Датчик холла применение: Датчик Холла — Виды, принцип работы, как проверить

Содержание

Датчик Холла — Виды, принцип работы, как проверить

Что такое датчик Холла

Датчики Холла представляют из себя твердотельные радиоэлементы, которые становятся все более популярными в радиолюбительской среде и разработке радиоэлектронных устройств. Они применяются в датчиках измерения положения, скорости или направленного движения. Они все чаще заменяют собой путевые выключатели и герконы. Так как такие датчики являются абсолютно герметичными и представляют из себя простой радиоэлемент, то они не боятся вибрации, пыли и влаги. То есть по сути датчик Холла простыми словами — это радиоэлемент, который реагирует на внешнее магнитное поле.

Интересно, что датчик Холла есть во многих современных смартфонах (пусть и упрощенный его вариант). Он может определять наличие магнитного поля и работает вместе с магнитным сенсором, который отвечает за работу компаса. Также датчик Холла используется в телефонах, для которых которых доступны специальные чехлы с магнитной защелкой — Smart Case. Сенсор определяет, открыта или закрыта крышка чехла, и автоматически включает/отключает дисплей. Чтобы узнать, какие датчики есть в смартфоне, используйте эту инструкцию.

Эффект Холла

Дело было еще в 19-ом веке. Американский физик Эдвин Холл обнаружил очень странный эффект. Он взял пластинку золота и стал пропускать через неё постоянный ток. На рисунке эту пластинку я пометил гранями ABCD.

Он пропускал постоянный ток через грани D и B. Потом поднес перпендикулярно пластинке постоянный магнит и обнаружил напряжение на гранях А и C!  Этот эффект и был назван в честь этого великого ученого. Основной физический принцип данного эффекта был основан на силе Лоренца. Поэтому радиоэлементы, основанные на эффекте Холла, стали называть датчиками Холла. 

Но здесь один маленький нюанс. Дело в том, что напряжение Холла даже при самой большой напряженности магнитного поля будет какие-то микровольты. Согласитесь, это очень мало. Поэтому, помимо самой пластинки в датчик Холла устанавливают усилители постоянного тока, логические схемы переключения, регулятор напряжения а также триггер Шмитта. В самом простом переключающем датчике Холла все это выглядит примерно вот так:

где

Supply Voltage — напряжение питания датчика

Ground — земля

Voltage Regulator — регулятор напряжения

А — операционный усилитель

Hall Sensor — собственно сама пластинка Холла

Output transisitor Switch — выходной переключающий транзистор (транзисторный ключ)

Линейные (аналоговые) датчики Холла

В линейных датчиках напряжение Холла (напряжение на гранях А и С) будет зависеть от напряженности магнитного поля. Или простыми словами, чем ближе мы поднесем магнит к датчику, тем больше будет напряжение Холла. Это и есть прямолинейная зависимость.

В линейных датчиках Холла выходное напряжение берется сразу с операционного усилителя. То есть в линейных датчиках вы не увидите триггер Шмитта, а также выходного переключающего транзистора. То есть все это будет выглядеть примерно вот так:

О чего же зависит напряжение на гранях А и С? В основном от магнитного поля, создаваемым либо постоянным магнитом, либо электромагнитом; толщиной пластинки, а также силой тока, протекающего через саму пластинку.

Теоретически, если подавать ну очень сильный магнитный поток на датчик Холла, то напряжение Холла будет бесконечно большим? Как бы не так). Выходное напряжение будет лимитировано напряжением питания. То есть график будет выглядеть примерно вот так:

Как вы видите, до какого-то момента у нас идет линейная зависимость выходного напряжения датчика от плотности магнитного потока. Дальнейшее увеличение магнитного потока бесполезно, так как оно достигло напряжения насыщения, которое ограничено напряжением питанием самого датчика Холла.

Благодаря этим параметрам с помощью датчика Холла были построены приборы, позволяющие замерять силу тока в проводнике, не касаясь самого провода, например, токовые клещи.

Существуют также приборы, с помощью которых можно замерять напряженность магнитного поля. Датчики Холла, используемые в этих приборах, называют линейными, так как напряжение на датчике Холла прямо пропорционально плотности магнитного потока.

Линейные датчики, как я уже сказал, могут быть использованы в токовых клещах. Они позволяют измерять силу тока, начиная от 250 мА и до нескольких тысяч Ампер. Самым большим преимуществом в таких токовых клещах является отсутствие механического контакта с измеряемой цепью. Иными словами, токовые измерители на эффекте Холла намного безопаснее, чем измерители на основе шунта и амперметра, особенно при большой силе тока в цепи, которую нередко можно встретить в промышленных установках.

Цифровые датчики Холла

Как только наступила  эра цифровой элек троники, в один корпус вместе с датчиком Холла стали помещать различные логические элементы. Самый простой датчик Холла на триггере Шмитта мы уже рассмотрели выше и он выглядит вот так:

По сути такой датчик имеет только два состояние на выходе. Либо сигнал есть (логическая единица), либо его нет (логический ноль). Гистерезис на триггере Шмитта просто устраняет частые переключения, поэтому в цифровых датчиках Холла он используется всегда.

В результате промышленность стала выпускать датчики Холла для цифровой электроники. В основном такие датчики делятся на три вида:

Униполярные

Реагируют только на один магнитный полюс. На противоположный магнитный полюс не обращают никакого внимания. К примеру, подносим южный полюс магнита и датчик сработает. На северный магнитный полюс он реагировать не будет.

Биполярные

Подносим магнит одним полюсом — датчик сработает и будет продолжать работать даже тогда, когда мы уберем магнит от датчика. Для того, чтобы его выключить, нам надо подать на него другую полярность магнита.

Как проверить датчик Холла

Давайте рассмотрим работу цифрового биполярного датчика Холла марки SS41. Выглядит наш подопечный вот так:

Судя по даташиту, на первую ножку подаем плюс питания, на вторую — минус, а с третьей ножки уже снимаем сигнал логической единицы или нуля.

Для этого соберем простейшую схему: светодиод на 3 Вольта, токоограничительный резистор на 1КилоОм и сам датчик Холла.

Теперь цепляемся к нашей схеме от блока питания, выставив на нем 5 Вольт. Минус на средний вывод, а плюс питания — на первый.

У меня под рукой оказался вот такой магнитик:

Чтобы не перепутать полюса, я пометил красным бумажным ценником один из полюсов магнита. Какой именно — я не знаю, так как не имею компаса, с помощью которого можно было бы узнать, где северный полюс, а где южный.

Как только я поднес магнит «красным» полюсом к датчику холла, то у меня светодиод сразу потух.

Переворачиваю магнит другим полюсом, подношу его к датчику Холла и вуаля!

Если магнит не переворачивать, то есть не менять полюса, то светодиод также останется потухшим, потому что датчик биполярный.

Кстати, читайте про биполярный транзистор.

А вот и видео работы

Как вы видите на видео, мы с помощью магнита управляем датчиком Холла. Датчик Холла выдает нам два состояния сигнала: сигнал есть — единичка, сигнала нет — ноль. То есть светодиод горит — единичка, светодиод потух — ноль.

Применение датчиков Холла

В настоящее время область применения датчиков Холла очень обширна и с каждым годом становится все шире и шире. Вот основные применения:

Применение линейных датчиков

  • датчики тока
  • тахометры
  • датчики вибрации
  • детекторы ферромагнетиков
  • датчики угла поворота
  • бесконтактные потенциометры
  • бесколлекторные двигатели постоянного тока
  • датчики расхода
  • датчики положения

Применение цифровых датчиков

  • датчики частоты вращения
  • устройства синхронизации
  • датчики систем зажигания автомобилей
  • датчики положения
  • счетчики импульсов
  • датчики положения клапанов
  • блокировка дверей
  • измерители расхода
  • бесконтактные реле
  • детекторы приближения
  • датчики бумаги (в принтерах)

Заключение

Чем же так хороши датчики Холла? Если соблюдать нормальные рабочие значения напряжения и тока, то теоретически датчика хватит на бесконечное число включений-выключений. Они не имеют электромеханического контакта, который бы изнашивался, в отличие от геркона  и электромагнитного реле. В настоящее время они уже почти полностью заменили герконы.

Приобрести датчик эффектов Холла тут.

принцип работы, как проверить своими руками, применение

Электромагнитное устройство, именуемое датчиком Холла (далее ДХ), применяется во многих приборах и механизмах. Но наибольшее применение ему нашлось в автомобилестроении. Практически во всех моделях отечественного автопрома (ВАЗ 2106, 2107, 2108 и т.д.) бесконтактная система зажигания для бензинового двигателя управляется этим датчиком. Соответственно, при его выходе из строя возникают серьезные проблемы с работой двигателя. Чтобы не ошибиться при диагностике, необходимо понимать принцип работы датчика, знать его конструкцию и методы тестирования.

Кратко о принципе работы

В основу принципа действия датчика зажигания положен эффект Холла, получивший свое название в честь американского физика, открывшего это явление в 1879 году. Подав постоянное напряжение на края прямоугольной пластины (А и В на рис. 1) и поместив ее в магнитное поле, Эдвин Холл обнаружил разность потенциалов на двух других краях (С и D).

Рис .1. Демонстрация эффекта Холла

В соответствии с законами электродинамики, сила Лоренца воздействует на носители заряда, что и приводит к разности потенциалов. Величина напряжения Uхолла довольно мала, в пределах от 10 мкВ до 100 мВ, она зависит как от силы тока, так и напряженности электромагнитного поля.

До середины прошлого века открытие не находило серьезного технического применения, пока не было налажено производство полупроводниковых элементов на основе кремния, сверхчистого германия, арсенида индия и т.д., обладающих необходимыми свойствами. Это открыло возможности для производства малогабаритных датчиков, позволяющих измерять как напряженность поля, так и силу тока, идущего по проводнику.

Типы и сфера применения

Несмотря на разнообразие элементов, применяющих эффект Холла, условно их можно разделить на два вида:

  • Аналоговые, использующие принцип преобразования магнитной индукции в напряжение. То есть, полярность, и величина напряжения напрямую зависят от характеристик магнитного поля. На текущий момент этот тип приборов, в основном, применяется в измерительной технике (например, в качестве, датчиков тока, вибрации, угла поворота).
    Датчики тока, использующие эффект Холла, могут измерять как переменный, так и постоянный ток
  • Цифровые. В отличие от предыдущего типа датчик имеет всего два устойчивых положения, сигнализирующих о наличии или отсутствии магнитного поля. То есть, срабатывание происходит в том случае, когда интенсивность магнитного поля достигла определенной величины. Именно этот тип устройств применяется в автомобильной технике в качестве датчика скорости, фазы, положения распределительного, а также коленчатого вала и т.д.

Следует отметить, что цифровой тип включает в себя следующие подвиды:

  • униполярный – срабатывание происходит при определенной силе поля, и после ее снижения датчик переходит в изначальное состояние;
  • биполярный – данный тип реагирует на полярность магнитного поля, то есть один полюс производит включение прибора, а противоположный – выключение.

Внешний вид цифрового датчика Холла

Как правило, большинство датчиков представляет собой компонент с тремя выводами, на два из которых подается двух- или однополярное питание, а третий является сигнальным.

Пример использования аналогового элемента

Рассмотрим в качестве примера конструкцию датчика тока ы основе работы которого используется эффект Холла.

Упрощенная схема датчика тока на основе эффекта Холла

Обозначения:

  • А – проводник.
  • В – незамкнутое магнитопроводное кольцо.
  • С – аналоговый датчик Холла.
  • D – усилитель сигнала.

Принцип работы такого устройства довольно прост: ток, проходящий по проводнику, создает электромагнитное поле, датчик измеряет его величину и полярность и выдает пропорциональное напряжение UДТ, которое поступает на усилитель и далее на индикатор.
https://www.youtube.com/watch?v=fmLs9WsKx3I

Назначение ДХ в системе зажигания автомобиля

Разобравшись с принципом действия элемента Холла, рассмотрим, как используется данный датчик в системе бесконтактного зажигания линейки автомобилей ВАЗ. Для этого обратимся к рисунку 5.

Рис. 5. Принцип устройства СБЗ

Обозначения:

  • А – датчик.
  • B – магнит.
  • С – пластина из магнитопроводящего материала (количество выступов соответствует числу цилиндров).

Алгоритм работы такой схемы выгладит следующим образом:

  • При вращении вала прерывателя-распределителя (движущемуся синхронно коленвалу) один из выступов магнитопроводящей пластины занимает позицию между датчиком и магнитом.
  • В результате этого действия изменяется напряженность магнитного поля, что вызывает срабатывание ДХ. Он посылает электрический импульс коммутатору, управляющему катушкой зажигания.
  • В Катушке генерируется напряжение, необходимое для формирования искры.

Казалось бы, ничего сложного, но искра должна появиться именно в определенный момент. Если она сформируется раньше или позже, это вызовет сбой в работе двигателя, вплоть до его полной остановки.

Внешний вид датчика Холла для СБЗ ВАЗ 2110

Проявление неисправности и возможные причины

Нарушения в работе ДХ можно обнаружить по следующим косвенным признакам:

  • Происходит резкое увеличение потребления топлива. Это связано с тем, что впрыск топливно-воздушной смеси производится более одного раза за один цикл вращения коленвала.
  • Проявление нестабильной работы двигателя. Автомобиль может начать «дергаться», происходит резкое замедление. В некоторых случаях не удается развить скорость более 50-60 км.ч. Двигатель «глохнет» в процессе работы.
  • Иногда выход из строя датчика может привести к фиксации коробки передач, без возможности ее переключения (в некоторых моделях импортных авто). Для исправления ситуации требуется перезапуск мотора. При регулярных подобных случаях можно уверенно констатировать выход из строят ДП.
  • Нередко поломка может проявиться в виде исчезновения искры зажигания, что, соответственно, повлечет за собой невозможность запуска мотора.
  • В системе самодиагностики могут наблюдаться регулярные сбои, например, загореться индикатор проверки двигателя, когда он на холостом ходу, а при повышении оборотов лампочка гаснет.

Совсем не обязательно, что перечисленные факторы вызваны выходом из строя ДП. Высока вероятность того, неисправность вызвана другими причинами, а именно:

  • попаданием мусора или других посторонних предметов на корпус ДП;
  • произошел обрыв сигнального провода;
  • в разъем ДП попала вода;
  • сигнальный провод замкнулся с «массой» или бортовой сетью;
  • порвалась экранирующая оболочка на всем жгуте или отдельных проводах;
  • повреждение проводов, подающих питание к ДП;
  • перепутана полярность напряжения, поступающего на датчик;
  • проблемы с высоковольтной цепью системы зажигания;
  • проблемы с блоком управления;
  • неправильно выставлен зазор между ДП и магнитопроводящей пластиной;
  • возможно, причина кроется в высокой амплитуде торцевого биения шестеренки распределительного вала.

Как проверить работоспособность датчика Холла?

Есть разные способы, позволяющие проверить исправность датчика СБЗ, кратко расскажем о них:

  1. Имитируем наличие ДХ. Это наиболее простой способ, позволяющий быстро провести проверку. Но его эффективности может идти речь только в том случае, если не формируется искра при наличии питания на основных узлах системы. Для тестирования следует выполнить следующие действия:
  • отключаем от трамблера трехпроводной штекер;
  • запускаем систему зажигания и одновременно с этим «коротим» проводом массу и сигнал с датчика (контакты 3 и 2, соответственно). При наличии искры на катушке зажигания, можно констатировать, что датчик СБЗ потерял работоспособность и ему необходима замена.

Обратим внимание, что для выявления искрообразования высоковольтный проводок должен находиться рядом с массой.

  1. Применение мультиметра для проверки. Это способ наиболее известный, и приводится в руководстве к автомобилю. Нужно подключить щупы прибора, как продемонстрировано на рисунке 7, и произвести замеры напряжения.

Схема подключения мультиметра для проверки ДХ

На исправном датчике напряжение будет колебаться в диапазоне от 0,4 до 11 вольт (не забудьте перевести мультиметр в режим измерения постоянного тока). Следует заметить, что проверка осциллографом будет намного эффективней. Подключается он таким же образом, как и мультиметр. Пример осциллограммы рабочего ДХ приведен ниже.

Осциллограмма исправного датчика Холла СБЗ

  1. Установка заведомо рабочего ДХ. Если в наличии имеется еще один однотипный датчик, или имеется возможность взять его на время, то данный вариант тоже имеет место на существование, особенно если первые два сделать затруднительно.

Ест еще один вариант проверки, по принципу напоминающий второй способ. Он может быть полезен, если под рукой нет измерительных приборов. Для тестирования понадобиться резистор номиналом 1,0 кОм, светодиод, например, из фонарика зажигалки и несколько проводков. Из всего этого набора собираем прибор в соответствии с рисунком 9.

Рис. 9. Светоиндикаторный тестер для проверки ДХ

Тестирование осуществляем по следующему алгоритму:

  1. Проверяем питание на датчике. Для этой цели подключаем (соблюдая полярность) наш тестер к клеммам 1 и 3 ДХ. Включаем зажигание, если с питанием все нормально, светодиод загорится, в противном случае потребуется проверять цепь питания (предварительно убедившись в правильном подключении светодиода).
  2. Проверяем сам датчик. Для этого провод с первой клеммы «перебрасываем» на вторую (сигнал с ДХ). После этого начинаем крутить распредвал (руками или стартером). Моргание светодиода засвидетельствует исправность ДХ. В противном случае, на всякий случай проверяем соблюдение полярности при подключении светодиода, и если оно выполнено правильно, — меняем датчик на новый.

Руководство по эффекту Холла

— MagneLink, Inc.

Морин ВанДайк |

Нажмите, чтобы развернуть

Более 100 лет назад был обнаружен эффект Холла. Однако только в последние три десятилетия было разработано практическое использование этого эффекта. Некоторые из его первых применений включают использование в микроволновых датчиках в 1950-х годах и твердотельных клавиатурах в 1960-х годах. С 1970-х годов датчики на эффекте Холла нашли свое применение в широком спектре промышленных и потребительских товаров, таких как швейные машины, автомобили, станки, медицинское оборудование и компьютеры.

Перед рассмотрением пяти основных промышленных применений датчиков Холла необходимо определить их, их функции и их различные классификации.

Что такое эффект Холла?

В 1879 году физик Эдвин Холл открыл влияние магнитных полей на полупроводники с однонаправленным током. Когда проводник и поле взаимодействуют перпендикулярно, измерение напряжения под прямым углом к ​​движению тока позже стало известно как эффект Холла.

Чтобы визуализировать этот эффект, представьте себе ток в проводнике в виде воды, движущейся по трубе. Магнитное поле будет толкать или притягивать воду к одной стороне трубы. Если представить воду и трубу как электричество по проводу, можно увидеть эффект Холла в действии. Частицы в токе и магнитном поле поддаются измерению.

В полупроводниковой промышленности эффект Холла позволил людям определить, переносится ли ток через материал положительными частицами (как в случае с полупроводниками) или отрицательными частицами (как в случае с металлами). В результате ученые классифицировали химические вещества, разработали усовершенствованные полупроводниковые материалы и измерили магнитные поля в различных средах.

Сегодня устройства на эффекте Холла обычно используются для измерения магнитных полей, наблюдая за их влиянием на известный ток. Поскольку магнитное поле может изменить течение однонаправленного тока, одна сторона провода будет иметь больший отрицательный заряд, чем другая сторона, и это изменение приведет к измеримому напряжению. Напряжение увеличивается пропорционально силе поля.

Применение эффекта Холла

Эффект Холла может применяться в исследованиях, на промышленных предприятиях, в коммерческих предприятиях, в автомобильной промышленности и т. д. Датчики Холла могут измерять напряжение, ток и магнитные поля при производстве, проверке и тестировании. Это некоторые из наиболее распространенных применений эффекта Холла.

Магнитометры

Магнитометры или датчики Холла измеряют напряженность магнитных полей, часто для постоянных магнитов при оценке инженерных проектов. Их также можно использовать для обнаружения утечки магнитного потока в трубах и резервуарах для хранения.

Обнаружение магнитного поля

Датчики магнитного поля и оборудование для обнаружения могут обнаруживать наличие магнитных полей и определять их величину. Как только поля обнаружены, триггер может передавать сигналы и данные или переключать питание на цепь.

Измерение и измерение тока и напряжения

Датчики

используют эффект Холла для обнаружения или измерения постоянных токов. Устройство Холла может обнаруживать наличие магнитного поля. В некоторых случаях прибор Холла может измерять напряжение и определять ток, отображая его в виде читаемого сигнала.

Определение положения и движения

В случае обнаружения магнитного поля эта функция широко используется в промышленном и коммерческом оборудовании и машинах. Преимущество датчика Холла состоит в отсутствии механически движущихся компонентов при обнаружении наличия магнитного поля. Они обычно используются в качестве концевых выключателей.

Сложные машины и транспортные средства также выигрывают от эффекта Холла. Когда они обнаруживают колебания напряжения, эти датчики передают сигналы, которые могут быть реализованы в тахометрах, антиблокировочных тормозных системах транспортных средств и погрузочно-разгрузочных агрегатах.

Момент зажигания

Способность эффекта Холла обнаруживать или контролировать движение имеет решающее значение для правильного опережения зажигания в двигателях внутреннего сгорания. Момент зажигания — это точный выброс искры в камеру сгорания в зависимости от положения поршня и соответствующего угла поворота коленчатого вала.

Что такое датчик Холла?

Датчики Холла

— это магнитные компоненты, которые преобразуют закодированную магнитным полем информацию, такую ​​как положение, расстояние и скорость, чтобы электронные схемы могли ее обрабатывать. Как правило, они классифицируются на основе их способа вывода или средств работы.

Классификация выходов

Разделение датчиков Холла по выходному напряжению приводит к двум классификациям датчиков: цифровые датчики и аналоговые датчики.

Датчики Холла с цифровым выходом

Датчики Холла с цифровым выходом

в основном используются в магнитных переключателях для обеспечения цифрового выхода по напряжению. Таким образом, они подают в систему входной сигнал ВКЛ или ВЫКЛ.

Основным отличием датчика Холла с цифровым выходом является способ управления выходным напряжением. Вместо источника питания, обеспечивающего пределы насыщения, датчики с цифровым выходом имеют триггер Шмидта со встроенным гистерезисом, подключенный к операционному усилителю. Этот переключатель выключает выход датчика всякий раз, когда магнитный поток превышает предварительно установленные пределы, и снова включает его, когда поток стабилизируется.

Датчики Холла с аналоговым (или линейным) выходом

Датчик аналогового типа обеспечивает постоянное выходное напряжение, которое увеличивается, когда магнитное поле сильнее, и уменьшается, когда оно слабее. Таким образом, выходное напряжение или усиление аналогового датчика Холла прямо пропорционально интенсивности проходящего через него магнитного потока.

Классификация операций

Помимо классификации по выходу, датчики Холла можно разделить на категории по способу работы, в том числе:

Биполярные датчики Холла

Это тип цифрового датчика, работающего с положительным или отрицательным магнитным полем. Либо положительное, либо отрицательное магнитное поле магнита активирует датчик. В этой конфигурации переключатель, использующий биполярный датчик Холла, срабатывает почти так же, как традиционный герконовый переключатель. Однако переключатель на эффекте Холла имеет дополнительное преимущество, заключающееся в отсутствии механических контактов, что делает его более надежным в суровых условиях.

Униполярные датчики Холла

В отличие от биполярного датчика, этот тип цифрового датчика срабатывает только от одного полюса (северного или южного) магнита. Использование униполярного датчика Холла в переключателе позволяет сделать настройку более конкретной и активировать его только при воздействии на определенный магнитный полюс.

Датчики прямого и вертикального угла Холла

Более совершенные датчики на эффекте Холла фокусируются на компонентах магнитного поля, отличных от полюсов. Например, датчики прямого угла измеряют значения синуса и косинуса магнитного поля, а датчики вертикального угла анализируют компоненты магнитного поля, параллельные, а не перпендикулярные плоскости чипа.

Пять основных областей применения датчиков Холла

Датчики Холла

находят широкое применение в пяти основных отраслях промышленности, а именно:

Автомобили и автомобильная безопасность

Автомобильная промышленность и индустрия безопасности автомобилей используют как цифровые, так и аналоговые датчики на эффекте Холла в различных приложениях.

Примеры применения цифровых датчиков Холла в автомобильной промышленности:

  • Датчик положения сиденья и ремня безопасности для управления подушкой безопасности
  • Датчик углового положения коленчатого вала для регулировки угла зажигания свечей зажигания

Некоторые примеры использования датчиков аналогового типа включают:

  • Мониторинг и контроль скорости вращения колес в антиблокировочных тормозных системах (ABS)
  • Регулирование напряжения в электрических системах

Бытовая техника и товары народного потребления

Производители бытовой техники и потребительских товаров интегрируют различные типы датчиков Холла в различные конструкции изделий. Например:

  • Цифровые униполярные датчики помогают стиральным машинам сохранять баланс во время стирки.
  • Аналоговые датчики служат в качестве датчиков наличия источников питания, индикаторов управления двигателем и отключений на электроинструментах, а также датчиков подачи бумаги в копировальных машинах.

Мониторинг жидкости

Цифровые датчики Холла

обычно используются для контроля скорости потока и положения клапана в производстве, водоснабжении и очистке, а также в нефтегазовых операциях. В приложениях для мониторинга жидкости аналоговые датчики на эффекте Холла также используются для определения уровней давления на мембране в мембранных манометрах.

Автоматизация зданий

При автоматизации зданий подрядчики и субподрядчики интегрируют как цифровые, так и аналоговые датчики Холла.

Цифровые датчики приближения часто используются в конструкции:

  • Устройство автоматического смыва туалета
  • Автоматические мойки
  • Автоматические сушилки для рук
  • Системы безопасности зданий и дверей
  • Лифты

Аналоговые датчики используются для:

  • Освещение с датчиком движения
  • Камеры обнаружения движения

Персональная электроника

Это еще одна область, где популярность как аналоговых, так и цифровых датчиков Холла продолжает расти.

Приложения для цифровых датчиков включают:

  • Устройства управления двигателем
  • Механизмы синхронизации в фотооборудовании

Применение аналоговых датчиков включает:

  • Дисководы
  • Защита блока питания

Свяжитесь с MagneLink сегодня

Как указано выше, датчики на эффекте Холла — как аналоговые, так и цифровые — находят применение в широком спектре устройств, оборудования и систем в различных отраслях промышленности.

В MagneLink мы разрабатываем и производим высококачественные магнитные переключатели, в том числе переключатели, в которых используются датчики на эффекте Холла. Чтобы узнать больше о наших переключателях Холла и их применении, свяжитесь с нами сегодня.


Опубликовано в Новости

5 Практическое использование эффекта Холла

Современные достижения в научных исследованиях достигли невообразимых высот, особенно в 19 веке. В эту эпоху впервые был открыт эффект Холла и появилась возможность измерять магнитные поля. Чтобы лучше понять это явление, мы должны изучить другие элементы, которые вступают в игру. В принципе существует четыре фундаментальных взаимодействия: гравитация, слабое ядерное взаимодействие, сильное ядерное взаимодействие и электромагнетизм.

Электричество и магнетизм

Электричество и магнетизм напрямую связаны друг с другом. Обычное представление — это свободное движение свободных электронов по проводнику. Однако при использовании магнитов отрицательно заряженные электроны можно либо выталкивать, либо притягивать с помощью магнитного поля. Тот же принцип применяется к электрическим проводам при создании электрического тока. Эта сила называется индукцией. Эффект Холла в основном включает воздействие магнитных полей на электроны, составляющие ток.

Приборы на эффекте Холла

Приборы на эффекте Холла являются одним из наиболее распространенных способов измерения магнитных полей. Датчики контролируют путь протекающего электрического тока внутри полупроводника с помощью близлежащего магнита. Затем изменение отслеживается в вольтах, поскольку одна сторона полупроводника генерирует много электронов, что приводит к отрицательному заряду. И наоборот, оставшаяся сторона с меньшим количеством электронов создает положительный заряд. Следовательно, величина индуцированного напряжения равна воздействующему магнитному полю.

Датчики Холла

В датчике Холла используется простая пластина из полупроводящего материала, составляющая цепь. Он работает, когда рядом с электрическим током помещается магнит, отклоняющий электроны.

Чем ближе магнит, тем больше результирующее отклонение для электронов. Этот эффект дает большое количество измеримого напряжения по мере приближения магнита. Также есть способ увеличить силу магнитного поля. Например, используя больший магнит, который повышает результирующее напряжение.

Типы устройств на эффекте Холла

Несмотря на то, что он был открыт в конце 19-го века, только семьдесят лет спустя промышленность начала использовать эффект Холла в практических приложениях.

Устройства на эффекте Холла можно разделить на два типа: аналоговые и цифровые. Первый предполагает использование усилителя и схемы для обеспечения стабильного линейного выхода и более широкого диапазона температур. Это связано с тем, что датчики на эффекте Холла зависят от температуры. Однако устройства с цифровым эффектом Холла используют тот же датчик, но с дополнительной схемой, такой как компаратор, для создания цифрового выхода. Несмотря на это, эти два вида внесли значительный вклад во многие отрасли. Теперь перечислим их практические функции.

Практическое применение датчиков Холла

1. Магнитные датчики в автомобильных системах

С момента разработки датчика Холла он широко используется в автомобильных системах для определения положения, расстояния и скорости. Приложение включает в себя определение углового положения коленчатого вала по углу зажигания свечей зажигания. Кроме того, он также используется для определения положения автомобильных сидений и ремней безопасности. Затем они способствуют управлению подушками безопасности. Еще одним ценным применением этих датчиков в автомобильных системах является определение скорости вращения колес и применение антиблокировочной тормозной системы (ABS).

2. Компонент стиральной машины

Датчики Холла в стиральных машинах работают через цифровой униполярный датчик, который помогает внутренним механизмам поддерживать постоянный баланс во время циклов стирки.

3. Датчики Холла в качестве преобразователей

Поскольку датчики Холла отлично подходят для измерения магнитных полей, этот принцип широко используется в преобразователях тока. Он работает, когда технологический ток проходит через апертуру преобразователя, создавая равнопропорциональное вторичное магнитное поле внутри прибора, воздействующее на датчик Холла.

Датчики тока отслеживают потребление электроэнергии путем количественного определения переменной электричества. Собранная информация затем используется для наблюдения и анализа. Затем эти числа обрабатываются, чтобы помочь автоматизировать и контролировать существующие процессы, присутствующие в таких местах, как наши дома, фабрики, производственные предприятия и коммерческие офисы.

4. Датчики Холла в качестве датчиков приближения

Датчики приближения на эффекте Холла функционируют как элементарные дополнения, которые позволяют пользователям измерять широкий спектр вещей. Например, датчики приближения, встроенные в лопасти генератора ветряной мельницы, позволяют обнаруживать лопасти каждый раз, когда он совершает полный оборот. Собранные данные затем используются операторами для измерения скорости ветра на открытом воздухе или потенциальной мощности, вырабатываемой ветряком. Они также действуют как защитный выключатель, который включает сигнал тревоги, если вращающиеся лопасти вращаются с высокой скоростью.

5. Другие важные области применения датчиков Холла

С момента открытия и изобретения датчиков Холла эта технология используется в большинстве современных приборов и гаджетов.

Примеры современных применений включают трансформаторы тока, датчики положения, переключатели клавиатуры, компьютеры, датчики приближения, определение скорости, датчики тока, тахометры, антиблокировочные тормозные системы, магнитометры, дисководы и двигатели постоянного тока. Возможности безграничны. Кроме того, датчики на эффекте Холла доступны в различных формах интегральных схем (ИС).

Ключевые выводы

Открытие датчиков Холла оказалось ценным изобретением в современную эпоху. Несмотря на долгое время разработки, долгое ожидание его практического применения привело к многочисленным успехам, которыми известны датчики на эффекте Холла.

Большая часть принципа эффекта Холла связана с его использованием в изучении магнитных полей и проводимости электричества. Тем не менее, это также рассматривается как важный аспект безопасности наших автомобилей. Например, отслеживание положения автомобильных сидений и ремней безопасности для активации подушек безопасности необходимо для личной безопасности и предотвращения аварий.


Опубликовано

в

от

Метки:

Комментарии

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *