Напряжение свыше 1000 в: Стандартные напряжения выше 1000 В

Стандартные напряжения выше 1000 В

Подробности
Категория: Подстанции
  • нормы
  • Россия
  • высоковольтное

В России получили распространение две системы напряжения электрических сетей переменного тока (110 кВ и выше): 110-330—750 кВ -в ОЭС Северо-Запада и частично Центра — и 110—220—500 кВ — в ОЭС центральных и восточных регионов страны. Для этих ОЭС в качестве следующей ступени принято напряжение 1150 кВ, введенное в ГОСТ в 1977 г. Ряд построенных участков электропередачи 1150 кВ временно работают на напряжении 500 кВ.

На нынешнем этапе развития ЕЭС России роль системообразующих сетей выполняют сети 330,500,750, в ряде энергосистем — 220 кВ. Первой ступенью распределительных сетей общего пользования являются сети 220, 330 и частично 500 кВ, второй ступенью — 110 и 220 кВ; затем электроэнергия распределяется по сети электроснабжения отдельных потребителей.
Условность деления сетей на системообразующие и распределительные по номинальному напряжению заключается в том, что по мере роста плотности нагрузок, мощности электростанций и охвата территории электрическими сетями увеличивается напряжение распределительной сети. Это означает, что сети, выполняющие функции системообразующих, с появлением в энергосистемах сетей более высокого напряжения постепенно «передают» им эти функции, превращаясь в распределительные. Распределительная сеть общего назначения всегда строится по ступенчатому принципу путем последовательного «наложения» сетей нескольких напряжений. Появление следующей ступени напряжения связано с ростом мощности электростанций и целесообразностью се выдачи на более высоком напряжении. Превращение сети в распределительную приводит к сокращению длины отдельных линий за счет присоединения к сети новых ПС, а также к изменению значений и направлений потоков мощности по линиям.

При существующих плотностях электрических нагрузок и развитой сети 500 кВ отказ от классической шкалы номинальных напряжений с шагом около двух (500/220/110 кВ) и постепенным переходом к шагу шкалы около четырех (500/110 кВ) является технически и экономически обоснованным решением. Такая тенденция подтверждается опытом передовых в техническом отношении зарубежных стран, когда сети промежуточного напряжения (220-275 кВ) ограничиваются в своем развитии. Наиболее последовательно такая техническая политика проводится в энергосистемах Великобритании, Италии, Германии и других стран. Так, в Великобритании все шире используется трансформация 400/132 кВ (консервируется сеть 275 кВ), в Германии — 380/110 кВ (ограничивается в развитии сеть 220 кВ), в Италии — 380/132 кВ (консервируется сеть 150 кВ) и т. д.
Наибольшее распространение в качестве распределительных получили сети 110 кВ как в ОЭС с системой напряжений 220—500 кВ, так и 330-750 кВ. Удельный вес линий 110 кВ составляет около 70 % общей протяженности ВЛ110 кВ и выше. На этом напряжении осуществляется электроснабжение промышленных предприятий и энергоузлов, городов, электрификация железнодорожного и трубопроводного транспорта; они являются верхней ступенью распределения электроэнергии в сельской местности. Напряжение 150 кВ получило развитие только в Кольской энергосистеме и для использования в других регионах страны не рекомендуется.

Напряжения 6—10-20-35 кВ предназначены для распределительных сетей в городах, сельской местности и на промышленных предприятиях. Преимущественное распространение имеет напряжение 10 кВ; сети 6 кВ сохраняют значительный удельный вес по протяженности, но, как правило, не развиваются и по возможности заменяются сетями 10 кВ. К этому классу примыкает имеющееся в ГОСТ напряжение 20 кВ, получившее ограниченное распространение (в одном из центральных районов г. Москвы).
Напряжение 35 кВ используется для создания ЦП сетей 10 кВ в сельской местности (реже используется трансформация 35/0,4 кВ).

  • Назад
  • Вперёд

Различия сетей напряжением до и выше 1000 вольт

Статьи

Танаков Ю.Н.

Все электрические сети переменного тока в стране классифицируются по различным параметрам и прежде по величине в них напряжения, а именно сети до 1000 вольт и более 1000 вольт, другими словами низковольтные и высоковольтные сети.  Естественно, что чем выше напряжение в электрической сети, тем более оно опасно для работающих с ними и вообще для человека.


Граница напряжения в сетях именно в 1000 вольт сложилась исторически и в настоящее время жестко зафиксирована в Правилах устройства электроустановок (ПУЭ).  Именно такое разграничение напряжения  указывается в допусках специалистов электромонтажных работ, дающих право работы одним с электроустановками напряжением до 1000, а другим свыше 1000 вольт.  Основное принципиальное различие в устройстве обоих видов сетей заключается в том, что высоковольтные сети выполняются с изолированной нейтралью, а низковольтные (до 1000 вольт) – с глухо заземленной нейтралью. 

То есть нейтраль питающего трансформатора напряжением до 1000 вольт имеет электрическое соединение с землей для того, чтобы все электрические однофазные потребители при всех условиях получали электрический ток одного устойчивого нормативного напряжения, равное в быту 220 В.  Если в подобных сетях произойдет короткое замыкание на землю, то электрический ток в сети мгновенно возрастет, в результате чего сработает защита от максимально токовой нагрузки.  В целях безопасности пользования электроприборами и электрооборудованием, рассчитанными на напряжение до 1000 вольт, их корпуса должны в обязательном порядке быть заземлены.  В этом случае при неисправности прибора, в результате чего его корпус может быть под напряжением, то при прикосновении человека электрический ток устремится к земле, не причиняя вреда человеку.

Опасность травматизма человека в быту от поражения электрическим током продолжает и в наше время оставаться достаточно высокой.  Основными источниками опасности в основном являются неисправность бытовой электрической сети, неисправность бытовых электрических приборов, отсутствие приборов электрической защиты и многие другие причины.

Высоковольтные сети, как правило, достаточно большой протяженности и при их симметричной нагрузки нейтраль изолируется от земли и при коротких замыканиях на землю, электрический ток возрастает незначительно.  Небольшое увеличение тока в высоковольтных сетях к сожалению не всегда улавливаются приборами защиты и не всегда отключают сеть, в связи с чем сети напряжением выше 1000 вольт более опасны для человека.   Именно в связи с повышенной опасностью работы с электрооборудованием высокого напряжения, к работе с ним допускаются специалисты высокой квалификации, имеющие соответствующий допуск. 

Работа с высоковольтными сетями осложняется еще и потому, что утечки электрического тока случаются в них достаточно часто, в результате чего еще более повышается степень опасности.  По этой причине работы с высоковольтными сетями и оборудованием выполняются в строгом соответствии с требованиями ПУЭ и обязательных регламентов.

Только выполнение всех требований Правил устройства электроустановок, выполнение в установленные сроки регламентных работ по обслуживанию электрических сетей независимо от напряжения и электрооборудования является основным залогом электрической безопасности в быту и на производстве.

Оборудование более 1000 вольт, номинальное

490.1 Область применения

В этой статье рассматриваются общие требования к оборудованию, работающему при номинальном напряжении более 1000 вольт.

Информационное примечание № 1: см. NFPA 70E -2018, Стандарт по электробезопасности на рабочем месте, для требований по электробезопасности на рабочих местах сотрудников.

Информационное примечание № 2. Дополнительную информацию о знаках опасности и этикетках см. в ANSI Z535.4-2011, Знаки продукции и предупреждающие этикетки.

Информационное примечание № 3: Информацию об устройствах распределения электроэнергии см. в IEEE 3001.5-2013, Рекомендуемая практика применения устройств распределения электроэнергии в промышленных и коммерческих энергосистемах.

490.2 Определение

Определение в этом разделе должно применяться только в пределах этой статьи.

Высокое напряжение. Разность потенциалов более 1000 вольт, номинал.

490.3 Прочие товары

(A) Маслонаполненное оборудование

Установка электрического оборудования, кроме трансформаторов, указанных в Статье 450, содержащих более 38 л (10 галлонов) легковоспламеняющегося масла на единицу, должна соответствовать требованиям Частей II и III Статьи 450.

(B) Корпуса во влажных или влажных помещениях

490.21 Автоматические прерыватели

(A) Автоматические выключатели

(1) Расположение

огнеупорные ячеистые блоки, либо допускается их открытая установка в местах, доступных только для квалифицированных лиц.

(b) Автоматические выключатели, используемые для управления маслонаполненными трансформаторами в подвале, должны либо располагаться за пределами подвала, либо иметь возможность управления извне подвала.

(c) Масляные выключатели должны быть установлены или расположены таким образом, чтобы соседние легко воспламеняющиеся конструкции или материалы были защищены утвержденным способом.

(2) Рабочие характеристики

Автоматические выключатели должны иметь следующее оборудование или рабочие характеристики:

  1. Доступное механическое или другое идентифицированное средство для ручного отключения, независимое от управляющей мощности
  2. Быть свободным (без отключения)
  3. Если возможно размыкание или замыкание вручную при подаче питания, главные контакты, которые работают независимо от скорости ручного управления операция
  4. Механический индикатор положения на выключателе, показывающий разомкнутое или замкнутое положение главных контактов
  5. Средство индикации разомкнутого и замкнутого положения выключателя в точке(ах), из которой им можно управлять

(3) Заводская табличка

Автоматический выключатель должен иметь постоянную и разборчивую заводскую табличку с указанием названия или товарного знака изготовителя, типа изготовителя или идентификационного номера, номинального постоянного тока, номинального тока отключения в мегавольт-амперах (МВА) или амперах и максимального напряжения рейтинг. Модификация автоматического выключателя, влияющая на его номинальные характеристики, должна сопровождаться соответствующим изменением информации на паспортной табличке.

(4) Рейтинг

(5) Модернизация расцепителей

Модифицированные расцепители должны быть указаны для использования с конкретным автоматическим выключателем, с которым они установлены.

(B) Силовые предохранители и держатели предохранителей

(1) Применение

Если для защиты проводников и оборудования используются плавкие предохранители, в каждом незаземленном проводнике должен быть установлен предохранитель. Допускается параллельное использование двух силовых предохранителей для защиты одной и той же нагрузки, если оба предохранителя имеют одинаковые номиналы и оба предохранителя установлены в идентифицированном общем креплении с электрическими соединениями, которые делят ток поровну. Силовые предохранители вентилируемого типа не должны использоваться внутри помещений, под землей или в металлических корпусах, если только они не указаны для использования.

(2) Номинал отключения

Номинал отключения силовых предохранителей должен быть не менее доступного тока короткого замыкания, который предохранитель должен отключать, включая вклады от всех подключенных источников энергии.

(3) Номинальное напряжение

Максимальное номинальное напряжение силовых предохранителей не должно быть меньше максимального напряжения цепи. Предохранители с минимальным рекомендуемым рабочим напряжением не должны применяться ниже этого напряжения.

(4) Идентификация держателей предохранителей и блоков предохранителей

Крепления предохранителей и блоки предохранителей должны иметь постоянные и разборчивые заводские таблички с указанием типа или обозначения производителя, номинального постоянного тока, номинального тока отключения и максимального номинального напряжения.

(5) Плавкие предохранители

Плавкие предохранители, которые выбрасывают пламя при размыкании цепи, должны быть сконструированы или установлены таким образом, чтобы они функционировали должным образом и не представляли опасности для людей или имущества.

(6) Держатели предохранителей

Держатели предохранителей должны быть сконструированы или установлены таким образом, чтобы они обесточивались во время замены предохранителя. Наносимый на месте постоянный и разборчивый знак в соответствии с 110.21(B) должен быть установлен непосредственно рядом с держателями плавких предохранителей и должен иметь следующую формулировку:

ОПАСНОСТЬ — ОТСОЕДИНИТЕ ЦЕПЬ ПЕРЕД ЗАМЕНОЙ ПРЕДОХРАНИТЕЛЕЙ.

Исключение: Допускаются плавкие предохранители и держатели предохранителей, предназначенные для замены предохранителей квалифицированным персоналом с использованием идентифицированного оборудования без отключения держателя предохранителя.

(7) Высоковольтные предохранители

Распределительные устройства и подстанции, в которых используются высоковольтные предохранители, должны быть снабжены разъединителем с групповым управлением. Изоляция предохранителей от цепи должна быть обеспечена либо подключением выключателя между источником и предохранителями, либо выполнением выкатного выключателя и конструкции типа плавкого предохранителя. Выключатель должен быть типа прерывателя нагрузки, если он не имеет механической или электрической блокировки с устройством отключения нагрузки, предназначенным для снижения нагрузки до отключающей способности выключателя.

Исключение: Допускается использование более одного выключателя в качестве разъединяющего средства для одного набора предохранителей, если выключатели установлены для обеспечения подключения к более чем одному набору питающих проводников. Выключатели должны быть механически или электрически заблокированы, чтобы обеспечить доступ к предохранителям только тогда, когда все выключатели разомкнуты. На предохранителях должна быть размещена заметная табличка, указывающая на наличие более одного предохранителя. источник.

(C) Вырезы распределения и плавкие вставки — тип выброса

(1) Установка

Вырезы должны быть расположены так, чтобы их можно было легко и безопасно использовать и переплавить, и чтобы выхлоп предохранителей не представлял опасности для людей. Распределительные вырезы не должны использоваться внутри помещений, под землей или в металлических ограждениях.

(2) Эксплуатация

Если выключатели с плавкими предохранителями не подходят для отключения цепи вручную при полной нагрузке, должны быть установлены утвержденные средства для отключения всей нагрузки. Если выключатели с плавкими предохранителями не заблокированы выключателем для предотвращения размыкания вырезов под нагрузкой, на таких вырезах должен быть размещен заметный знак, указывающий, что они не должны работать под нагрузкой.

(3) Номинал отключения

Номинал отключения распределительных выключателей должен быть не менее доступного тока короткого замыкания, который должен отключать выключатель, включая вклады от всех подключенных источников энергии.

(4) Номинальное напряжение

Максимальное номинальное напряжение выключателей не должно быть меньше максимального напряжения цепи.

(5) Идентификация

Распределительные выключатели должны иметь на корпусе, дверце или трубке плавкого предохранителя постоянную и разборчивую заводскую табличку или идентификацию, указывающую тип или обозначение изготовителя, номинальный постоянный ток, максимальное номинальное напряжение и отключающий режим.

(6) Плавкие вставки

Плавкие вставки должны иметь постоянную и разборчивую маркировку, указывающую номинал постоянного тока и тип.

(7) Конструкция, устанавливаемая на открытом воздухе

Высота вырезов, устанавливаемых снаружи на конструкциях, должна обеспечивать безопасный зазор между частями, находящимися под наименьшим напряжением (открытое или закрытое положение), и опорными поверхностями в соответствии с 110.34(E).

(D) Маслонаполненные выключатели

(1) Номинальный непрерывный ток

Номинальный непрерывный ток маслонаполненных выключателей не должен быть меньше максимального продолжительного тока через выключатели.

(2) Номинал отключения

Номинал отключения маслонаполненных выключателей должен быть не менее доступного тока короткого замыкания, который маслонаполненный выключатель должен отключать, включая вклады от всех подключенных источников энергии.

(3) Номинальное напряжение

Максимальное номинальное напряжение маслонаполненных выключателей не должно быть меньше максимального напряжения цепи.

(4) Номинал закрытия повреждения

Масляные выключатели должны иметь рейтинг закрытия повреждения не ниже максимального асимметричного тока короткого замыкания, который может возникнуть в месте отключения, если только соответствующие блокировки или рабочие процедуры не исключают возможность замыкания в месте повреждения .

(5) Идентификация

Маслонаполненные выключатели должны иметь постоянную и разборчивую табличку с указанием номинального длительного тока, номинального максимального напряжения и номинального тока отключения.

(6) Плавкие вставки

Плавкие вставки должны иметь постоянную и разборчивую маркировку, показывающую номинальный непрерывный ток.

(7) Расположение

Вырезы должны быть расположены так, чтобы они были легко и безопасно доступны для повторного плавления, при этом верхняя часть выреза должна находиться на высоте не более 1,5 м (5 футов) над полом или платформой.

(8) Корпус

Должны быть предусмотрены соответствующие ограждения или кожухи для предотвращения контакта с неэкранированными кабелями или частями маслонаполненных вырезов под напряжением.

(E) Прерыватели нагрузки

Размыкатели нагрузки должны быть разрешены, если в сочетании с этими устройствами используются подходящие плавкие предохранители или автоматические выключатели для прерывания возможных токов повреждения. Если эти устройства используются в комбинации, они должны быть электрически скоординированы таким образом, чтобы они безопасно выдерживали воздействие замыкания, прохождения или прерывания всех возможных токов до установленного максимального номинала короткого замыкания.

Если установлено более одного выключателя с соединенными клеммами нагрузки для обеспечения поочередного подключения к разным питающим проводникам, каждый выключатель должен быть снабжен предупреждающим знаком, указывающим на наличие более одного источника. Каждый предупреждающий знак или этикетка должны соответствовать 110.21.

(1) Номинальный непрерывный ток

Номинальный непрерывный ток прерывателей должен быть равен или превышать максимальный непрерывный ток в месте установки.

(2) Номинальное напряжение

Максимальное номинальное напряжение прерывателей должно быть равно или превышать максимальное напряжение цепи.

(3) Идентификация

Выключатели-прерыватели должны иметь постоянную и разборчивую заводскую табличку, содержащую следующую информацию: тип или обозначение изготовителя, номинальный постоянный ток, номинальный ток отключения, номинальный ток замыкания, максимальное номинальное напряжение.

(4) Переключение проводников

Механизм переключения должен управляться из места, где оператор не подвергается воздействию частей, находящихся под напряжением, и должен быть устроен так, чтобы размыкать все незаземленные проводники цепи одновременно одним действием. Выключатели должны быть заблокированы в разомкнутом положении. Выключатели в металлическом корпусе должны управляться снаружи корпуса.

(5) Сохраненная энергия для размыкания

Разрешается оставлять привод с накопленной энергией в незаряженном положении после замыкания переключателя, если одно движение рукоятки управления заряжает привод и размыкает переключатель.

(6) Клеммы питания

Клеммы питания прерывателей с плавкими предохранителями должны быть установлены в верхней части корпуса выключателя, или, если клеммы расположены в другом месте, оборудование должно иметь барьеры, чтобы предотвратить случайное прикосновение людей частей под напряжением или падения инструментов или предохранителей на части, находящиеся под напряжением.

490.22 Изолирующие средства

Должны быть предусмотрены средства для полной изоляции единицы оборудования от всех незаземленных проводников. Применение разъединителей не требуется при наличии других способов обесточивания оборудования для осмотра и ремонта, таких как выдвижные распределительные устройства и съемные панели тележек.

Разъединители, не сблокированные с утвержденным устройством отключения цепи, должны быть снабжены табличкой, предупреждающей об их размыкании под нагрузкой. Предупреждающий знак(и) или этикетка(и) должны соответствовать 110. 21(B).

Идентифицированный держатель предохранителя и плавкий предохранитель разрешается использовать в качестве разъединителя.

490.23 Регуляторы напряжения

Надлежащая последовательность переключения регуляторов должна быть обеспечена с помощью одного из следующих средств:

  1. Механический обходной переключатель(и) регулятора
  2. Механические блокировки
  3. 490.24 Минимальное пространственное расстояние

    В установках, устанавливаемых на месте, минимальное воздушное расстояние между неизолированными проводниками под напряжением и между такими проводниками и прилегающими заземленными поверхностями должно быть не менее значений, указанных в таблице 49.0,24. Эти значения не должны применяться к внутренним частям или внешним клеммам оборудования, спроектированного, изготовленного и испытанного в соответствии с принятыми национальными стандартами.

    Таблица 490. 24 Минимальный зазор токоведущих частей

    9

    9,5290 2 9,5 290 2 9,4 290 2 5 19

    91292

    94 10

    4 23294 —

    4 60

    4 30294 —

    95 115

    9029 94 42

    0

    6 19

    902 5

    5029

    2

    95

    Номинальное номинальное напряжение (кВ) Импульсная стойкость, базовый уровень импульса B.I.L (кВ) 902 0242

    Фаза-к -Фаза Фаза-земля
    В помещении На улице В помещении На улице
    6 На улице

    6 39

    мм дюймов мм дюймов мм дюймов мм дюймов
    2,4—4,16 60 95 115290 2 .5 180 7 80 3,0 155 6
    95 140 5,5 180 7 105 4,0 155 6
    13,8 95 110 5 902

    305 12 130 5,0 180 7
    14,4 110 230 9,0 305 12 170 6,5 180 7
    23 125 150 270 5 80290 10,5
    15 190 7,5 255 10
    34,5 150 150 9022 0 12,5 385 15 245 9,5 255
    200 200 460 18,0 5
    294 335 13,0 335 13
    46 200 18 335 13
    250 535 21 35 17
    69 250 535 21

    9

    9

    9

    435 17
    350 790 31 635 9
    550 1350 53 — 5
    138 550 1350 53 1070 42
    — 6 1605 63 1270 50 4
    650 1605 63 1270 50
    750

    1830 72 1475 58
    230

    1830 72 1475 58
    900 2296 1805 71
    1050
    105 2110 83
    Примечание: Приведенные значения представляют собой минимальный зазор между жесткими частями и неизолированными проводниками при благоприятных условиях эксплуатации. Они должны быть увеличены при перемещении проводника или при неблагоприятных условиях эксплуатации или там, где позволяют ограничения по площади. Выбор соответствующего импульсного выдерживаемого напряжения для конкретного напряжения системы определяется характеристиками оборудования для защиты от перенапряжений.

    490.25 Обратная подача

    Установки, где существует возможность обратной подачи, должны соответствовать 490.25(A) и (B), которые следуют.

    (A) Знак

    (B) Схема

    В пределах видимости каждой точки связь.

    Разница между классами высокого, среднего и низкого напряжения

    Напряжения разделены на классы

    Высокое, среднее и низкое напряжение — это термины, которые мы чаще всего слышим, когда говорим о классификации напряжения. С международной точки зрения эти классификации и диапазоны меняются в зависимости от того, где вы живете. В Соединенных Штатах Национальный электротехнический кодекс (NEC) и Национальная ассоциация производителей электрооборудования (NEMA) имеют руководящие принципы и стандарты, охватывающие все классификации напряжения. Американский национальный институт стандартов (ANSI) наблюдает за созданием, обнародованием и использованием тысяч руководств и стандартов, влияющих на бизнес. Каждая отрасль соответствует применимым нормам.

    И код ANSI, и код NEC являются приобретаемыми публикациями. Электротехнический портал (EEP) предоставляет разбивку стандартов ANSI C84.1-1989. Этот документ делит напряжения на пять классификаций. Эти классификации можно объединить в следующие категории:

    • Высокое (HV), сверхвысокое (EHV) и сверхвысокое напряжение (UHV) — от 115 000 до 1 100 000 В переменного тока
    • Среднее напряжение (МВ) — от 2 400 до 69 000 В переменного тока
    • Низкое напряжение (НН) — от 240 до 600 В переменного тока

    Компания Generac выпустила информационный документ под названием «Обзор производства электроэнергии на месте среднего напряжения». Технический документ сравнивает NEC со стандартами ANSI. Он содержит следующие стандарты напряжения NEC:

    • Высокое распределение — от 1000 до 4160 вольт
    • Средние распределительные сети — от 50 до 1000 вольт
    • Низкое распределение — от 0 до 49 вольт

    Приведенные выше списки иллюстрируют классификацию изменений уровня напряжения в зависимости от органа управления. Generac заявляет, что генераторы с напряжением менее 600 вольт и равным им относятся к среднему напряжению, а генераторы с напряжением более 600 вольт считаются высоковольтными. Генераторы, вырабатывающие 4160 вольт, распространены во многих отраслях промышленности для больших двигателей, требующих высокого напряжения. Резервный генератор подает напряжение в отдельную сеть.

    Стандартные напряжения генераторов: 4160 В переменного тока, 480 В переменного тока, 12 470 В переменного тока и 13 800 В переменного тока. Более высокие напряжения от генератора понижаются с помощью трансформаторов. Приведенный ниже контент предоставляет информацию по каждой категории информации.

    ПРИМЕЧАНИЕ:
    Содержимое этого документа предназначено только для информационных целей. Всегда консультируйтесь с сертифицированным специалистом при проектировании и работе с электрическим оборудованием. Никогда не работайте с цепями под напряжением и не выполняйте обязанности, для которых вы не квалифицированы.

    Высокое, сверхвысокое и сверхвысокое напряжение

    Высокие и сверхвысокие напряжения связаны с передачей питания от электростанции. Причиной передачи мощности на высоких и сверхвысоких уровнях напряжения является повышение эффективности. Меньший ток, сопровождающий передачу высокого напряжения, позволяет использовать более тонкие и легкие кабели. Это снижает затраты на строительство башни и линии электропередач. Диапазон высоких напряжений составляет от 115 000 до 230 000 В переменного тока, а диапазон сверхвысоких напряжений — от 345 000 до 765 000 В переменного тока.

    Соединенные Штаты передают до 500 000 вольт по сети высокого напряжения. Для высокого напряжения требуются специальные коммутационные и распределительные панели. Комнаты управления имеют резервные возможности переключения. Ими можно управлять дистанционно или разместить в руководстве по обслуживанию и тестированию отдельных систем подачи. Подстанции обеспечивают пониженное напряжение, распределенное по локализованным участкам. Сверхвысокие напряжения — это напряжения от 765 000 до 1 100 000 В переменного тока. В Китае используется передача с самым высоким напряжением 800 000 В переменного тока. Сегодня они разрабатывают систему на 1 100 000 В переменного тока с использованием кабелей, рассчитанных на 1 200 000 В переменного тока.

    Среднее напряжение и промышленность

    Крупные промышленные комплексы и фабрики, которым требуется значительное количество энергии, часто используют средние напряжения питания. Электрический вариационный анализ показывает, что напряжение обратно пропорционально силе тока. Это означает, что при увеличении напряжения сила тока уменьшается для завершения операции.

    Двигатели и электрооборудование, предназначенные для работы с более высоким напряжением, потребляют меньше электроэнергии и более экономичны в эксплуатации. Большинство первичных подстанций не получают более 35 000 В переменного тока от энергоснабжения. Первичная подстанция может подавать пониженную мощность на вторичную подстанцию ​​(подстанции) или в отдельное здание.

    Вторичная подстанция распределяет мощность, полученную от первичной подстанции. Вторичные подстанции могут иметь понижающие трансформаторы для дальнейшего понижения мощности для распределения на панель управления для распределения по всему объекту. Подстанции обычно расположены в районах, которые могут обслуживать одно или несколько зданий на территории.

    Алюминиевая компания Америки (ALCOA) Warrick Operations является примером крупной отрасли, потребляющей огромное количество энергии. Они расположены в Южной Индиане и могут похвастаться автономной электростанцией. Они вырабатывают электроэнергию за счет использования угольной электростанции, расположенной на реке Огайо. Они перерабатывают алюминиевые слитки в рулонные алюминиевые листы, которые используются на заводах, которым требуются алюминиевые банки. Слитки плавятся в больших электрических плавильных печах, а затем обрабатываются с помощью ряда операций, чтобы получить заготовку нужной толщины.

    Любой завод, использующий питание среднего напряжения для подстанции, нуждается в аварийном или резервном источнике питания. Нередко можно увидеть генераторы, которые обеспечивают 13 800 В переменного тока. Блок питания идеально подходит для подстанций малого и среднего напряжения и вторичных подстанций. При должной поддержке генератора комплекс может продолжать работу при отключении электроэнергии. Предлагается в различных стилях дизайна, включая стационарные, звукопоглощающие корпуса и переносные блоки. Переносные устройства заключены в звукопоглощающие кожухи на прицепе, который тянет полуприцеп.

    Низковольтное питание и средства управления

    Низкое напряжение имеет несколько значений в электрическом/электронном мире. Общее практическое правило заключается в том, что все, что ниже 600 вольт, считается низким напряжением. Заводы, использующие автоматизацию, могут использовать несколько напряжений. Разделение использования электроэнергии на питание и управление помогает понять использование. Каждое подразделение выполняет критически важную для работы на заводе миссию. Оба должны работать на производство.

    Поставка
    Заводы, которым требуется питание среднего или высокого напряжения от электроэнергетики, могут иметь выделенную подстанцию. Эти подстанции снижают уровень напряжения и распределяют его по зданиям на всей территории.

    Однако не все заводы требуют высокого или среднего напряжения. Некоторым требуется низкое напряжение 240, 480 или 600 В переменного тока от коммунальных служб. В этом случае мощность направляется непосредственно в распределительную систему завода.

    Органы управления
    Система или машина, использующая низкое напряжение для работы оборудования с более высоким напряжением, являются основой системы управления. Программируемый логический контроллер (ПЛК) является обычным явлением в этих системах. ПЛК получает входные данные от датчиков через входную часть ввода/вывода. Выходы рассчитываются и отправляются через секцию вывода ввода/вывода. И входы, и выходы имеют напряжение 12 или 12 В постоянного тока в зависимости от конструкции системы.


Опубликовано

в

от

Метки:

Комментарии

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *