Ток течет от севера к югу или наоборот: Магнитное поле катушки с током — урок. Физика, 8 класс.

Опыт Эрстеда. Магнитное поле тока. Взаимодействие магнитов. Действие магнитного поля на проводник с током – FIZI4KA

ОГЭ 2018 по физике ›

1. Опыт Эрстеда заключается в следующем. На столе располагают магнитную стрелку, которая ориентируется с севера на юг в магнитном поле Земли, и параллельно ей сверху проводник, соединённый с источником тока (см. рис. 81). При замыкании цепи стрелка повернётся на 90° и встанет перпендикулярно проводнику.

При размыкании цепи стрелка вернётся в первоначальное положение. Если изменить направление тока на противоположное, то стрелка повернётся в обратную сторону. Опыт Эрстеда доказывает, что вокруг проводника, по которому течёт электрический ток, существует магнитное поле, которое действует на магнитную стрелку.

Опыт Эрстеда показал существование взаимосвязи между электрическими и магнитными явлениями.

Об этой взаимосвязи свидетельствует и опыт, известный как опыт Ампера. Если по двум длинным параллельно расположенным проводникам пропустить электрический ток в одном направлении, то они притянутся друг к другу; если направление тока будет противоположным, то проводники оттолкнутся друг от друга. Это происходит потому, что вокруг одного проводника возникает магнитное поле, которое действует на другой проводник с током. Если ток будет протекать только по одному проводнику, то проводники не будут взаимодействовать.

Таким образом, вокруг движущихся электрических зарядов или вокруг проводника с током существует магнитное поле. Магнитное поле действует на движущиеся заряды. На неподвижные заряды магнитное поле не действует.

Силовой характеристикой магнитного поля является величина, называемая магнитной индукцией. Обозначается магнитная индукция буквой ​\( B \)​. Магнитная индукция является векторной величиной, т.е. имеет определённое направление. Это наглядно проявляется в опыте со взаимодействием параллельных проводников с током. Направление вектора магнитной индукции совпадает с направлением северного полюса магнитной стрелки в данной точке поля.

2. Обнаружить магнитное поле вокруг проводника с током можно с помощью либо магнитных стрелок, либо железных опилок, которые в магнитном поле намагничиваются и становятся магнитными стрелками. На рисунке 87 изображён проводник, пропущенный через лист картона, на который насыпаны железные опилки. При прохождении по проводнику электрического тока опилки располагаются вокруг него по концентрическим окружностям.

Линии, вдоль которых располагаются в магнитном поле магнитные стрелки или железные опилки, называют линиями магнитной индукции. Направление, которое указывает северный полюс магнитной стрелки, принято за направление линий магнитной индукции. Вектор магнитной индукции направлен по касательной к линии магнитной индукции в каждой точке поля.

Как следует из результатов опыта Эрстеда и опыта по взаимодействию параллельных проводников с током, направление линий вектора магнитной индукции (и линий магнитной индукции) зависит от направления тока в проводнике. Направление линий магнитной индукции можно определить с помощью правила буравчика. Для линейного проводника оно следующее: если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитной индукции.

3. Если пропустить электрический ток по катушке, то опилки расположатся, как показано на рисунке 88.

Картина линий магнитной индукции свидетельствует о том, что катушка с током становится магнитом. Если катушку с током подвесить, то она повернётся южным полюсом на юг, а северным — на север (рис. 89).

Следовательно, катушка с током имеет два полюса: северный и южный. Определить полюса, которые появляются на её концах можно, если известно направление электрического тока в катушке. Для этого пользуются правилом буравчика: если направление вращения ручки буравчика совпадает с направлением тока в катушке, то направление поступательного движения буравчика совпадает с направлением линий магнитной индукции внутри катушки (рис. 90).

4. Тела, длительное время сохраняющие магнитные свойства, или намагниченность, называют постоянными магнитами. Поднося магнит к железным опилкам, можно заметить, что они притягиваются к концам магнита и практически не притягиваются к его середине. Те места магнита, которые производят наиболее сильное магнитное действие, называются полюсами магнита. Магнит имеет два полюса: северный — N и южный — S. Принято северный полюс магнита окрашивать синим цветом, а южный — красным. Если полосовой магнит разделить на две части, то каждая из них окажется магнитом с двумя полюсами.

Положив на постоянный магнит лист бумаги или картона и насыпав на него железные опилки, можно получить картину его магнитного поля (рис. 91). Линии магнитной индукции постоянных магнитов замкнуты, все они выходят из северного полюса и входят в южный, замыкаясь внутри магнита.

Магнитные стрелки и магниты взаимодействуют между собой. Разноимённые магнитные полюсы притягиваются друг к другу, а одноимённые — отталкиваются. Взаимодействие магнитов объясняется тем, что магнитное поле одного магнита действует на другой магнит и, наоборот, магнитное поле 2-го магнита действует на 1-й.

Причиной наличия у веществ магнитных свойств является движение электронов, существующих в каждом атоме. При своём движении вокруг атома электроны создают магнитные поля. Если эти поля имеют одинаковую ориентацию, то вещество, например железо или сталь, намагничены достаточно сильно.

5. Магнитное поле действует на проводник с током. Доказать это можно с помощью эксперимента (рис. 92).

Если в поле подковообразного магнита поместить проводник длиной ​\( l \)​, подвешенный на тонких проводах, соединить его с источником тока, то при разомкнутой цепи проводник останется неподвижным. Если замкнуть цепь, то по проводнику пойдёт электрический ток, и проводник отклонится в магнитном поле от своего первоначального положения. При изменении направления тока проводник отклонится в противоположную сторону. Таким образом, на проводник с током, помещённый в магнитное поле, действует сила, которую называют силой Ампера.

Экспериментальное исследование показывает, что сила Ампера прямо пропорциональна длине проводника ​\( l \)​ и силе тока ​\( I \)​ в проводнике: ​\( F\sim Il \)​. Коэффициентом пропорциональности в этом равенстве является модуль вектора магнитной индукции ​\( B \)​. Соответственно, ​\( F=BIl \)​.

Сила, действующая на проводник с током, помещённый в магнитное поле, равна произведению модуля вектора магнитной индукции, силы тока и длины той части проводника, которая находится в магнитном поле.

В таком виде зависимость силы, действующей на проводник с током в магнитном поле, записыватся в том случае, если линии магнитной индукции перпендикулярны проводнику с током.

Формула силы Ампера, позволяет раскрыть смысл понятия вектора магнитной индукции. Из выражения для силы Ампера следует: ​\( B=\frac{F}{Il} \)​, т.е. магнитной индукцией называется физическая величина, равная отношению силы, действующей на проводник с током в магнитном поле, к силе тока и длине проводника, находящейся в магнитном поле.

Из приведённой формулы понятно, что магнитная индукция является силовой характеристикой магнитного поля.

Единица магнитной индукции ​\( [В] = [F]/[I][l] \)​. ​\( [B] \)​ = 1 Н/(1 А · 1 м) — 1 Н/(А · м) = 1 Тл. За единицу магнитной индукции принимают магнитную индукцию такого поля, в котором на проводник длиной 1 м действует сила 1 Н при силе тока в проводнике 1 А.

Направление силы Ампера определяют, пользуясь правилом левой руки: если левую руку расположить так, чтобы линии магнитной индукции входили в ладонь, а четыре пальца направлены по направлению тока в проводнике, то отогнутый на 90° большой палец покажет направление силы, действующей на проводник (рис. 93).

6. Движение проводника с током в магнитном поле лежит в основе работы электрического двигателя. Если поместить прямоугольную рамку в магнитное поле и пропустить по ней электрический ток, то рамка повернётся (рис. 94), потому, что на стороны рамки действует сила Ампера. При этом сила, действующая на сторону рамки ​\( ab \)​, противоположна силе, действующей на сторону ​\( cd \)​.

Для того чтобы рамка не остановилась в тот момент, когда её плоскость перпендикулярна линиям магнитной индукции, и продолжала вращаться, изменяют направление тока в проводнике. Для этого к концам рамки припаяны полукольца, по которым скользят контакты, соединённые с источником тока. При повороте рамки на 180° меняются контактные пластины, которых касаются полукольца и, соответственно, направление тока в рамке.

В электрическом двигателе энергия электрического и магнитного полей превращается в механическую энергию.

Содержание

  • ПРИМЕРЫ ЗАДАНИЙ
    • Часть 1
    • Часть 2
  • Ответы

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. На рисунке показано, как установилась магнитная стрелка между полюсами двух одинаковых магнитов. Укажите полюса магнитов, обращённые к стрелке.

1) 1 — S, 2 — N
2) 1 — А, 2 — N
3) 1 — S, 2 — S
4) 1 — N, 2 — S

2. Па рисунке представлена картина линий магнитного поля от двух полосовых магнитов, полученная с помощью магнитной стрелки и железных опилок. Каким полюсам полосовых магнитов соответствуют области 1 и 2?

1) 1 — северному полюсу; 2 — южному
2) 1 — южному; 2 — северному полюсу
3) и 1, и 2 — северному полюсу
4) и 1, и 2 — южному полюсу

3. При прохождении электрического тока по проводнику магнитная стрелка, находящаяся рядом, расположена перпендикулярно проводнику. При изменении направления тока на противоположное. Стрелка

1) повернётся на 90°
2) повернётся на 180°
3) повернётся на 90° или на 180° в зависимости от значения силы тока
4) не изменит свое положение

4. Проводник, по которому протекает электрический ток, расположен перпендикулярно плоскости чертежа (см. рисунок). Расположение какой из магнитных стрелок, взаимодействующих с магнитным полем проводника с током, показано правильно?

1) 1
2) 2
3) 3
4) 4

5. Из проводника сделали кольцо и по нему пустили электрический ток. Ток направлен против часовой стрелки (см. рисунок). Как направлен вектор магнитной индукции в центре кольца?

1) вправо
2) влево
3) на нас из-за плоскости чертежа
4) от нас за плоскость чертежа

6. По катушке идёт электрический ток, направление которого показано на рисунке. При этом на концах железного сердечника катушки

1) образуются магнитные полюса — на конце 1 — северный полюс, на конце 2 — южный
2) образуются магнитные полюса — на конце 1 — южный полюс, на конце 2 — северный
3) скапливаются электрические заряды: на конце 1 — отрицательный заряд, на конце 2 — положительный
4) скапливаются электрические заряды: на конце 1 — положительный заряд, на конце 2 — отрицательный

7. Два параллельно расположенных проводника подключили параллельно к источнику тока.

Направление электрического тока и взаимодействие проводников верно изображены на рисунке

8. В однородном магнитном поле на проводник с током, расположенный перпендикулярно плоскости чертежа (см. рисунок), действует сила, направленная

1) вправо →
2) влево ←
3) вверх ↑
4) вниз ↓

9. Сила, действующая на проводник с током, который находится в магнитном поле между полюсами магнита направлена

1) вверх ↑
2) вниз ↓
3) направо →
4) налево ←

10. На рисунке изображён проводник с током, помещённый в магнитное поле. Стрелка указывает направление тока в проводнике. Вектор магнитной индукции направлен перпендикулярно плоскости рисунка к нам. Как направлена сила, действующая на проводник с током?

1) вверх ↑
2) вправо →
3) вниз ↓
4) влево ←

11. Из приведённых ниже утверждений выберите два правильных и запишите их номера в таблицу.

1) Вокруг неподвижных зарядов существует магнитное поле.
2) Вокруг неподвижных зарядов существует электростатическое поле.
3) Если разрезать магнит на две части, то у одной части будет только северный полюс, а у другой — только южный.
4) Магнитное поле существует вокруг движущихся зарядов.
5) Магнитная стрелка, находящаяся около проводника с током, всегда поворачивается вокруг своей оси.

12. Электрическая схема содержит источник тока, проводник АВ, ключ и реостат. Проводник АВ помещён между полюсами постоянного магнита (см. рисунок).

Используя рисунок, выберите из предложенного перечня два верных утверждения. Укажите их номера.

1) При перемещении ползунка реостата влево сила Ампера, действующая на проводник АВ, увеличится.
2) При замкнутом ключе проводник будет выталкиваться из области магнита вправо.
3) При замкнутом ключе электрический ток в проводнике имеет направление от точки В к точке А.
4) Магнитные линии поля постоянного магнита в области расположения проводника АВ направлены вертикально вниз.
5) Электрический ток, протекающий в проводнике АВ, создаёт однородное магнитное поле.

Часть 2

13. Участок проводника длиной 0,1 м находится в магнитном поле индукцией 50 мТл. Сила тока, протекающего по проводнику, 10 А. Какую работу совершает сила ампера при перемещении проводника на 8 см в направлении своего действия? Проводник расположен перпендикулярно линиям магнитной индукции.

Ответы

Электромагнитная индукция. Опыты Фарадея. Электромагнитные колебания и волны →

← Работа и мощность электрического тока. Закон Джоуля-Ленца

Магнитное поле постояннoго электрического тока 11 класс онлайн-подготовка на Ростелеком Лицей

Введение

 

Каждый из вас держал в руках магнит и знает его удивительное свойство: он на расстоянии взаимодействует с другим магнитом или с куском железа. Что есть такого в магните, что придает ему эти удивительные свойства? Можно ли самому сделать магнит? Можно, и что для этого нужно – вы узнаете из нашего урока. Забежим наперед: если взять простой железный гвоздь, он не будет обладать магнитными свойствами, но, если обмотать его проволокой и подключить ее к батарейке, мы получим магнит (см. рис. 1).

 

Рис. 1. Гвоздь, обмотанный проволокой и подключенный к батарейке

Оказывается, чтобы получить магнит, нужен электрический ток – движение электрического заряда. С движением электрического заряда связаны и свойства постоянных магнитов, таких как магнитики на холодильнике. Некого магнитного заряда, подобно электрическому, в природе не существует. Он и не нужен, достаточно движущихся электрических зарядов.

 

Магнитное поле, вектор магнитной индукции, правило буравчика

 

 

Прежде чем исследовать магнитное поле постоянного электрического тока, нужно договориться, как количественно описывать магнитное поле. Для количественного описания магнитных явлений необходимо ввести силовую характеристику магнитного поля. Векторная величина, количественно характеризующая магнитное поле, называется магнитной индукцией. Обозначается она обычно большой латинской буквой B, измеряется в тесла.

 

Магнитная индукции  – векторная величина, являющаяся силовой характеристикой магнитного поля в данной точке пространства. Направление магнитного поля определяется по аналогии с моделью электростатики, в которой поле характеризуется действием на пробный покоящийся заряд. Только здесь в качестве «пробного элемента» используется магнитная стрелка (продолговатый постоянный магнит). Такую стрелку вы видели в компасе. За направление магнитного поля в какой-либо точке принято направление, которое укажет северный полюс N магнитной стрелки после переориентации (см. рис. 2).

Рис. 2. Направление магнитного поля

Полную и наглядную картину магнитного поля можно получить, если построить так называемые силовые линии магнитного поля (см. рис. 3).

Рис. 3. Силовые линии магнитного поля постоянного магнита

Это линии, показывающие направление вектора магнитной индукции (то есть направления полюса N магнитной стрелки) в каждой точке пространства. С помощью магнитной стрелки, таким образом, можно получить картину силовых линии различных магнитных полей. Вот, например, картина силовых линий магнитного поля постоянного магнита (см. рис. 4).

Рис. 4. Силовые линии магнитного поля постоянного магнита

Магнитное поле существует в каждой точке, но линии мы изображаем на некотором расстоянии друг от друга. Это просто способ изображения магнитного поля, аналогично мы поступали с напряженностью электрического поля (см. рис. 5).

Рис. 5. Линии напряженности электрического поля

Чем более плотно нарисованы линии – тем больше модуль магнитной индукции в данной области пространства. Как видите (см. рис. 4), силовые линии выходят из северного полюса магнита и входят в южный полюс. Внутри магнита силовые линии поля также продолжаются. В отличие от силовых линий электрического поля, которые начинаются на положительных зарядах и заканчиваются на отрицательных, силовые линии магнитного поля замкнутые (см. рис. 6).

Рис. 6. Силовые линии магнитного поля замкнуты

Поле, силовые линии которого замкнуты, называется вихревым векторным полем. Электростатическое поле не является вихревым, оно потенциальное. Принципиальное различие вихревых и потенциальных полей в том, что работа потенциального поля на любом замкнутом пути равна нулю, для вихревого поля это не так. Земля тоже является огромным магнитом, она обладает магнитным полем, которое мы обнаруживаем с помощью стрелки компаса. Подробнее о магнитном поле Земли рассказано в ответвлении.

 


Компас. Магнитное поле земли


Наша планета Земля является большим магнитом, полюса которого находятся неподалеку от пересечения поверхности с осью вращения. Географически это Южный и Северный полюса. Именно поэтому стрелка в компасе, которая тоже является магнитом, взаимодействует с Землей. Она ориентируется таким образом, что один конец указывает на Северный полюс, а другой – на Южный (см. рис. 7).



Рис. 7. Стрелка в компасе взаимодействует с Землей


Тот, который указывает на Северный полюс Земли, обозначили N, что означает North – в переводе с английского «Север». А тот, который указывает на Южный полюс Земли – S, что означает South – в переводе с английского «Юг». Так как притягиваются разноименные полюса магнитов, то северный полюс стрелки указывает на Южный магнитный полюс Земли (см. рис. 8).



Рис. 8. Взаимодействие компаса и магнитных полюсов Земли


Получается, что Южный магнитный полюс находится у Северного географического. И наоборот, Северный магнитный находится у Южного географического полюса Земли.


 

Теперь, познакомившись с моделью магнитного поля, исследуем поле проводника с постоянным током. Еще в XIX веке датский ученый Эрстед обнаружил, что магнитная стрелка взаимодействует с проводником, по которому течет электрический ток (см. рис. 9).

Рис. 9. Взаимодействие магнитной стрелки с проводником

Практика показывает, что в магнитном поле прямолинейного проводника с током магнитная стрелка в каждой точке будет устанавливаться по касательной к некоторой окружности. Плоскость этой окружности перпендикулярна проводнику с током, а ее центр лежит на оси проводника (см. рис. 10).

Рис. 10. Расположение магнитной стрелки в магнитном поле прямого проводника

Если изменить направление протекания тока по проводнику, то магнитная стрелка в каждой точке развернется в противоположную сторону (см. рис. 11).

Рис. 11. При изменении направления протекания электрического тока

То есть направление магнитного поля зависит от направления протекания тока по проводнику. Описать эту зависимость можно при помощи простого экспериментально установленного метода – правила буравчика:

если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения его ручки совпадает с направлением магнитного поля, создаваемого этим проводником (см. рис. 12).

Рис. 12. Направление магнитного поля

Итак, магнитное поле проводника с током направлено в каждой точке по касательной к окружности, лежащей в плоскости, перпендикулярной проводнику. Центр окружности совпадает с осью проводника. Направление вектора магнитного поля в каждой точке связано с направлением тока в проводнике правилом буравчика. Опытным путем, при изменении силы тока и расстояния от проводника, установлено, что модуль вектора магнитной индукции пропорционален току  и обратно пропорционален расстоянию от проводника . Модуль вектора магнитной индукции поля, создаваемого бесконечным проводником с током, равен:

где  – коэффициент пропорциональности, который нередко встречается в магнетизме. Называется магнитной проницаемостью вакуума. Численно равен:

 

Для магнитных полей, как и для электрических, справедлив принцип суперпозиции. Магнитные поля, создаваемые разными источниками в одной точке пространства, складываются (см. рис. 13).

Рис. 13. Магнитные поля разных источников складываются

Суммарная силовая характеристика такого поля будет векторной суммой силовых характеристик полей каждого из источников. Величину магнитной индукции поля, создаваемого током в определенной точке, можно увеличить, если согнуть проводник в окружность. Это будет понятно, если рассмотреть магнитные поля небольших сегментов такого витка провода в точке, находящейся внутри этого витка. Например, в центре.

Сегмент, обозначенный , по правилу буравчика создает в ней поле, направленное вверх (см. рис. 14).

Рис. 14. Магнитное поле сегментов

Сегмент  аналогично создает в этой точке магнитное поле, направленное туда же. Аналогично и для других сегментов. Тогда суммарная силовая характеристика (то есть вектор магнитной индукции B) в этой точке будет суперпозицией силовых характеристик магнитных полей всех малых сегментов в этой и будет направлено вверх (см. рис. 15).

Рис. 15. Суммарная силовая характеристика в центре витка

Для произвольного витка, не обязательно в форме окружности, например для квадратной рамки (см. рис. 16), величина вектора  внутри витка будет, естественно, зависеть от формы, размеров витка и силы тока в нем, но направление вектора магнитной индукции всегда будет определяться таким же способом (как суперпозиция полей, создаваемых малыми сегментами).

Рис. 16. Магнитное поле сегментов квадратной рамки

Мы подробно описали определение направления поля внутри витка, но в общем случае его можно находить гораздо проще, по немного измененному правилу буравчика:

если вращать рукоятку буравчика в том направлении, куда течет ток в витке, то острие буравчика укажет направление вектора магнитной индукции внутри витка (см. рис. 17).

Рис. 17. Направление вектора магнитной индукции в витке

То есть теперь вращение рукоятки соответствует направлению тока, а перемещение буравчика – направлению поля. А не наоборот, как было в случае с прямым проводником. Если длинный проводник, по которому течет ток, свернуть в пружину, то это устройство будет представлять из себя множество витков. Магнитные поля каждого витка катушки по принципу суперпозиции будут складываться. Таким образом, поле, создаваемое катушкой в некоторой точке, будет суммой полей, создаваемых каждым из витков в этой точке. Картину силовых линий поля такой катушки вы видите на рис. 18.

Рис. 18. Силовые линии катушки

Такое устройство называется катушкой, соленоидом или электромагнитом. Нетрудно заметить, что магнитные свойства катушки будут такими же, как у постоянного магнита (см. рис. 19).

Рис. 19. Магнитные свойства катушки и постоянного магнита

Одна сторона катушки (которая на рисунке сверху) играет роль северного полюса магнита, а другая сторона – южного полюса. Такое устройство широко применяется в технике, потому что им можно управлять: оно становится магнитом только при включении тока в катушке. Обратите внимание, что линии магнитного поля внутри катушки почти параллельны, их плотность велика. Поле внутри соленоида очень сильное и однородное. Поле снаружи катушки неоднородно, оно намного слабее поля внутри и направлено в противоположную сторону. Направление магнитного поля внутри катушки определяется по правилу буравчика как для поля внутри одного витка. За направление вращения рукоятки мы принимаем направление тока, который течет по катушке, а перемещение буравчика указывает направление магнитного поля внутри нее (см. рис. 20).

Рис. 20. Правило буравчика для катушки

Если поместить виток с током в магнитное поле, он будет переориентироваться, подобно магнитной стрелке. Момент силы, вызывающий поворот, связан c модулем вектора магнитной индукции в данной точке, площадью витка и силой тока в нем следующим соотношением:

Теперь нам становится понятно, откуда берутся магнитные свойства постоянного магнита: электрон, движущийся в атоме по замкнутой траектории, подобен витку с током, и, как и виток, он обладает магнитным полем. А, как мы увидели на примере катушки, множество витков с током, упорядоченных определенным образом, обладают сильным магнитным полем.

 


Постоянные магниты


Поле, создаваемое постоянными магнитами, – результат движения зарядов внутри них. И эти заряды – электроны в атомах (см. рис. 21).



Рис. 21. Движение электронов в атомах


Объясним механизм его возникновения на качественном уровне. Как известно, электроны в атоме находятся в движении. Так вот, каждый электрон, в каждом атоме создает свое магнитное поле, таким образом, получается огромное количество магнитов размером с атом. У большинства веществ эти магниты и их магнитные поля ориентированы хаотично. Поэтому суммарное магнитное поле, создаваемое телом, равно нулю. Но есть вещества, у которых магнитные поля, создаваемые отдельными электронами, ориентированы одинаково (см. рис. 22).



Рис. 22. Магнитные поля ориентированы одинаково


Поэтому магнитные поля, создаваемые каждым электроном, складываются. В итоге тело из такого вещества обладает магнитным полем и является постоянным магнитом. Во внешнем магнитном поле отдельные атомы или группы атомов, обладающие, как мы выяснили, собственным магнитным полем, поворачиваются как стрелка компаса (см. рис. 23).



Рис. 23. Поворачивание атомов во внешнем магнитном поле


Если они до этого не были ориентированы в одну сторону и не образовывали сильное суммарное магнитное поле, то после упорядочивания элементарных магнитов их магнитные поля сложатся. И если после действия внешнего поля упорядоченность сохранится, вещество останется магнитом. Описанный процесс называется намагничиванием.


 

 

Задания

 

 

Обозначьте полюса источника тока, питающего соленоид при указанном на рис. 24 взаимодействии. Порассуждаем: соленоид, в котором течет постоянный ток, ведет себя подобно магниту.

 

Рис. 24. Источник тока

По рис. 24 видно, что магнитная стрелка ориентирована южным полюсом в сторону соленоида. Одноименные полюса магнитов отталкиваются друг от друга, а разноименные притягиваются. Отсюда следует, что левый полюс самого соленоида – северный (см. рис. 25).

Рис. 25. Левый полюс соленоида северный

Линии магнитной индукции выходят из северного полюса и входят в южный. Значит, поле внутри соленоида направлено влево (см. рис. 26).

Рис. 26. Поле внутри соленоида направлено влево

Ну а направление поля внутри соленоида определяется по правилу буравчика. Мы знаем, что поле направлено влево – значит, представим, что буравчик вкручивается в этом направлении. Тогда его рукоятка будет указывать направление тока в соленоиде – справа налево (см. рис. 27).

Рис. 27. Направление тока в соленоиде

Направление тока определяется направлением перемещения положительного заряда. А положительный заряд перемещается от точки с большим потенциалом (положительный полюс источника) в точку с меньшим (отрицательный полюс источника). Следовательно, полюс источника, расположенный справа, – положительный, а слева – отрицательный (см. рис. 28).

Рис. 28. Определение полюсов источника

Задача 2

Рамка площадью 400  помещена в однородное магнитное поле индукцией 0,1 Тл так, что нормаль рамки перпендикулярна линиям индукции. При какой силе тока на рамку будет действовать вращающий момент 20  (см. рис. 29)?

Рис. 29. Рисунок к задаче 2

Порассуждаем: момент силы, вызывающий поворот, связан c модулем вектора магнитной индукции в данной точке, площадью витка и силой тока в нем следующим соотношением:

В нашем случае все необходимые данные имеются. Остается выразить искомую силу тока и рассчитать ответ:

Задача решена.

 

Список литературы

  1. Соколович Ю. А., Богданова Г. С. Физика: Справочник с примерами решения задач. – 2-е издание передел. – X.: Веста: Издательство «Ранок», 2005. – 464 с.
  2. Мякишев Г. Я. Физика: Учеб. для 11 кл. общеобразоват. учреждений. – М.: Просвещение, 2010.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Интернет портал «Гипермаркет знаний» (Источник)
  2. Интернет портал «Единая коллекция ЦОР» (Источник)

 

Домашнее задание

  1. Дайте определение вектора магнитной индукции.
  2. Каковы источники магнитного поля?
  3. Какую величину обозначают  и чему численно она равна?
  4. Каким правилом можно описать зависимость направления магнитного поля от направления протекания тока по проводнику?

 

Мозговые «разрушители» — магнитные поля и т. д.

Мозговые «разрушители» — магнитные поля и т. д.

Ответ [1] : Во-первых, мы отмечаем, что стрелка компаса при отсутствии тока будет указывать на N в точках A, B и C. Во-вторых, мы отмечаем, что непосредственно под цепью в точках A и B магнитное поле из-за ток направлен на запад, хотя, поскольку поблизости от В есть два параллельных провода, по которым течет один и тот же ток, поле в В, вызванное током, вдвое больше, чем в А. В-третьих, поскольку токи, проходящие по двум проводам вблизи С имеют одинаковую величину, но в противоположных направлениях практически нет поля из-за тока в С. Используя принцип векторного сложения магнитных полей, мы можем видеть, что стрелка компаса в С по-прежнему будет указывать на N; в точках А и В стрелка будет отклоняться к западу, но в точке В отклонение будет больше.

Вернитесь к «разрушителям мозгов».


Ответ [2] : Ага! Северный и южный полюса стрелки компаса названы так потому, что они отыскивают северный и южный географические полюса Земли соответственно. Если бы северный и южный географические полюса Земли были отмечены деревянными столбиками и нам нужно было нарисовать на них типа столба, то столб возле северного географического полюса имел бы на нем букву «S», а столб возле южного на географическом полюсе будет буква «N»!

Посмотрите на это по-другому. Линии магнитного поля «идут» от севера к югу, и если мы посмотрим на силовые линии вокруг Земли:

мы видим, что они идут от южного географического полюса к северному географическому полюсу. Поэтому то, что мы называем северным полюсом Земли, на самом деле является южным полюсом, и наоборот! Северный конец стрелки компаса просто «ищет» северный географический полюс.

Вернитесь к «разрушителям мозгов».


Ответ [3] : Скажите другу номер один, что линии магнитного поля вокруг Земли непрерывны от полюса к полюсу, см. рисунок в ответе [2] выше. Поскольку стрелка компаса выравнивается с линиями магнитного поля, она не будет поворачиваться в направлении, когда вы пересекаете экватор.

Вернитесь к «разрушителям мозгов».


Ответ [4] : На самом деле это очень просто! Возьмите один стержень (№1) и поместите один конец посередине другого (№2) так, чтобы получилась буква «Т». Если есть притяжение, то №1 — это магнит; если нет, то №2 — это магнит!

Вернитесь к «разрушителям мозгов».


Ответ [5] : Мы знаем, что два параллельных провода с токами в одном направлении притягиваются друг к другу, а два параллельных провода с токами в противоположных направлениях отталкиваются друг от друга. Следовательно, средний провод будет притягиваться к проводу слева и отталкиваться от провода справа. Поскольку каждый из фиксированных проводов воздействует на средний провод влево, результирующая сила на среднем проводе будет направлена ​​влево. Таким образом, средний провод будет двигаться влево.

Вернитесь к «разрушителям мозгов».


Ответ [6] : Мы можем определить полярность электромагнитов с помощью правила правой руки. Для электромагнита на рисунке (а), если смотреть на электромагнит с позиции перманента, ток течет против часовой стрелки, поэтому поле направлено наружу, то есть вправо. Таким образом, правый конец катушки должен быть северным полюсом, поскольку линии магнитного поля оставляют северный полюс. Таким образом, левый конец должен быть южным полюсом.

Аналогичные рассуждения можно использовать для идентификации северного и южного полюсов электромагнита на рисунке (b). Результаты показаны на рисунке выше. Поскольку одинаковые полюса двух разных магнитов отталкивают друг друга, а разные полюса двух разных магнитов притягиваются друг к другу, мы можем заключить, что в обоих случаях электромагнит отталкивается от постоянного магнита справа.

Обратите внимание, что если бы токи в (а) или (б) поменялись местами, то полюса электромагнита поменялись местами, и поэтому у нас было бы притяжение.

Одно удобное «устройство», которое я использую для определения полярности конца катушки:

Направление тока показано стрелками.

Вернитесь к «разрушителям мозгов».


Ответ [7] : Мы можем определить полярность концов каждого электромагнита, используя правило правой руки; если ток направлен против часовой стрелки, линии направлены наружу, т. е. к северному полюсу, если ток направлен по часовой стрелке, линии направлены внутрь, т. е. к южному полюсу. Так, например, правый конец катушки слева в (а) должен быть северным полюсом. Аналогичные рассуждения можно использовать для определения северного и южного полюсов других оставшихся электромагнитов.

Результаты показаны на рисунке выше. Поскольку одинаковые полюса двух разных магнитов отталкивают друг друга, а разные полюса двух разных магнитов притягиваются друг к другу, мы можем заключить, что расположение, показанное в (а), приводит к притяжению; электромагниты, показанные на схеме (b), отталкиваются друг от друга.

Вернитесь к «разрушителям мозгов».


Ответ [8] : Если предположить, что магнетизм Земли возникает из большой круговой петли тока внутри Земли, плоскость этой петли должна быть перпендикулярна магнитной оси Земли, как показано ниже.

Поскольку линии магнитного поля текут внутрь к географическому северному полюсу Земли, с помощью правила правой руки мы обнаруживаем, что ток должен течь по часовой стрелке, если смотреть на петлю вниз с географического северного полюса.

Вернитесь к «разрушителям мозгов».


Ответ [9] : Полное магнитное поле в точке P является результатом магнитного поля в P из-за каждого отдельного провода. Если ток во всех четырех проводах направлен на страницу, то по правилу правой руки магнитное поле в точке P из-за тока в #1 должно быть направлено в сторону #4, магнитное поле в точке P из-за тока в #2 должно быть направлено в сторону #1, магнитное поле в точке P из-за тока в #3 должно быть направлено в сторону #2, а магнитное поле в точке P из-за тока в #4 должно быть направлено в сторону #3, как показано ниже.

Поскольку ток во всех четырех проводах имеет одинаковую величину и все четыре провода находятся на одинаковом расстоянии от точки P, каждый провод создает магнитное поле в точке P одинаковой величины. Когда ток течет по всем четырем проводам, общее магнитное поле в точке P равно нулю. Если ток в любом отдельном проводе отключен, полное магнитное поле будет направлено на один из углов. Например, если ток в #1 отключен, результат B 2 и B 4 по-прежнему равно нулю, а полное магнитное поле равно B 3 . Если ток в № 2 отключен, то общее магнитное поле равно B 4 и так далее.

Однако это не единственный ответ! Аналогичного результата можно добиться, если ток во всех четырех проводах будет направлен за пределы страницы. Фактически, при условии, что противоположные провода по диагонали имеют токи в одном и том же направлении (например, № 1 и № 3 с наружными токами, а № 2 и № 4 с внутренними токами), полное магнитное поле будет указывать на один из углов, когда один токов отключается.

Вернитесь к «разрушителям мозгов».


Ответ [10] : Токи в № 1 и № 2 создают магнитные поля B 1 и B 2 в пустом углу, как показано на рисунке.

Направления этих полей можно получить с помощью правила правой руки. Поскольку в № 1 и № 2 (= I) протекают одинаковые токи и поскольку каждый из этих проводов находится на одинаковом расстоянии d от пустого угла, B 1 и B 2 имеют равные величины. Величина результирующего поля определяется выражением:

Ток в #3 создает поле B 3 в открытом углу, и, поскольку чистое поле должно быть равно нулю, B 3 должно быть равно (B 1 + B 2 ) и быть направленным в противоположном направлении. Следовательно, по правилу правой руки ток в №3 должен быть направлен вверх. Кроме того, поскольку B 3 = (B 1 + B 2 )


Ответ [11] : Определим магнитные поля через длину L и ток I. Для квадрата

B квадрат = 4 × (μ o I/4πR)(sinθ 1 + sinθ 2 ) = 3,60 (μ o л/л).

Для круга,

B окружность = μ o I/2R = 3,14 (μ o I/L).

Для равностороннего треугольника

B треугольник
= 3 × (μ o I/4πR)(sinθ 1 + sinθ 2 ) = 4,30 (μ o л/л).

Итак, равносторонний треугольник побеждает (легко)!

Вернитесь к «разрушителям мозгов».


электромагнетизм — Ток через соленоид течет от южного полюса к северному или с севера на юг?

$\begingroup$

На двух изображениях ниже показаны две петли провода. Насколько я понимаю, две катушки не накладываются друг на друга.

В верхней катушке направление тока совпадает с направлением магнитного поля снаружи катушки, но противоположно направлению магнитного поля внутри катушки, т. е. идет от северного полюса к южному полюсу.

Однако в нижней катушке направление тока противоположно магнитному полю снаружи катушки и совпадает с направлением магнитного поля внутри катушки, т.е. оно течет от южного полюса к северному полюсу.

В книге, которая у меня есть, используется простое правило правой руки для соленоидов, и ток всегда направлен с юга на северный полюс, как я показал на нижней катушке. Однако это не относится к верхней катушке.
Кто-нибудь, пожалуйста, скажите мне, где я ошибаюсь и поднимаю ли я законный вопрос, а не просто глупую путаницу.

[Дополнительное примечание:

  1. Я использовал правило правой руки для провода, чтобы определить направления полюсов.

  2. Это НЕ вопрос электромагнитной индукции.

  3. Ток течет по часовой стрелке на южном полюсе и против часовой стрелки на северном полюсе в обеих катушках, поэтому «правило S и N» не нарушается.]

  • электромагнетизм
  • магнитные поля

$\endgroup$

$\begingroup$

Направление тока вдоль катушки зависит от направления намотки (или резьбы), поэтому может быть любым. (Я не могу понять перспективу на ваших рисунках.)

Правило правой руки для катушек и их магнитного поля неявно предполагает, что ток течет по окружностям вокруг оси соленоида.


Опубликовано

в

от

Метки:

Комментарии

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *