно противостоит изменению потока и что показанное направление тока соответствует RHR-2.

    СТРАТЕГИЯ РЕШЕНИЯ ЗАДАЧ ДЛЯ ЗАКОНА ЛЕНЦА:

    Чтобы использовать закон Ленца для определения направлений индуцированных магнитных полей, токов и ЭДС:

    1. Сделайте набросок ситуации для использования при визуализации и записи направлений.
    2. Определить направление магнитного поля B.
    3. Определите, увеличивается или уменьшается поток.
    4. Теперь определите направление индуцированного магнитного поля B. Оно противодействует изменению потока, добавляя или вычитая исходное поле.
    5. Используйте RHR-2 для определения направления индуцированного тока I, который отвечает за индуцированное магнитное поле B.
    6. Направление (или полярность) ЭДС индукции теперь будет управлять током в этом направлении и может быть представлено как ток, выходящий из положительной клеммы ЭДС и возвращающийся к ее отрицательной клемме.

    Для практики примените эти шаги к ситуациям, показанным на рис. 1, и к другим ситуациям, которые являются частью следующего текстового материала.

    Применение электромагнитной индукции

    Закон индукции Фарадея имеет множество применений, которые мы рассмотрим в этой и других главах. На этом этапе давайте упомянем несколько, которые связаны с хранением данных и магнитными полями. Очень важное применение связано с аудио- и видеозаписями на лентах . Пластиковая лента, покрытая оксидом железа, проходит мимо записывающей головки. Эта записывающая головка представляет собой круглое железное кольцо, на которое намотана катушка проволоки — электромагнит (рис. 2). Сигнал в виде переменного входного тока от микрофона или камеры поступает на записывающую головку. Эти сигналы (которые зависят от амплитуды и частоты сигнала) создают переменные магнитные поля на записывающей головке. Когда лента движется мимо записывающей головки, ориентация магнитного поля молекул оксида железа на ленте изменяется, что приводит к записи сигнала. В режиме воспроизведения намагниченная лента проходит мимо другой головки, аналогичной по устройству записывающей головке. Различная ориентация магнитного поля молекул оксида железа на ленте индуцирует ЭДС в катушке провода в головке воспроизведения. Затем этот сигнал отправляется на громкоговоритель или видеоплеер.

    Рисунок \(\PageIndex{2}\): Головки записи и воспроизведения, используемые с аудио- и видеомагнитофонами. (кредит: Steve Jurvetson)

    Аналогичные принципы применимы и к жестким дискам компьютеров, только с гораздо большей скоростью. Здесь записи на вращающемся диске с покрытием. Считывающие головки исторически заставляли работать по принципу индукции. Однако входная информация передается в цифровом, а не в аналоговом виде — на вращающемся жестком диске записывается последовательность нулей или единиц. Сегодня большинство устройств считывания с жестких дисков не работают по принципу индукции, а используют метод, известный как гигантское магнитосопротивление. (Открытие того, что слабые изменения магнитного поля в тонкой пленке железа и хрома могут вызвать гораздо большие изменения электрического сопротивления, было одним из первых крупных успехов нанотехнологии.) Другое применение индукции обнаружено на магнитной полосе на оборотная сторона вашей личной кредитной карты, используемой в продуктовом магазине или банкомате. Это работает по тому же принципу, что и аудио- или видеокассета, упомянутая в последнем абзаце, в которой голова считывает личную информацию с вашей карты.

    Еще одним применением электромагнитной индукции является передача электрических сигналов через барьер. Рассмотрим кохлеарный имплант , показанный ниже. Звук улавливается микрофоном снаружи черепа и используется для создания переменного магнитного поля. Ток индуцируется в приемнике, закрепленном в кости под кожей, и передается на электроды во внутреннем ухе. Электромагнитная индукция может использоваться и в других случаях, когда электрические сигналы необходимо передавать через различные среды.

    Рисунок \(\PageIndex{3}\): Электромагнитная индукция, используемая для передачи электрических токов через среды. Устройство на голове ребенка индуцирует электрический ток в приемнике, закрепленном в кости под кожей. (кредит: Бьорн Кнетч)

    Еще одна современная область исследований, в которой электромагнитная индукция успешно применяется (и имеет значительный потенциал), — это транскраниальное магнитное моделирование. Множество расстройств, включая депрессию и галлюцинации, можно отнести к нерегулярной локальной электрической активности в головном мозге. В транскраниальная магнитная стимуляция , быстро меняющееся и очень локализованное магнитное поле помещается рядом с определенными участками, идентифицированными в головном мозге. В выявленных местах индуцируются слабые электрические токи, что может привести к восстановлению электрических функций в тканях головного мозга.

    Апноэ во сне («остановка дыхания») поражает как взрослых, так и младенцев (особенно недоношенных детей и может быть причиной внезапной детской смерти [SID]). У таких людей дыхание может неоднократно останавливаться во время сна. Прекращение более чем на 20 секунд может быть очень опасным. Инсульт, сердечная недостаточность и усталость — вот лишь некоторые из возможных последствий для человека, страдающего апноэ во сне. Беспокойство у младенцев вызывает остановка дыхания на эти более длительные периоды времени. Один из типов мониторов для оповещения родителей о том, что ребенок не дышит, использует электромагнитную индукцию. Через провод, обернутый вокруг грудной клетки младенца, проходит переменный ток. Расширение и сжатие грудной клетки младенца, когда он дышит, изменяет площадь, проходящую через спираль. В расположенной рядом съемной катушке индуцируется переменный ток, обусловленный изменяющимся магнитным полем исходного провода. Если ребенок перестанет дышать, индуцированный ток изменится, и родитель может быть предупрежден.

    УСТАНОВЛЕНИЕ СОЕДИНЕНИЙ: СОХРАНЕНИЕ ЭНЕРГИИ:

    Закон Ленца является проявлением сохранения энергии. ЭДС индукции создает ток, противодействующий изменению потока, потому что изменение потока означает изменение энергии. Энергия может войти или уйти, но не мгновенно. Закон Ленца является следствием. Когда изменение начинается, закон говорит, что индукция противодействует и, таким образом, замедляет изменение. На самом деле, если бы ЭДС индукции была направлена ​​в том же направлении, что и изменение потока, существовала бы положительная обратная связь, которая давала бы нам свободную энергию без видимого источника — закон сохранения энергии был бы нарушен.

    Пример \(\PageIndex{1}\): Расчет ЭДС: насколько велика ЭДС индукции?

    Рассчитайте величину ЭДС индукции, когда магнит на рис. 1а вталкивается в катушку, учитывая следующую информацию: катушка с одним контуром имеет радиус 6,00 см и среднее значение \(B\cos{\theta} \) (это дано, так как поле стержневого магнита комплексное) увеличивается с 0,0500 Тл до 0,250 Тл за 0,100 с.

    Стратегия:

    Чтобы найти магнитуту ЭДС, мы используем закон индукции Фарадея, сформулированный как \(ЭДС = -N\frac{\Delta \Phi}{\Delta t}\), но без знака минус, указывающего направление: \[ЭДС = N\ frac{\Delta \Phi}{\Delta t}.\]

    Решение:

    Нам дано, что \(N = 1\) и \(\Delta t = 0,100 с\), но мы должны определить изменение потока \(\Delta\Phi\) до того, как мы сможем найти ЭДС. Поскольку площадь петли фиксирована, мы видим, что \[\Delta \Phi \left(BA\cos{\theta}\right) = A\Delta \left(B\cos{\theta}\right).\ label{23.3.2}\] Теперь \(\Delta \left(B\cos{\theta}\right) = 0,200 T\), поскольку было дано, что \(B\cos{\theta}\) изменяется от от 0,0500 до 0,250 Тл. {2} \ вправо) \ влево (0,200 Тл \ вправо) {0,100 с} = 22,6 мВ.\]

    Обсуждение:

    Хотя это напряжение легко измерить, оно явно недостаточно велико для большинства практических приложений. Больше петель в катушке, более сильный магнит и более быстрое движение делают индукцию практическим источником напряжения, которым она и является.

    Резюме
    • Закон индукции Фарадея утверждает, что ЭДС, вызванная изменением магнитного потока, равна \[ЭДС = N\frac{\Delta \Phi}{\Delta t}\], когда поток изменяется на \(\Delta \ Phi\) за время \(Delta t\).
    • Если в катушке индуцируется ЭДС, \(N\) — число витков.
    • Знак минус означает, что ЭДС создает ток \(I\) и магнитное поле \(B\), которые противодействуют изменению потока \(\Delta \Phi\) — это противодействие известно как закон Ленца.
    Глоссарий
    Закон индукции Фарадея
    средство расчета ЭДС в катушке из-за изменения магнитного потока, определяемой как \(ЭДС = -N\frac{\Delta \Phi}{\Delta t}\)
    Закон Ленца
    знак минус в законе Фарадея, означающий, что ЭДС, индуцированная в катушке, противодействует изменению магнитного потока

    Эта страница под названием 23. 5: Закон индукции Фарадея — Закон Ленца распространяется под лицензией CC BY 4.0 и была создана, изменена и/или курирована OpenStax с использованием исходного контента, который был отредактирован в соответствии со стилем и стандартами платформы LibreTexts; подробная история редактирования доступна по запросу.

    1. Наверх
    • Была ли эта статья полезной?
    1. Тип изделия
      Раздел или Страница
      Автор
      ОпенСтакс
      Лицензия
      СС BY
      Версия лицензии
      4,0
      Программа OER или Publisher
      ОпенСтакс
      Показать оглавление
      нет
    2. Теги
      1. Закон Фарадея
      2. Закон индукции Фарадея
      3. Закон Ленца
      4. источник@https://openstax. org/details/books/college-physics

    Закон индукции Фарадея: Закон Ленца

    Цели обучения

    К концу этого раздела вы сможете:

    • Вычислять ЭДС, ток и магнитное поле, используя закон Фарадея.
    • Объясните физические результаты закона Ленца

    Закон Фарадея и Ленца

    Эксперименты Фарадея показали, что ЭДС, вызванная изменением магнитного потока, зависит лишь от нескольких факторов. Во-первых, ЭДС прямо пропорциональна изменению потока Δ Ф . Во-вторых, ЭДС наибольшая, когда изменение во времени Δ t наименьшее, т. е. ЭДС обратно пропорциональна Δ t . Наконец, если в катушке Н витков, будет произведена ЭДС, которая в Н раз больше, чем для одиночной катушки, так что ЭДС прямо пропорциональна Н . Уравнение для ЭДС, индуцированной изменением магнитного потока, имеет вид

    [латекс]\текст{ЭДС}=-N\frac{\Delta\Phi}{\Delta t}\\[/latex].

    Это отношение известно как Закон индукции Фарадея . Единицами ЭДС, как обычно, являются вольты. Знак минус в законе индукции Фарадея очень важен. Минус означает, что ЭДС создает ток I и магнитное поле В, которые противодействуют изменению потока Δ Φ — это известно как закон Ленца . Направление (заданное знаком минус) эдс настолько важно, что его называют законом Ленца по имени русского Генриха Ленца (1804–1865), который, подобно Фарадею и Генри, независимо исследовал аспекты индукции. Фарадей знал об этом направлении, но Ленц сформулировал его так ясно, что ему приписывают его открытие. (См. рис. 1.)

    Рис. 1. (a) Когда этот стержневой магнит вставляется в катушку, напряженность магнитного поля в катушке увеличивается. Ток, наведенный в катушке, создает другое поле в направлении, противоположном направлению стержневого магнита, чтобы противостоять увеличению. Это один из аспектов закона Ленца: индукция препятствует любому изменению потока. (b) и (c) — две другие ситуации. Убедитесь сами, что показанное направление индуцированной катушки B действительно противостоит изменению потока и что показанное направление тока соответствует RHR-2.

    Стратегия решения задач по закону Ленца

    Чтобы использовать закон Ленца для определения направлений индуцированных магнитных полей, токов и ЭДС:

    1. Сделайте набросок ситуации для использования при визуализации и записи направлений.
    2. Определить направление магнитного поля B.
    3. Определите, увеличивается или уменьшается поток.
    4. Теперь определите направление наведенного магнитного поля B. Оно противоположно измените в потоке, добавив или вычтя из исходного поля.
    5. Используйте RHR-2 для определения направления индуцированного тока I, который отвечает за индуцированное магнитное поле B.
    6. Направление (или полярность) ЭДС индукции теперь будет управлять током в этом направлении и может быть представлено как ток, выходящий из положительной клеммы ЭДС и возвращающийся к ее отрицательной клемме.

    Для практики примените эти шаги к ситуациям, показанным на рис. 1 и другим ситуациям, которые являются частью следующего текстового материала.

    Применение электромагнитной индукции

    Закон индукции Фарадея имеет множество применений, которые мы рассмотрим в этой и других главах. На этом этапе давайте упомянем несколько, которые связаны с хранением данных и магнитными полями. Очень важное применение связано с аудио- и видеозаписями на лентах . Пластиковая лента, покрытая оксидом железа, проходит мимо записывающей головки. Эта записывающая головка представляет собой круглое железное кольцо, на которое намотана катушка проволоки — электромагнит (рис. 2). Сигнал в виде переменного входного тока от микрофона или камеры поступает на записывающую головку. Эти сигналы (которые зависят от амплитуды и частоты сигнала) создают переменные магнитные поля на записывающей головке. Когда лента движется мимо записывающей головки, ориентация магнитного поля молекул оксида железа на ленте изменяется, что приводит к записи сигнала. В режиме воспроизведения намагниченная лента проходит мимо другой головки, аналогичной по устройству записывающей головке. Различная ориентация магнитного поля молекул оксида железа на ленте индуцирует ЭДС в катушке провода в головке воспроизведения. Затем этот сигнал отправляется на громкоговоритель или видеоплеер.

    Рисунок 2. Головки записи и воспроизведения, используемые с аудио- и видеомагнитофонами. (кредит: Steve Jurvetson)

    Аналогичные принципы применимы и к жестким дискам компьютеров, только с гораздо большей скоростью. Здесь записи на вращающемся диске с покрытием. Считывающие головки исторически заставляли работать по принципу индукции. Однако входная информация передается в цифровой, а не в аналоговой форме — на вращающемся жестком диске записывается последовательность нулей или единиц. Сегодня большинство устройств считывания с жестких дисков не работают по принципу индукции, а используют метод, известный как гигантское магнитосопротивление . (Открытие того, что слабые изменения магнитного поля в тонкой пленке железа и хрома могут вызвать гораздо большие изменения электрического сопротивления, было одним из первых крупных успехов нанотехнологии. ) Еще одно применение индукции можно найти в магнитной полосе на магнитной полосе. оборотная сторона вашей личной кредитной карты, используемой в продуктовом магазине или банкомате. Это работает по тому же принципу, что и упомянутая в последнем абзаце аудио- или видеокассета, в которой голова считывает личную информацию с вашей карты.

    Еще одним применением электромагнитной индукции является передача электрических сигналов через барьер. Рассмотрим кохлеарный имплант , показанный ниже. Звук улавливается микрофоном снаружи черепа и используется для создания переменного магнитного поля. Ток индуцируется в приемнике, закрепленном в кости под кожей, и передается на электроды во внутреннем ухе. Электромагнитная индукция может использоваться и в других случаях, когда электрические сигналы необходимо передавать через различные среды.

    Рис. 3. Электромагнитная индукция, используемая для передачи электрических токов через среды. Устройство на голове ребенка индуцирует электрический ток в приемнике, закрепленном в кости под кожей. (кредит: Бьорн Кнетч)

    Еще одна современная область исследований, в которой успешно применяется электромагнитная индукция (и со значительным потенциалом), — это транскраниальное магнитное моделирование. Множество расстройств, включая депрессию и галлюцинации, можно отнести к нерегулярной локальной электрической активности в головном мозге. В транскраниальная магнитная стимуляция , быстро меняющееся и очень локализованное магнитное поле помещается рядом с определенными участками, идентифицированными в мозге. В выявленных местах индуцируются слабые электрические токи, что может привести к восстановлению электрических функций в тканях головного мозга.

    Апноэ во сне («остановка дыхания») поражает как взрослых, так и младенцев (особенно недоношенных детей и может быть причиной внезапной младенческой смерти [SID]). У таких людей дыхание может неоднократно останавливаться во время сна. Прекращение более чем на 20 секунд может быть очень опасным. Инсульт, сердечная недостаточность и усталость — вот лишь некоторые из возможных последствий для человека, страдающего апноэ во сне. Беспокойство у младенцев вызывает остановка дыхания на эти более длительные периоды времени. Один из типов мониторов для оповещения родителей о том, что ребенок не дышит, использует электромагнитную индукцию. Через провод, обернутый вокруг грудной клетки младенца, проходит переменный ток. Расширение и сжатие грудной клетки младенца, когда он дышит, изменяет площадь, проходящую через спираль. В расположенной рядом съемной катушке индуцируется переменный ток, обусловленный изменяющимся магнитным полем исходного провода. Если ребенок перестанет дышать, индуцированный ток изменится, и родитель может быть предупрежден.

    Установление связей: сохранение энергии

    Закон Ленца является проявлением сохранения энергии. ЭДС индукции создает ток, противодействующий изменению потока, потому что изменение потока означает изменение энергии. Энергия может войти или уйти, но не мгновенно. Закон Ленца является следствием. Когда изменение начинается, закон говорит, что индукция противодействует и, таким образом, замедляет изменение. На самом деле, если бы ЭДС индукции была направлена ​​в том же направлении, что и изменение потока, существовала бы положительная обратная связь, которая давала бы нам свободную энергию без видимого источника — закон сохранения энергии был бы нарушен.

    Пример 1. Расчет ЭДС: насколько велика ЭДС индукции?

    Рассчитайте величину ЭДС индукции, когда магнит на рис. 1(а) вталкивается в катушку, учитывая следующую информацию: катушка с одним контуром имеет радиус 6,00 см и среднее значение B cos θ  (это дано, поскольку поле стержневого магнита сложное) увеличивается с 0,0500 Тл до 0,250 Тл за 0,100 с.

    Стратегия

    Найти величины ЭДС, мы используем закон индукции Фарадея, как указано [латекс]\текст{ЭДС}=-N\frac{\Delta\Phi}{\Delta t}\\[/latex], но без минуса знак, указывающий направление:

    [латекс]\текст{ЭДС}=N\frac{\Delta\Phi}{\Delta t}\\[/latex].

    Раствор

    . Поскольку площадь петли фиксирована, мы видим, что 9{2}\right)\left(0,200\text{ T}\right)}{0,100\text{ s}}=22,6\text{ мВ}\\[/latex].

    Обсуждение

    Хотя это напряжение легко измерить, оно явно недостаточно для большинства практических приложений. Больше петель в катушке, более сильный магнит и более быстрое движение делают индукцию практическим источником напряжения, которым она и является.

    Исследования PhET: Электромагнитная лаборатория Фарадея

    Поиграйте со стержневым магнитом и катушками, чтобы узнать о законе Фарадея. Переместите стержневой магнит рядом с одной или двумя катушками, чтобы лампочка загорелась. Посмотрите на линии магнитного поля. Счетчик показывает направление и величину тока. Просмотрите линии магнитного поля или используйте измеритель, чтобы показать направление и величину тока. Вы также можете играть с электромагнитами, генераторами и трансформаторами!

    Нажмите, чтобы загрузить симуляцию. Запуск с использованием Java.

    Резюме раздела

    • Закон индукции Фарадея гласит, что ЭДС, вызванная изменением магнитного потока, равна

      [латекс]\текст{ЭДС}=-N\frac{\Delta\Phi}{\Delta t}\\[/latex]

      при изменении потока на Δ Φ за время Δ t .

    • Если в катушке индуцируется ЭДС, Н   — число витков.
    • Знак минус означает, что ЭДС создает ток I  и магнитное поле B  , что препятствуют изменению потока Δ Φ — это противодействие известно как закон Ленца.

    Концептуальные вопросы

    1. Человек, работающий с большими магнитами, иногда погружает голову в сильное поле. Она сообщает, что чувствует головокружение, когда быстро поворачивает голову. Как это может быть связано с индукцией?
    2. Ускоритель частиц посылает высокоскоростные заряженные частицы по вакуумированной трубе. Объясните, каким образом моток проволоки, намотанный на трубу, может обнаруживать прохождение отдельных частиц. Нарисуйте график выходного напряжения катушки при прохождении через нее отдельной частицы.

    Задачи и упражнения

    1. Ссылаясь на рисунок 5(a), каково направление тока, индуцируемого в катушке 2: (a) Если ток в катушке 1 увеличивается? б) Если ток в катушке 1 уменьшится? в) Если ток в катушке 1 постоянен? Подробно покажите, как вы следуете шагам, описанным в Стратегии решения проблем для закона Ленца выше.

    Рис. 5. (а) Катушки лежат в одной плоскости. б) провод лежит в плоскости катушки.

    2. Ссылаясь на рисунок 5 (b), каково направление тока, индуцируемого в катушке: (a) Если ток в проводе увеличивается? б) Если сила тока в проводе уменьшится? в) Если ток в проводе вдруг меняет направление? Явно покажите, как вы выполняете шаги в Стратегия решения проблем для закона Ленца выше.

    3. Ссылаясь на рисунок 6, каковы направления токов в катушках 1, 2 и 3 (предположим, что катушки лежат в плоскости цепи): (a) Когда переключатель впервые замкнут? (b) Когда переключатель был замкнут в течение длительного времени? в) Сразу после размыкания переключателя?

    Рисунок 6.

    4. Повторите предыдущую проблему с перевернутым аккумулятором.

    5. Убедитесь, что единицы Δ Φ t — это вольты. То есть покажите, что 1 Тл ⋅ м 2 /с = 1 В.

    6. Предположим, что 50-витковая катушка лежит в плоскости страницы в однородном магнитном поле, направленном внутрь страницы. Катушка изначально имеет площадь 0,250 м 2 . Он растягивается так, чтобы через 0,100 с не оставалось площади. Каковы направление и величина ЭДС индукции, если однородное магнитное поле имеет напряженность 1,50 Тл?

    7. (a) Специалист МРТ перемещает руку из области с очень низкой напряженностью магнитного поля в поле 2,00 Тл томографа, при этом его пальцы указывают в направлении поля. Найти среднюю ЭДС, индуцируемую в его обручальном кольце, если его диаметр равен 2,20 см, а время перемещения кольца в поле равно 0,250 с. (b) Обсудите, может ли этот ток значительно изменить температуру кольца.

    8. Интегральные понятия Ссылаясь на ситуацию в предыдущей задаче: (a) Какой ток индуцируется в кольце, если его сопротивление равно 0,0100 Ом? б) Какая средняя мощность рассеивается? в) Какое магнитное поле индуцируется в центре кольца? (d) Каково направление индуцированного магнитного поля относительно поля МРТ?

    9. ЭДС возникает при вращении 1000-витковой катушки диаметром 20,0 см в магнитном поле Земли 5,00 × 10 −5 Тл. Какая средняя ЭДС индуцируется, если плоскость катушки изначально перпендикулярна полю Земли и поворачивается так, чтобы стать параллельной полю за 10,0 мс?

    10. Катушка радиусом 0,250 м, состоящая из 500 витков, поворачивается на четверть оборота за 4,17 мс, при этом первоначально ее плоскость была перпендикулярна однородному магнитному полю. (Это 60 об/с.) Найдите напряженность магнитного поля, необходимую для индукции средней ЭДС 10 000 В. расстояние центра петли от провода?

    12. Интегрированные концепции  (a) Молния создает быстро меняющееся магнитное поле. Если болт ударяется о землю вертикально и действует как ток в длинном прямом проводе, он индуцирует напряжение в петле, выровненной так, как показано на рисунке 5(b). Какое напряжение индуцируется в петле диаметром 1,00 м на расстоянии 50,0 м от источника 2,00 × 10 6 удар молнии, если ток упадет до нуля за 25,0 мкс? (b) Обсудите обстоятельства, при которых такое напряжение может привести к заметным последствиям.


    Опубликовано

    в

    от

    Метки:

    Комментарии

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *